首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Petrogenetic grids are a powerful tool for understanding metamorphic terrains and many theoretical grids have been suggested for the process of granulite formation in metapelitic rocks, via fluid-absent biotite melting reactions. However, application of these grids has been difficult due to the lack of suitable experimental constraints. We present here an experimentally determined and tightly constrained petrogenetic grid for KFMASH system metapelites which extends from 840–1000°C and 5.0–12.5 kbar. Sixty four experiments on three KFMASH, mineral-mix, bulk compositions (X Mg=0.62, 0.74, 0.86) provide phase composition and assemblage data from which a grid can be derived and constrained. Reversal experiments and consideration of the phase composition data show the experiments to be close to equilibrium. The KFMASH univariant fluid-absent biotite melting reactions occur between 850 and 870°C at 5 kbar and between 900 and 915°C at 10 kbar. These reactions are connected to equilibria beyond the stability of biotite to develop a fixed framework within which the phase assemblage evolution of metapelitic rocks can be interpreted. The effect of minor components on phase equilibria is evaluated using the experimentally determined grid as a simple-system reference. The temperature at which melting occurs in metapelites is strongly controlled by the concentrations of titanium and fluorine in biotite. Pressure-temperature pseudosections presented for each of the experimental compositions show both the univariant and divariant reactions available to a particular bulk composition, clearly illustrating the possible evolution of the phase assemblage. The pseudosections also constrain the stability limits of  相似文献   

2.
The high-temperature and high-pressure experiment on natural block rock indicates that dehydration-melting of hydrous biotite (Bi) and partial melting of felsic minerals in garnet-biotite-plagioclase gneiss are mainly controlled by temperature, while mineral phase transformation is not only controlled by temperature-pressure conditions but also genetically associated with hydrous mineral dehydration-melting and partial melting of felsic minerals. According to the characteristics of biotite dehydration-melting and garnet transformation reaction, three stages may be distinguished: (1) when the experimental temperature is 700℃, biotite transforms to ilmenite (Ilm) + magnetite (Mt) + H2O and garnet to magnetite (Mt); (2) when the temperature is 730-760℃, biotite is dehydrated and melted and transformed into K2O-rich melt + Ilm + Mt, and garnet, into hypersthene (Hy) + cordierite (Crd); (3) when the temperature is up to or higher than 790℃, biotite is dehydrated and melted and transformed into melt + Hy +  相似文献   

3.
Cordierite‐bearing anatectic rocks inform our understanding of low‐pressure anatectic processes in the continental crust. This article focuses on cordierite‐bearing lithologies occurring at the upper structural levels of the Higher Himalayan Crystallines (eastern Nepal Himalaya). Three cordierite‐bearing gneisses from different geological transects (from Mt Everest to Kangchenjunga) have been studied, in which cordierite is spectacularly well preserved. The three samples differ in terms of bulk composition likely reflecting different sedimentary protoliths, although they all consist of quartz, alkali feldspar, plagioclase, biotite, cordierite and sillimanite in different modal percentages. Analysis of the microstructures related to melt production and/or melt consumption allows the distinction to be made between peritectic and cotectic cordierite. The melt productivity of different prograde assemblages (from two‐mica metapelite/metagreywacke to biotite‐metapelite) has been investigated at low‐pressure conditions, evaluating the effects of muscovite v. biotite dehydration melting on both mineral assemblages and microstructures. The results of the thermodynamic modelling suggest that the mode and type of the micaceous minerals in the prograde assemblage is a very important parameter controlling the melt productivity at low‐pressure conditions, the two‐mica protoliths being significantly more fertile at any given temperature than biotite gneisses over the same temperature interval. Furthermore, the cordierite preservation is promoted by melt crystallization at a dry solidus and by exhumation along P‐T paths with a peculiar dP/dT slope of about 15–18 bar °C?1. Overall, our results provide a key for the interpretation of cordierite petrogenesis in migmatites from any low‐P regional anatectic terrane. The cordierite‐bearing migmatites may well represent the source rocks for the Miocene andalusite‐bearing leucogranites occurring at the upper structural levels of the Himalayan belt, and low‐P isobaric heating rather than decompression melting may be the triggering process of this peculiar peraluminous magmatism.  相似文献   

