首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
40a来中国旱灾对ENSO事件的区域差异响应研究   总被引:4,自引:0,他引:4  
利用中国各地区1949—1990年间旱灾的受灾面积比和成灾面积比,分别与ENSO指数进行相关分析.结果发现:ENSO指数与各地的旱灾事件有着一定的反相关关系,表明ENSO的发生对我国大部分地区有着显著的影响,特别是对华北、东北、华南、内蒙古和新疆等地区的相关性具有很好的显著水平.通过对比各个分区对ENSO事件的响应程度,分析了其空间差异性.ENSO指数的变化与中国各地的旱灾有密切的联系,全球升温通过影响ENSO事件而影响中国的旱灾面积:全球升温影响下,ENSO指数升高,旱灾减少.  相似文献   

2.
We present evidence from the analysis of gridded annual rainfall data that, increased variability and declining rainfall totals are the main cause of declining lake levels in the Volta basin above the Akosombo Dam. West Africa has undergone a period of diminished rainfall, punctuated by a series of severe droughts and marked by a shift in rainfall regime. As a result, lake levels behind the hydro-electric impoundment have fluctuated so widely at times that, power has had to be rationed. The trends in the spatial and temporal variability of annual rainfall in the riparian nations explain the low impoundment levels frequent in recent decades. The drying of Burkina Faso and Mali is particularly marked and synchronous to an apparent shift in the rainfall regime in Ghana towards a longer dry season and vanishing short dry spell, the effects which tend to negate each other. The various regional and temporal associations between El Niño-Southern Oscillation phenomenon (ENSO) are investigated as a possible cause of variation across the basin. The strengths of these associations and low frequency shifts suggest an unfortunate correspondence between national and climatological boundaries which may serve to heighten regional political tensions resulting from ENSO effects. Lack of re-investment in the Akosombo Dam as a result of management policies, political and pre-construction contractual agreements have all conspired in recent decades to make these hydro-climatological changes more devastating.  相似文献   

3.
One of the most promising developments for early warning of climate hazards is seasonal climate forecasting. Already forecasts are operational in many parts of the tropics and sub-tropics, particularly for droughts and floods associated with ENSO events. Prospects for further development of seasonal forecasting for a range of climatichazards are reviewed, illustrated with case studies in Africa, Australia, the U.S.A. and Europe. A critical evaluation of the utility of seasonal forecasts centres on vulnerability, communicationchannels, and effective responses. In contrast to short-term prediction, seasonal forecasts raise new issues of preparedness and the use of information.  相似文献   

4.
ENSO事件对长江上游1470-2003年旱涝灾害影响分析   总被引:10,自引:1,他引:9  
张强  姜彤  吴宜进 《冰川冻土》2004,26(6):691-696
对长江上游旱涝灾害时间序列(1470-2003年)及SST指数序列(1868-2003年)作统计相关与谱分析,探讨了长江上游旱涝灾害与ENSO事件的遥相关关系.结果表明:长江上游旱涝灾害主周期要大于ENSO事件的主周期,前者主周期主要为16.69a,5.09a以及10.47a,而后者主周期主要为5a,~10~12年以及~10a.交叉谱分析结果表明,长江上游旱涝灾害与SST在约5a以及约10~12a周期上呈现出显著的相关性.可以认为ENSO事件发生周期与生存周期的长短直接影响着长江上游旱涝灾害发生的周期与频率,并在5a以及10~12a的周期上表现出高的统计相关性.SST指数与长江上游旱涝灾害相关分析表明,ElNiño事件的发生使长江上游发生旱灾机率增大,而LaNiña事件的发生则使长江上游发生涝灾的机率增大.  相似文献   

