首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
S. Mohan  P. K. Sahoo 《水文研究》2008,22(6):854-862
The number of drought events derived from the historic streamflow or rainfall series will be limited and produce results that are not very reliable. This study proposes a drought simulation methodology that uses a long sequence of synthetically generated monthly streamflow/rainfall series, from which it is possible to drive a large sample of drought events and the prediction of drought characteristics will be reliable. The modified Herbst method has been used to identify droughts in the generated streamflow and rainfall series. The drought simulation procedure is illustrated with a case study of the Bhadra reservoir catchment in Karnataka State, India. Monthly droughts were derived from both historic and generated monthly streamflow and rainfall series. The important drought characteristics were determined and the suitable probability distribution for each parameter was arrived at after studying seven different probability models. The use of the probability curves thus derived has been illustrated with examples (referred to in Part 1 as ‘point droughts’). Similarly, the development and application of stochastic models for the prediction of regional drought parameters have been illustrated with examples in the accompanying paper (Part 2: regional droughts). Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
Hydrological drought analysis is very important in the design of hydrotechnical projects and water resources management and planning. In this study, a methodology is proposed for the analysis of streamflow droughts using the threshold level approach. The method has been applied to Yermasoyia semiarid basin in Cyprus based on 30‐year daily discharge data. Severity was defined as the accumulated water deficit volume occurring during a drought event, in respect with a target threshold. Fixed and variable thresholds (seasonal, monthly, and daily) were employed to derive the drought characteristics. The threshold levels were determined based on the Q50 percentiles of flow extracted from the corresponding flow duration curves for each threshold. The aim is to investigate the sensitivity of these thresholds in the estimation of maximum drought severities for various return periods and the derivation of severity–duration–frequency curves. The block maxima and the peaks over threshold approaches were used to perform the extreme value analysis. Three pooling procedures (moving average, interevent time criterion, and interevent time and volume criterion) were employed to remove the dependent and minor droughts. The application showed that the interevent time and volume criterion is the most unbiased pooling method. Therefore, it was selected to estimate the drought characteristics. The results of this study indicate that monthly and daily variable thresholds are able to capture abnormal drought events that occur during the whole hydrological year whereas the other two, only the severe ones. They are also more sensitive in the estimation of maximum drought severities and the derivation of the curves because they incorporate better the effect of drought durations.  相似文献   

3.
A streamflow drought climatology was developed over the Central Andes of Argentina, a semi-arid region highly vulnerable to climatic variations, based on the analysis of daily historical streamflow records. A threshold level approach was applied on a daily basis for three different severity levels in order to depict the main characteristics of droughts – number of drought events, mean duration and mean severity – over the period 1957–2014. Based on three annual indices that summarize the frequency of drought events, their duration and severity, we identified the main regional dry periods and the main modes of variability through an empirical decomposition. These modes are linked to La Niña conditions on inter-annual time scales and the Pacific Decadal Oscillation for the decadal variations, showing the influence of the tropical Pacific Ocean in the development of streamflow drought conditions and its relevance for potential predictability of hydroclimatic variations over the region.  相似文献   