4.
Abstract This work uses a simplified model of equilibrium to predict the assemblage sequence and compositional zoning in garnet that should result from prograde metamorphism of common bulk compositions of pelitic rocks. An internally-consistent set of model thermodynamic data are derived for natural mineral compositions from natural assemblages. Equilibrium assemblages can be calculated for pelitic compositions with excess quartz and either muscovite or K-feldspar at any pressure and water pressure. The compositions and abundances of phases in equilibrium assemblages can be calculated where the elements Mg, Fe and Mn are exchanged among phases. The prograde metamorphic assemblage sequences and the effects of pressure on assemblages, predicted by the simulation method presented here, are similar enough to natural observations to suggest that the simulations can be used to analyse natural equilibrium and growth processes. The calculated phase diagrams at moderate and high crustal pressures explain the mineral assemblage sequence produced by prograde metamorphism in common pelitic compositions. Garnet appears by continuous reaction of biotite and chlorite as the garnet-biotite-chlorite divariant field migrates toward higher Mg/Fe ratios over the bulk composition. Staurolite appears in common bulk compositions when garnet and chlorite become incompatible. An aluminum silicate phase can appear when staurolite and chlorite react. Staurolite breaks down at an extremum point to produce garnet. Continuous reaction of biotite and sillimanite causes growth of abundant garnet. The reaction sequence involving garnet, staurolite and aluminum silicates is probably different at low pressure, but the main reason that staurolite and garnet are rare is the restricted compositional range over which their assemblages exist. Andalusite appears by the divariant reaction of chlorite and cordierite appears at low temperature in low pressure assemblages for common bulk compositions by the extremumpoint breakdown reaction of chlorite. Compositional zoning of garnet and the systematic variation of biotite composition in metamorphic sequences indicate that garnet is probably fractionated during growth. Fractionation of garnet causes garnet-consuming, univariant reactions to become multivariant. The metastable persistence of garnet should reduce the abundance and stability range of staurolite. Fractionation of even small quantities of garnet should deplete the equilibrating bulk composition of Mn, but have little effect otherwise. The simulations show that the prograde assemblage sequence in pelitic rocks can be complex in detail, with some assemblages lasting over temperature intervals of only a few degrees. The major prograde reactions that release water are the breakdown of chlorite to form garnet at low grade and the breakdown of muscovite at high grade. The volume of water released by formation of garnet at high grade is also important. These reactions have the capacity to buffer water pressure. The density of anhydrous pelitic rock increases markedly when chlorite breaks down and by the continuous reaction forming garnet at high grade. The heat content is controlled principally by heat capacity and continuous reactions. Discontinuous reactions have little thermal buffering capacity. Simulations of garnet fractionation show that commonly-observed garnet zoning profiles can be formed by garnet growth in the assemblage garnet-biotite-chlorite in common bulk compositions. A reversal of Fe-zoning in garnet can occur when garnet resumes growth above staurolite grade in the assemblage garnetbiotite-sillimanite. Discontinuities in zoning profiles can be caused only by disequilibrium. The disequilibrium can be due to either metastable persistence during a hiatus in growth or to growth by irreversible reaction. Because the appearance of garnet is controlled by a continuous rather than a discontinuous reaction, the appearance of garnet is very sensitive to bulk composition. The early development of garnet is also sensitive to the pressure and water pressure of metamorphism. As a consequence the first garnet isograd is of limited thermometric value. Metastable persistence of kyanite and manite at high grades could reduce the abundance of garnet and allow biotite to persist. Metastable persistence would also limit the of cordierite formation.  相似文献   