5.
Proxy reconstructions of precipitation from central India, north-central China, and southern Vietnam reveal a series of monsoon droughts during the mid 14th–15th centuries that each lasted for several years to decades. These monsoon megadroughts have no analog during the instrumental period. They occurred in the context of widespread thermal and hydrologic climate anomalies marking the onset of the Little Ice Age (LIA) and appear to have played a major role in shaping significant regional societal changes at that time. New tree ring-width based reconstructions of monsoon variability suggest episodic and widespread reoccurrences of monsoon megadroughts continued throughout the LIA. Although the El-Niño Southern Oscillation (ENSO) plays an important role in monsoon variability, there is no conclusive evidence to suggest that these megadroughts were associated with anomalous sea surface temperature anomalies that were solely the result of ENSO-like variability in the tropical Pacific. Instead, the causative mechanisms of these megadroughts may reside in protracted changes in the synoptic-scale monsoon climatology of the Indian Ocean. Today, the intra-seasonal monsoon variability is dominated by ‘active’ and the ‘break’ spells – two distinct oscillatory modes of monsoon that have radically different synoptic scale circulation and precipitation patterns. We suggest that protracted locking of the monsoon into the “break-dominated” mode – a mode that favors reduced precipitation over the Indian sub-continent and SE Asia and enhanced precipitation over the equatorial Indian Ocean, may have caused these exceptional droughts. Impetus for periodic locking of the monsoon into this mode may have been provided by cooler temperatures at the extratropical latitudes in the Northern Hemisphere which forced the mean position of the Inter-Tropical Convergence Zone (ITCZ) further southward in the Indian Ocean.  相似文献   

6.
There is a close relationship between interannual variability of the Indian summer monsoon rainfall and the El Niño/Southern Oscillation (ENSO) (drought conditions over India accompany warm ENSO events and vice versa). However, recent observations suggest a weakening of this ENSO-monsoon relationship that may be linked to global warming. We report here an analysis of the ENSO-monsoon relationship within the framework of a 1000-year control simulation of the MRI-coupled general circulation model (GCM), MRI-CGCM2.2. An overall correlation between the June-July-August (JJA) Nino3.4 sea surface temperature and the JJA Indian monsoon rainfall is –0.39, with reasonable circulation characteristics associated with the modeled ENSO. The simulated ENSO-monsoon relationship reveals long-term variations, from –0.71 to +0.07, in moving 31-year windows. This modulation in the ENSO-monsoon relationship is associated with decadal variability of the climate system.  相似文献   

7.
The relative impacts of the ENSO and Indian Ocean dipole (IOD) events on Indian summer (June–September) monsoon rainfall at sub-regional scales have been examined in this study. GISST datasets from 1958 to 1998, along with Willmott and Matsuura gridded rainfall data, all India summer monsoon rainfall data, and homogeneous and sub-regional Indian rainfall datasets were used. The spatial distribution of partial correlations between the IOD and summer rainfall over India indicates a significant impact on rainfall along the monsoon trough regions, parts of the southwest coastal regions of India, and also over Pakistan, Afghanistan, and Iran. ENSO events have a wider impact, although opposite in nature over the monsoon trough region to that of IOD events. The ENSO (IOD) index is negatively (positively) correlated (significant at the 95% confidence level from a two-tailed Student t-test) with summer monsoon rainfall over seven (four) of the eight homogeneous rainfall zones of India. During summer, ENSO events also cause drought over northern Sri Lanka, whereas the IOD events cause surplus rainfall in its south. On monthly scales, the ENSO and IOD events have significant impacts on many parts of India. In general, the magnitude of ENSO-related correlations is greater than those related to the IOD. The monthly-stratified IOD variability during each of the months from July to September has a significant impact on Indian summer monsoon rainfall variability over different parts of India, confirming that strong IOD events indeed affect the Indian summer monsoon.
Karumuri AshokEmail:
  相似文献   