4.
S. Mohan  P. K. Sahoo 《水文研究》2008,22(6):863-872
In Part 1 we demonstrated the applicability of stochastic models to predicting the characteristics of point drought events within any planning period by means of a case study (Mohan S, Sahoo PK (2007) Hydrological Processes 21 : this issue). In addition, studies on regional droughts are important in the context of regional level planning and evolving management strategies. The small number of drought events from a particular streamflow or rainfall series, when subjected to statistical analysis in order to predict future occurrences, produces results that are not very reliable. To overcome this difficulty, we propose using a long sequence of synthetically generated annual rainfall series at various rain‐gauge stations of a region, and multiyear regional droughts were derived from both historic and generated series. The key parameters for a successful regional multiyear drought study are the critical area ratio and the critical level, and the area affected by the drought can be ascertained using these parameters. The important regional drought parameters were determined and their suitable probability distributions were arrived at by studying a total of nine possible probability models; these models can be used in predicting the longest regional drought duration and the greatest regional drought severity with a given return period. The effect of change of critical parameters on the regional drought parameters is also studied and reported. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
Drought is a temporary, random and regional climatic phenomenon, originating due to lack of precipitation leading to water deficit and causing economic loss. Success in drought alleviation depends on how well droughts are defined and their severity quantified. A quantitative definition identifies the beginning, end, spatial extent and the severity of drought. Among the available indices, no single index is capable of fully describing all the physical characteristics of drought. Therefore, in most cases it is useful and necessary to consider several indices, examine their sensitivity and accuracy, and investigate for correlation among them. In this study, the geographical information system‐based Spatial and Time Series Information Modeling (SPATSIM) and Daily Water Resources Assessment Modeling (DWRAM) software were used for drought analysis on monthly and daily bases respectively and its spatial distribution in both dry and wet years. SPATSIM utilizes standardized precipitation index (SPI), effective drought index (EDI), deciles index and departure from long‐term mean and median; and DWRAM employs only EDI. The analysis of data from the Kalahandi and Nuapada districts of Orissa (India) revealed that (a) droughts in this region occurred with a frequency of once in every 3 to 4 years, (b) droughts occurred in the year when the ratio of annual rainfall to potential evapotranspiration (Pae/PET) was less than 0·6, (c) EDI better represented the droughts in the area than any other index; (d) all SPI, EDI and annual deviation from the mean showed a similar trend of drought severity. The comparison of all indices and results of analysis led to several useful and pragmatic inferences in understanding the drought attributes of the study area. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
Drought is a climatic event that can cause significant damage both in natural environment and in human lives. Drought forecasting is an important issue in water resource planning. Due to the stochastic behaviour of droughts, a multiplicative seasonal autoregressive integrated moving average model was applied to forecast monthly streamflow in a small watershed in Galicia (NW Spain). A better streamflow forecast obtained when the Martone index was included in the model as explanatory variable. After forecasting 12 leading month streamflow, three drought thresholds: streamflow mean, monthly streamflow mean and standardized streamflow index were chosen. Both observed and forecasted streamflow showed no drought evidence in this basin.  相似文献   

7.
Drought may affect all components of the water cycle and covers commonly a large part of the catchment area. This paper examines drought propagation at the catchment scale using spatially aggregated drought characteristics and illustrates the importance of catchment processes in modifying the drought signal in both time and space. Analysis is conducted using monthly time series covering the period 1961–1997 for the Pang catchment, UK. The time series include observed rainfall and groundwater recharge, head and discharge simulated by physically-based soil water and groundwater models. Drought events derived separately for each unit area and variable are combined to yield catchment scale drought characteristics. The study reveals relatively large differences in the spatial and temporal characteristics of drought for the different variables. Meteorological droughts cover frequently the whole catchment; and they are more numerous and last for a short time (1–2 months). In comparison, droughts in recharge and hydraulic head cover typically a smaller area and last longer (4–5 months). Hydraulic head and groundwater discharge exhibit similar drought characteristics, which can be expected in a groundwater fed catchment. Deficit volume is considered a robust measure of the severity of a drought event over the catchment area for all variables; whereas, duration is less sensitive, particular for rainfall. Spatial variability in drought characteristics for groundwater recharge, head and discharge are primarily controlled by catchment properties. It is recommended not to use drought area separately as a measure of drought severity at the catchment scale, rather it should be used in combination with other drought characteristics like duration and deficit volume.  相似文献   

8.
Multivariate modeling of droughts using copulas and meta-heuristic methods   总被引:3,自引:3,他引:0  
This study investigated the utility of two meta-heuristic algorithms to estimate parameters of copula models and for derivation of drought severity–duration–frequency (S–D–F) curves. Drought is a natural event, which has huge impact on both the society and the natural environment. Drought events are mainly characterized by their severity, duration and intensity. The study adopts standardized precipitation index for drought characterization, and copula method for multivariate risk analysis of droughts. For accurate estimation of copula model parameters, two meta-heuristic methods namely genetic algorithm and particle swarm optimization are applied. The proposed methodology is applied to a case study in Trans Pecos, an arid region in Texas, USA. First, drought severity and duration are separately modeled by various probability distribution functions and then the best fitted models are selected for copula modeling. For modeling the joint dependence of drought variables, different classes of copulas, namely, extreme value copulas, Plackett and Student’s t copulas are employed and their performance is evaluated using standard performance measures. It is found that for the study region, the Gumbel–Hougaard copula is the best fitted copula model as compared to the others and is used for the development of drought S–D–F curves. Results of the study suggest that the meta-heuristic methods have greater utility in copula-based multivariate risk assessment of droughts.  相似文献   