5.
Contact aureoles of the anorthositic to granitic plutons of the Mesoproterozoic Nain Plutonic Suite (NPS), Labrador, are particularly well developed in the Palaeoproterozoic granulite facies, metasedimentary, Tasiuyak gneiss. Granulite facies regional metamorphism (MR), c. 1860 Ma, led to biotite dehydration melting of the paragneiss and melt migration, leaving behind biotite‐poor, garnet–sillimanite‐bearing quartzofeldspathic rocks. Subsequently, Tasiuyak gneiss within a c. 1320 Ma contact aureole of the NPS was statically subjected to lower pressure, but higher temperature conditions (MC), leading to a second partial melting event, and the generation of complex mineral assemblages and microstructures, which were controlled to a large extent by the textures of the MR assemblage. This control is clearly seen in scanning electron microscopic images of thin sections and is further supported by phase equilibria modelling. Samples collected within the contact aureole near Anaktalik Brook, west of Nain, Labrador, mainly consist of spinel–cordierite and orthopyroxene–cordierite (or plagioclase) pseudomorphs after MR sillimanite and garnet, respectively, within a quartzofeldspathic matrix. In addition, some samples contain fine‐grained intergrowths of K‐feldspar–quartz–cordierite–orthopyroxene inferred to be pseudomorphs after osumulite. Microstructural evidence of the former melt includes (i) coarse‐grained K‐feldspar–quartz–cordierite–orthopyroxene domains that locally cut the rock fabric and are inferred to represent neosome; (ii) very fine‐ to medium‐grained cordierite–quartz intergrowths interpreted to have formed by a reaction involving dissolution of biotite and feldspar in melt; and (iii) fine‐scale interstitial pools or micro‐cracks filled by feldspar interpreted to have crystallized from melt. Ultrahigh temperature (UHT) conditions during contact metamorphism are supported by (i) solidus temperatures >900 °C estimated for all samples, coupled with extensive textural evidence for contact‐related partial melting; (ii) the inferred (former) presence of osumilite; and (iii) titanium‐in‐quartz thermometry indicating temperatures within error of 900 °C. The UHT environment in which these unusual textures and minerals were developed was likely a consequence of the superposition of more than one contact metamorphic event upon the already relatively anhydrous Tasiuyak gneiss.  相似文献   

6.
Mineral assemblages in metapelites of the contact aureole of the Tono granodiorite mass, northeast Japan, change systematically during progressive metamorphism along an isobaric path at 2-3 kbar. The bulk rock compositions of metapelites are aluminous with A' values on an AFM projection larger than that of the chlorite join. The metapelites commonly contain paragonite in the low-grade zone. With increasing temperatures, andalusite is formed by the breakdown of paragonite. The importance of pyrophyllite as a source of Al2SiO5 polymorphs is limited in typical pelitic rocks.
The most common type of metapelite in the study area has FeO/(FeO + MgO) = 0.5–0.6, and develops assemblages involving chlorite, andalusite, biotite, cordierite, K-feldspar, sillimanite and almandine, with paragenetic changes similar to other andalusite-sillimanite type aureoles. Rocks with FeO/(FeO + MgO) > 0.8 progressively develop chloritoid-bearing assemblages from Bt-Chl-Cld, And-Bt-Cld, to And-Bt at temperatures between the breakdown of paragonite and the appearance of cordierite in the more common pelitic rocks in the aureole. The paragenetic relations are explained by a KFMASH univariant reaction of Chl + Cld = And + Bt located to the low-temperature side of the formation of cordierite by the terminal equilibrium of chlorite. A P-T model depicting the relative stability of chloritoid and staurolite at low- and medium-pressure conditions, respectively, is proposed, based on the derived location of the Chl + Cld = And + Bt reaction combined with the theoretical phase relations among biotite, chlorite, chloritoid, garnet and staurolite.  相似文献   

7.
Abstract Phase relations and mineral chemistry for garnet (Grt), orthopyroxene (Opx), sapphirine (Spr), water-undersaturated cordierite (Crd), osumilite (Osu), sillimanite (Sil), K-feldspar (Kfs), quartz (Qtz) and a water-undersaturated liquid (Liq) have been determined experimentally in the system KFMASH (K2O-FeO-MgO-Al2O3-SiO2-H2O) under low PH2O and fO2 conditions. Four compositions have been studied with 100 [Mg/(Mg + Fe)] ranging from 65.6 to 89.7. Based on our experimental data, a P-T grid is derived for the KFMASH system in the presence of quartz, orthopyroxene and liquid. Osumilite has been found in various mineral assemblages from 950 to 1100°C and 7.5 to 11 kbar. In the temperature range 1000-1100°C, the pair Os-Grt is stable over a pressure range of about 3kbar. The divariant reaction Os + Opx = Grt + Kfs + Qtz runs to the right with increasing pressure. Because osumilite is the most magnesian phase it is restricted to Mg-rich compositions at high pressure. The reaction defining the upper pressure stability limit of Os-Grt is located around 11 kbar with a nearly flat dP/dT slope over the temperature range 950–100°C. Over the entire temperature range investigated osumilite is not stable beyond 12 kbar. The data imply a restricted pressure range between 11 and 12 kbar for the stability of the assemblage Os-Opx-Sil-Kfs-Qtz. At 1050°C and above, osumilite occurs in various mineral assemblages together with the high-T pair Spr-Qtz. When coexisting with garnet, orthopyroxene or sapphirine, osumilite is always the most magnesian phase. At 1050 and 1100°C, liquid is invariably the most Fe-rich phase in the run product. Our data support a theoretical P-T grid for the KFMAS system in which osumilite is stable outside the field of the high-T assemblage Spr-Qtz. Moreover, our grid indicates that Os-Opx-Sil-Kfs-Qtz has a more restricted pressure and compositional stability domain than Os-Grt, in agreement with natural occurrences. Osumilite is stable over a large pressure range, such that in Mg-rich rocks, and at high temperature, it can occur at any depth in normal thickness continental crust.  相似文献   