8.
Drought has become a recurrent phenomenon in Turkey in the last few decades. Significant drought conditions were observed during years of late 1980s and the trend continued in the late 1990s. The countrys agricultural sector and water resources have been under severe constraints from the recurrent droughts. In this study, spatial and temporal dimensions of meteorological droughts in Turkey have been investigated from vulnerability concept. The Standardized Precipitation Index (SPI) method was used to detail geographical variations in the drought vulnerability based on frequency and severity of drought events at multiple time steps. Critical (threshold) rainfall values were derived for each station at multiple-time steps in varying drought categories to determine least amount of rainfall required to avoid from drought initiation. The study found that drought vulnerability portrays a very diverse but consistent picture with varying time steps. At regional scale, south-eastern and eastern Anatolia are characterized with moderate droughts at shorter time steps, while the occurrence of severe droughts at shorter time steps is observed at non-coastal parts of the country. A similar picture was observed with very severe droughts. The critical (threshold) values exhibited rising numbers during the growing season at 3-month step in the South-eastern Anatolia, which might have significant consequences considering presence of large irrigation projects under-development in the region. In general, rainfall amounts required for non-drought conditions decrease from the coastal parts toward the interiors with increasing time steps.  相似文献   

9.
The summer monsoon rainfall over Orissa, a state on the eastern coast of India, is more significantly related than Indian summer monsoon rainfall (ISMR) to the cyclonic disturbances developing over the Bay of Bengal. Orissa experiences floods and droughts very often due to variation in the characteristics of these disturbances. Hence, an attempt was made to find out the inter-annual variability in the rainfall over Orissa and the frequencies of different categories of cyclonic disturbances affecting Orissa during monsoon season (June–September). For this purpose, different statistical characteristics, such as mean, coefficient of variation, trends and periodicities in the rainfall and the frequencies of different categories of cyclonic disturbances affecting Orissa, were analysed from 100 years (1901–2000) of data. The basic objective of the study was to find out the contribution of inter-annual variability in the frequency of cyclonic disturbances to the inter-annual variability of monsoon rainfall over Orissa. The relationship between summer monsoon rainfall over Orissa and the frequency of cyclonic disturbances affecting Orissa shows temporal variation. The correlation between them has significantly decreased since the 1950s. The variation in their relationship is mainly due to the variation in the frequency of cyclonic disturbances affecting Orissa. The variability of both rainfall and total cyclonic disturbances has been above normal since the 1960s, leading to more floods and droughts over Orissa during recent years. The inter-annual variability of seasonal rainfall over Orissa and the frequency of cyclonic disturbances affecting Orissa during monsoon season show a quasi-biennial oscillation period of 2–2.8 years. There is least impact of El Nino southern oscillation (ENSO) on inter-annual variability of both the seasonal rainfall over Orissa and the frequencies of monsoon depressions/total cyclonic disturbances affecting Orissa.  相似文献   

10.
Indian monsoon variability in relation to Regional Pressure Index   总被引:1,自引:0,他引:1  
In this paper Regional Pressure Index (RPI) over the Indian region (20‡N—40‡N and 70‡0E—85‡E) has been constructed for 101 years (1899-1999) on a monthly scale. The relationship of these indices was carried out with the Indian Summer Monsoon Rainfall (June–September) (ISMR) over the various homogeneous regions, for all the time scales. From the analysis it has been seen that RPI in the month of May is significantly associated with ISMR over various regions on all the scales. The relationship is statistically significant at 1% level. The study reveals that RPI in the month of May and January will be a new precursor for the long range forecasting of ISMR on the smaller spatial scale. On the decadal and climatological scale, winter and spring time RPI show a significant inverse relationship with the rainfall over the regions Peninsular India (PI) and North West India (NWI), while the association is direct with Central North East India (CNEI) and North East India (NEI). The relationship is significant at 0.1 and 1% level respectively.  相似文献   