9.
Drought hotspot identification requires continuous drought monitoring and spatial risk assessment. The present study analysed drought events in the agriculture‐dominated mid‐Mahanadi River Basin in Odisha, India, using crop water stress as a drought indicator. This drought index incorporated different factors that affect crop water deficit such as the cropping pattern, soil characteristics, and surface soil moisture. The drought monitoring framework utilized a relevance vector machine model‐based classification that provided the uncertainty associated with drought categorization. Using the proposed framework, drought hotspots are identified in the study region and compared with indices based on precipitation and soil moisture. Further, a bivariate copula is employed to model the agricultural drought characteristics and develop the drought severity–duration–frequency (S–D–F) relationships. The drought hotspot maps and S–D–F curves are developed for different locations in the region. These provided useful information on the site‐specific drought patterns and the characteristics of the devastating droughts of 2002 and 2012, characterized by an average drought duration of 7 months at several locations. The site‐specific risk of short‐ and long‐term agricultural droughts are then investigated using the conditional copula. The results suggest that the conditional return periods and the S–D–F curves are valuable tools to assess the spatial variability of drought risk in the region.  相似文献   

10.
This study presents spatio-temporal analysis of droughts in one of the most drought prone region in India–western Rajasthan and develops drought intensity-area-frequency curves for the region. The meteorological drought conditions are analyzed using 6-month standardized precipitation index (SPI-6) estimated at spatial resolution of 0.5° × 0.5°. Spatio-temporal analysis of SPI-6 indicates increase in frequency of droughts at the central part of the region. The non-parametric Mann–Kendall test for seasonal trend analysis showed increase in number of grids under drought during the study period. Further, bivariate frequency analysis of drought characteristics—intensity and areal extent is carried out using copula methods. For modeling joint dependence between drought variables, three copula families namely Gumbel-Hougaard, Frank and Plackett copulas are evaluated. Based on goodness-of-fit as well as upper tail dependence tests, it is found that the Gumbel-Hougaard copula best represents the drought properties. The copula-based joint distribution is used to compute conditional return periods and drought intensity–area–frequency (I–A–F) curves. The I–A–F curves could be helpful in risk evaluation of droughts in the region.  相似文献   

11.
This study presents copula‐based multivariate probabilistic approach to model severity–duration–frequency (S‐D‐F) relationship of drought events in western Rajasthan, India. Drought occurrences are analysed using standardized precipitation index computed on monthly mean areal precipitation, aggregated at a time scale of 6 months. After testing with a series of probability density functions, the drought variable severity is found to be better represented with log‐normal distribution, whereas duration is well fitted with exponential distribution. Four different classes of bivariate copulas – Archimedean, extreme value, Plackett, and elliptical families are evaluated for modelling joint distribution of drought characteristics. It is observed that the extreme value copula – Gumbel–Hougaard copula – performed better as compared with other classes of copulas, based on results of various statistical tests and upper tail dependence coefficient. The joint distribution obtained from best performing copula is then employed to determine conditional return period and to derive drought severity‐duration‐frequency (S‐D‐F) curves for the study region. The results of the study suggests that the copula method can be used effectively to derive the drought S‐D‐F curves, which can be helpful in planning and adopting suitable drought mitigation strategies in drought‐prone areas. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
Each type of drought has different characteristics in different regions. It is important to distinguish different types of droughts and their correlations. Based on gauged precipitation, temperature, simulated soil moisture, and runoff data during the period 1951–2012, the relationships among meteorological, agricultural, and hydrological droughts were analyzed at different time scales in Southwest China. The standardized precipitation evapotranspiration index (SPEI), soil moisture anomaly percentage index (SMAPI), and standardized runoff index (SRI) were used to describe meteorological, agricultural, and hydrological droughts, respectively. The results show that there was a good correlation among the three indices. SMAPI had the best correlation with the 3 month SPEI and SRI values. It indicates that agricultural drought was characterized by a 3-month scale. The three drought indices displayed the similar special features such as drought scope, drought level, and drought center during the extreme drought of 2009–2010. However, the scope and level of SPEI were bigger than those of SMAPI and SRI. The propagation characteristics of the three types of droughts were significantly different. The temporal drought process in typical grids reflect that the meteorological drought occurred ahead of agricultural and hydrological droughts by about 1 and 3 months, respectively. Agricultural drought showed a stable drought process and reasonable time periods for the drought beginning and end. These results showed the quantitative relationships among three types of drought and thus provided an important supporting evidence for regional drought monitoring and strategic decisions.  相似文献   