11.
This study analyses regional drought characteristics (frequency, severity, and persistence) of meteorological droughts occurred in the northwestern parts falling under arid and semiarid regions of India with mean annual rainfall ranging between 100 and 900 mm. A drought is defined as a season or a year with rainfall less than 75% of corresponding mean at a place. Long-term monthly rainfall records (1901–2013) of 90 districts of north-west India located in the states of Punjab, Haryana, Rajasthan and Gujarat are used in the analysis. The percentage departure of seasonal rainfall from long-term average rainfall has been used for identification of onset, termination, and quantification of drought severity. The average frequency varied from once every 3–4 years. The westerly districts have an average drought return period of 3 years, while districts lying toward the east had droughts once every 4 years. Only four of the 90 districts in the study area experienced droughts once every 5 years. Persistent droughts of 2, 3, and 4 year duration occurred widely. Severe droughts occurred in the years 1904, 1905, 1911, 1918, 1931, 1939, 1985, 1986, 1987, 1993, and 2002, with an average frequency of severe drought events of one in 10 years. The analysis presented in this paper improves understanding of the regional drought characteristics and will inform drought mitigations and strategies in these arid and semiarid areas.  相似文献   

12.

There is a scarcity of long-term groundwater hydrographs from sub-Saharan Africa to investigate groundwater sustainability, processes and controls. This paper presents an analysis of 21 hydrographs from semi-arid South Africa. Hydrographs from 1980 to 2000 were converted to standardised groundwater level indices and rationalised into four types (C1–C4) using hierarchical cluster analysis. Mean hydrographs for each type were cross-correlated with standardised precipitation and streamflow indices. Relationships with the El Niño–Southern Oscillation (ENSO) were also investigated. The four hydrograph types show a transition of autocorrelation over increasing timescales and increasingly subdued responses to rainfall. Type C1 strongly relates to rainfall, responding in most years, whereas C4 notably responds to only a single extreme event in 2000 and has limited relationship with rainfall. Types C2, C3 and C4 have stronger statistical relationships with standardised streamflow than standardised rainfall. C3 and C4 changes are significantly (p <?0.05) correlated to the mean wet season ENSO anomaly, indicating a tendency for substantial or minimal recharge to occur during extreme negative and positive ENSO years, respectively. The range of different hydrograph types, sometimes within only a few kilometres of each other, appears to be a result of abstraction interference and cannot be confidently attributed to variations in climate or hydrogeological setting. It is possible that high groundwater abstraction near C3/C4 sites masks frequent small-scale recharge events observed at C1/C2 sites, resulting in extreme events associated with negative ENSO years being more visible in the time series.

  相似文献   

13.
The intraseasonal tropical variability (ITV) patterns in the tropical troposphere are documented using double space-time Fourier analysis. Madden and Julian oscillations (MJO) as well as equatorial coupled waves (Kelvin and Rossby) are investigated based on the NCEP/NCAR Reanalysis data for the 1977–2006 period and the outputs of an intermediate ocean-atmosphere coupled model named LODCA-OTCM. A strong seasonal dependence of the ITV/ENSO relationship is evidenced. The leading relationship for equatorial Rossby waves (with the correlation of the same order than for the MJO) is documented; namely, it is shown that intensification of Rossby waves in the central Pacific during boreal summer precedes by half a year the peak of El Niño. The fact that MJO activity in spring-summer is associated to the strength of subsequent El Niño is confirmed. It is shown that LODCA-QTCM is capable of simulating the convectively coupled equatorial waves in outgoing long wave radiation and zonal wind at 850 hPa fields with skill comparable to other Coupled General Circulation Models. The ITV/ENSO relationship is modulated at low frequency. In particular the periods of low ENSO amplitude are associated with weaker MJO activity and a cancellation of MJO at the ENSO development phase. In opposition, during the decaying phase, MJO signal is strong. The periods of strong ENSO activity are associated with a marked coupling between MJO, Kelvin and equatorially Rossby waves and ENSO; the precursor signal of MJO (Rossby waves) in the western (central) Pacific is obvious. The results provide material for the observed change in ENSO characteristics in recent years and question whether the characteristics of the ITV/ENSO relationship may be sensitive to the observed warming in the central tropical Pacific.  相似文献   

14.
刘静楠  顾颖  金君良  倪深海  申瑜 《水文》2013,33(2):51-54
分析了山西中部地区20世纪70年代以后的降雨、流量、蒸发量的时空分布。山西中部地区降雨偏少,年际丰枯变化大,年内分布不均。70年代以来径流在逐渐减少,2000年以后径流的减少更为明显。90年代以后蒸发量增大。分析了90年代以来该地区发生的农业受旱、粮食旱灾情况,降雨、流量、蒸发量是影响旱情旱灾发生的重要因素。  相似文献   

15.
我国重大气候灾害的形成机理和预测理论研究   总被引:15,自引:0,他引:15  
国家重点基础研究发展计划项目“我国重大气候灾害的形成机理和预测理论的研究”把20世纪80年代以来我国所发生的旱涝重大气候灾害作为项目研究的切入点,从气候系统各圈层的变化及其相互作用,特别是从气候系统中海—陆—气各子系统的变化和相互作用及其对我国重大气候灾害的影响机理入手,对我国重大气候灾害进行了深入分析研究,提出了与我国旱涝重大气候灾害形成机理有关的“东亚气候系统”新理论,指出这个系统的时空变化特征及其对我国旱涝等重大气候灾害发生的重要作用;从东亚季风—西太平洋暖池—ENSO循环相互作用及机理的研究,提出了热带西太平洋对热带太平洋ENSO循环的热力和动力作用以及与亚洲季风的相互作用过程,指出了ENSO循环的不同阶段对于东亚季风和我国气候异常的不同影响及其机理;提出了高原热力适应理论,应用此理论揭示了高原热力变化对南亚高压东西振荡影响的物理过程。在上述理论研究的基础上提出了ENSO循环的数值预测模式和我国跨季度和年度气候异常的数值预测系统,研制了新一代气候耦合数值模型中的大气环流数值模式。通过这两个预测系统的研制使我国对ENSO事件预测水平有了较大提高,并成功地预测了我国1998—2003年夏季所发生的严重旱涝气候灾害。此外,成功地进行了我国西北干旱区陆—气相互作用观测试验,获取了许多有关我国典型干旱区陆—气相互作用有价值的科学数据,并得到许多原创性的科学结果,为开发大西北提供了可靠的气候环境资料。本项目的完成不仅为今后开展我国重大气候灾害的发生规律、成因与预测研究奠定了坚实的理论和数值模型基础,而且对于国家旱涝气候灾害预测水平的提高,减轻气候灾害造成的经济损失具有重要的经济和社会效益。  相似文献   

16.
文章利用CESM1.1(公共地球系统模式)模式过去千年集合试验结果,对模拟的过去千年中国东部持续性严重干旱事件的时空特征及发生机制进行了初步分析。模式模拟出过去千年中国东部发生了7次持续性严重干旱事件,分别为883~910年、951~977年、1253~1305年、1327~1346年、1471~1488年、1587~1610年和1688~1699年干旱事件,其中仅1471~1488年干旱事件与中国东部旱涝指数对应较好,表明模式对中国东部干旱事件的模拟能力较低。这7次干旱事件均与模拟的ENSO(厄尔尼诺-南方涛动)负位相状态相对应,揭示ENSO可能对中国东部干旱事件的发生起了非常重要的作用。模拟分析结果显示,1253~1305年干旱事件前期可能主要受火山活动驱动,后期则可能受到太阳活动和自然内部变率的影响。另外,1587~1610年干旱事件后期可能也受到火山活动的影响;883~910年和951~977年干旱事件则完全受自然内部变率的影响。对1327~1346年、1471~1488年和1688~1699年这3次干旱事件,无法分辨外强迫和内部变率ENSO的各自贡献。  相似文献   