13.
Regional frequency analysis based on L-moments was applied to assess the spatial extent of meteorological droughts in tandem with their return periods in Zambia. Weather station monthly rainfall data were screened to form homogeneous sub-regions-, validated by a homogeneity criterion and fitted by a generalized extreme value distribution using goodness-of-fit test statistics. Predictor equations at regional scale for L-moment ratios and mean annual precipitation were developed to generate spatial maps of meteorological drought recurrences. The 80% of normal rainfall level and two thresholds of 60% and 70% were synonymous with moderate and severe droughts, respectively. Droughts were more severe in the south than in the north of Zambia. The return periods for severe and moderate droughts showed an overlapping pattern in their occurrence at many locations, indicating that in certain years droughts can affect the entire country. The extreme south of Zambia is the most prone to drought.  相似文献   

14.
Since the Three Gorges Reservoir (TGR) was put into operation in June 2003, the effects of the TGR on downstream hydrology and water resources have become the focus of public attention. This article examines the effects of the TGR on the hydrological droughts at the downstream Yichang hydrological station during 2003–2011. The two‐parameter monthly water balance model was used to generate the monthly discharges at the Yichang station for the period of 2003–2011 to represent the unregulated flow regime and thus to provide a comparison benchmark for the observed flow series at the Yichang station after the operation of the TGR. To provide a reference series for the observed monthly discharge series of the entire study period of 1951–2011, we constructed the naturalized monthly discharge series at the Yichang station by joining the observed monthly discharge at the Yichang station for the period of 1951–2002 and the two‐parameter monthly water balance simulated monthly runoff at the Yichang station for the period of 2003–2011. For both the observed and naturalized monthly discharge series of 1951–2011, the hydrological drought index series were calculated using the standardized streamflow index method. By comparing the drought indices of these two monthly discharge series, we investigated the effects of the TGR on the hydrological droughts at the downstream Yichang station during 2003–2011. The results show that the hydrological droughts at the downstream Yichang station are slightly aggravated by the TGR's initial operation from 2003 to 2011. The river flow reduction at the Yichang station after impoundment of the TGR might account for the downstream drought aggravation. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
16.
Streamflow drought time series forecasting   总被引:5,自引:2,他引:5  
Drought is considered to be an extreme climatic event causing significant damage both in the natural environment and in human lives. Due to the important role of drought forecasting in water resources planning and management and the stochastic behavior of drought, a multiplicative seasonal autoregressive integrated moving average (SARIMA) model is applied to the monthly streamflow forecasting of the Zayandehrud River in western Isfahan province, Iran. After forecasting 12 leading month streamflow, four drought thresholds including streamflow mean, monthly streamflow mean, 2-, 5-, 10- and 20-year return period monthly drought and standardized streamflow index were chosen. Both observed and forecasted streamflow showed a drought period with different severity in the lead-time. This study also demonstrates the usefulness of SARIMA models in forecasting, water resources planning and management.  相似文献   

17.
This research study focused on the hypothesis that extreme drought and high streamflow events come from different independent populations with different probability distributions which need to be studied separately, rather than considering the streamflow population as a whole. The inability of traditional streamflow generator models to consistently reproduce the frequency of occurrence of severe droughts observed in the historical record has been questioned by many researchers. Our study focused on the development of astochastic event generator model which would be capable of doing so. This was accomplished in a two-step process by first generating the drought event, and then deriving the streamflows which comprised that event. The model considered for this analysis was an alternating renewal-reward procedure that cycles between eventon andoff times, and is representative of drought or high streamflow event duration. The reward gained while the event ison oroff represents drought severity or high streamflow surplus. Geometric and gamma distributions were considered for drought duration and deficit respectively. Model validation was performed using calculated required capacities from the sequent peak algorithm.  相似文献   

18.
Abstract

This work investigates historical trends of meteorological drought in Taiwan by means of long-term precipitation records. Information on local climate change over the last century is also presented. Monthly and daily precipitation data for roughly 100 years, collected by 22 weather stations, were used as the study database. Meteorological droughts of different levels of severity are represented by the standardized precipitation index (SPI) at a three-monthly time scale. Additionally, change-point detection is used to identify meteorological drought trends in the SPI series. Results of the analysis indicate that the incidence of meteorological drought has decreased in northeastern Taiwan since around 1960, and increased in central and southern Taiwan. Long-term daily precipitation series show an increasing trend for dry days all over Taiwan. Finally, frequency analysis was performed to obtain further information on trends of return periods of drought characteristics.  相似文献   

19.
水文干旱多变量联合设计及水库影响评估   总被引:2,自引:1,他引:1  
基于东江流域博罗站月径流数据,采用游程理论提取水文干旱事件.选用Meta-Gaussian Copula函数,统计模拟水文干旱指标的多变量联合分布.采用Kendall联合重现期和最大可能权函数,设计给定联合超越重现期的水文干旱指标组合值,并定量评估水库径流调节作用对水文干旱多变量联合特征的影响.结果表明:东江流域水文干旱历时、强度和峰值的统计优选分布均为韦布尔分布.干旱指标之间具有较高的正相关性,Meta-Gaussian Copula能够很好地模拟水文干旱指标两变量和三变量联合分布.基于任意两个变量联合设计和三变量联合设计,干旱指标设计组合值位于同频位置附近,且同一个干旱指标设计值在不同变量组合之间差别较小.水库径流调节作用对于缓解东江流域水文干旱效果明显,同一组干旱指标的多变量联合超越重现期在水库影响下明显变大.联合超越重现期越小,水库对联合设计值的影响程度越大.根据目前水库运行模式,若要满足河道内最小管理流量目标,联合超越重现期10 a一遇的干旱历时、强度和峰值依然达到了约3.89~4.04月、7.20~7.97亿m3和2.99~3.12亿m3.  相似文献   

20.
While 1992 marked the first major dam – Manwan – on the main stem of the Mekong River, the post-2010 era has seen the construction and operationalisation of mega dams such as Xiaowan (started operations in 2010) and Nuozhadu (started operations in 2014) that were much larger than any dams built before. The scale of these projects implies that their operations will likely have significant ecological and hydrological impacts from the Upper Mekong Basin to the Vietnamese Delta and beyond. Historical water level and water discharge data from 1960 to 2020 were analysed to examine the changes to streamflow conditions across three time periods: 1960–1991 (pre-dam), 1992–2009 (growth) and 2010–2020 (mega-dam). At Chiang Saen, the nearest station to the China border, monthly water discharge in the mega-dam period has increased by up to 98% during the dry season and decreased up as much as −35% during the wet season when compared to pre-dam records. Similarly, monthly water levels also rose by up to +1.16 m during the dry season and dropped by up to −1.55 m during the wet season. This pattern of hydrological alterations is observed further downstream to at least Stung Treng (Cambodia) in our study, showing that Mekong streamflow characteristics have shifted substantially in the post-2010 era. In light of such changes, the 2019–2020 drought – the most severe one in the recent history in the Lower Mekong Basin – was a consequent of constructed dams reducing the amount of water during the wet season. This reduction of water was exacerbated by the decreased monsoon precipitation in 2019. Concurrently, the untimely operationalisation of the newly opened Xayaburi dam in Laos coincided with the peak of the 2019–2020 drought and could have aggravated the dry conditions downstream. Thus, the mega-dam era (post-2010) may signal the start of a new normal of wet-season droughts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号