17.
Fauchereau  N.  Trzaska  S.  Rouault  M.  Richard  Y. 《Natural Hazards》2003,29(2):139-154
Rainfall variability and changes in Southern Africa over the 20th century areexamined and their potential links to the global warming discussed. After a shortreview of the main conclusions of various experiments with Global AtmosphericModels (GCM) forced by increased concentrations of greenhouse gases for SouthernAfrica, a study of various datasets documents the observed changes in rainfall featuresat both daily and seasonal time steps through the last century. Investigations of dailyrainfall parameters are so far limited to South Africa. They show that some regionshave experienced a shift toward more extreme rainfall events in recent decades.Investigations of cumulative rainfall anomalies over the summer season do notshow any trend to drier or moister conditions during the century. However, closeexamination reveals that rainfall variability in Southern Africa has experiencedsignificant modifications, especially in the recent decades. Interannual variabilityhas increased since the late 1960s. In particular, droughts became more intense andwidespread. More significantly, teleconnection patterns associated with SouthernAfrican rainfall variability changed from regional before the 70s to near global after,and an increased statistical association to the El Niño – Southern Oscillation (ENSO) phenomenon is observed. Numerical experiments with a French GCM indicate that these changes in teleconnections could be related to long-term variations in the Sea-Surface-Temperature background, which are part of the observed global warming signal.  相似文献   

18.
Relationship of outgoing long-wave radiation (OLR) with convective available potential energy (CAPE) and temperature at the 100-hPa pressure level is examined using daily radiosonde data for a period 1980–2006 over Delhi (28.3°N, 77.1°E) and Kolkata (22.3°N, 88.2°E), and during 1989–2005 over Cochin (10°N, 77°E) and Trivandrum (8.5°N, 77.0°E), India. Correlation coefficient (R xy) between monthly OLR and CAPE shows a significant (~???0.45) anti-correlation at Delhi and Kolkata suggesting low OLR associated with high convective activity during summer (seasonal variation). Though, no significant correlation was found between OLR and CAPE at Cochin and Trivandrum (low latitude region); analysis of OLR and temperature (at 100-hPa) association suggests that low OLR peaks appear corresponding to low temperature at Delhi (R xy~ 0.30) and Kolkata (R xy ~ 0.25) during summer. However, R xy between OLR and temperature becomes opposite as we move towards low latitudes (~8°–10°N) due to strong solar cycle influence. Large scale components mainly ENSO and quasi-biennial oscillaton (QBO) that contributed to the 100-hPa temperature variability were also analyzed, which showed that ENSO variance is larger by a factor of two in comparison to QBO over Indian region. ENSO warm conditions cause warming at 100-hPa over Delhi and Darwin. However, due to strong QBO and solar signals in the equatorial region, ENSO signal seems less effective. QBO, ENSO, and solar cycle contribution in temperature are found location-dependent (latitudinal variability) responding in consonance with shifting in convective activity regime during El Niño, seasonal variability in the tropical easterly jet, and the solar irradiance.  相似文献   

19.
Several studies demonstrate that North Atlantic Oscillation (NAO) has dominant influence on the variability of climate over Southwest Asia. We deconstruct the NAO into its two components, the Azores High and the Icelandic Low. Regional circulations are influenced by changes not only in the pressure but also the positions of the Azores High and the Icelandic Low. The results presented in this paper exhibit that significantly great portions of interannual variance of winter precipitation over Indo-Pak Region (consists of Northeast Pakistan and Northwest India) can be explained by including the contributions of the Icelandic Low pressure in addition to ENSO and AO. This contribution also explains the physical mechanisms to establish the relationships between the COA and regional climate by examining composite maps of large-scale circulation fields using NCEP/NCAR reanalysis data.  相似文献   

20.
At the India Meteorological Department (IMD), New Delhi, a 12-level limited area model with 100 km horizontal resolution has been in use for weather forecasting. The present study uses this model together with a higher horizontal resolution (50 km) and vertical resolution (16-levels) model to examine the impact of increased resolution to simulate mesoscale features of rainfall during monsoon disturbances. The model was run for 22 days in the month of August 1997 and one week in September 1997 during three monsoon depressions and one cyclonic storm in the Bay of Bengal. The model results are compared with observations. The study shows that the model can capture mesoscale convective organization associated with monsoon depression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号