8.
A quantitative petrogenetic grid for pelitic schists in the system KFMASH that includes the phases garnet, chlorite, biotite, chloritoid, cordierite, staurolite, talc, kyanite, andalusite, sillimanite, and pyrophyllite (with quartz, H2O and muscovite or K-feldspar in excess) is presented. The grid is based on thermodynamic data of Berman et al. (1985) and Berman (1988) for endmember KFASH and KMASH equilibria and natural Fe-Mg partitioning for the KFMASH system. Calculation of P-T slopes and the change in Fe/(Fe+Mg) along reactions in the KFMASH system were made using the Gibbs method. In addition, the effect on the grid of MnO and CaO is evaluated quantitatively. The resulting grid is consistent with typical Buchan and Barrovian parageneses at medium to high grades. At low grades, the grid predicts an extensive stability field for the paragenesis chloritoid+biotite which arises because of the unusual facing of the reaction chloritoid+biotite + quartz+H2O = garnet+chlorite+muscovite, which proceeds to the right with increasing T in the KFMASH system. However, the reaction proceeds to the left with increasing T in the MnKFASH system so the assemblage chloritoid + biotite is restricted to bulk compositions with high Fe/(Fe+Mg+Mn). Typical metapelites will therefore contain garnet+chlorite at low grades rather than chloritoid + biotite.  相似文献   

9.
Low‐pressure crystal‐liquid equilibria in pelitic compositions are important in the formation of low‐pressure, high‐temperature migmatites and in the crystallization of peraluminous leucogranites and S‐type granites and their volcanic equivalents. This paper provides data from vapour‐present melting of cordierite‐bearing pelitic assemblages and augments published data from vapour‐present and vapour‐absent melting of peraluminous compositions, much of which is at higher pressures. Starting material for the experiments was a pelitic rock from Morton Pass, Wyoming, with the major assemblage quartz‐K feldspar‐biotite‐cordierite, approximately in the system KFMASH. A greater range in starting materials was obtained by addition of quartz and sillimanite to aliquots of this rock. Sixty‐one experiments were carried out in cold‐seal apparatus at pressures of 1–3.5 kbar (particularly 2 kbar) and temperatures from 700 to 840 °C, with and without the addition of water. In the vapour‐present liquidus relations at 2 kbar near the beginning of melting, the sequence of reactions with increasing temperature is: Qtz + Kfs + Crd + Sil + Spl + V = L; Qtz + Kfs + Crd + Spl + Ilm + V = Bt + L; and Qtz + Bt + V = Crd + Opx + Ilm + L. Vapour‐absent melting starts at about 800 °C with a reaction of the form Qtz + Bt = Kfs + Crd + Opx + Ilm + L. Between approximately 1–3 kbar the congruent melting reaction is biotite‐absent, and biotite is produced by incongruent melting, in contrast to higher‐pressure equilibria. Low pressure melts from pelitic compositions are dominated by Qtz‐Kfs‐Crd. Glasses at 820–840 °C have calculated modes of approximately Qtz42Kfs46Crd12. Granites or granitic leucosomes with more than 10–15% cordierite should be suspected of containing residual cordierite. The low‐pressure glasses are quite similar to the higher‐pressure glasses from the literature. However, XMg increases from about 0.1–0.3 with increasing pressure from 1 to 10 kbar, and the low‐temperature low‐pressure glasses are the most Fe‐rich of all the experimental glasses from pelitic compositions.  相似文献   

10.
深熔过程中熔体成分与锆石行为模拟计算   总被引:3,自引:2,他引:1  
王伟  魏春景  刘晓春  赵越  高亮  娄玉行  初航  张颖慧 《岩石学报》2014,30(10):3075-3084
发生深熔作用是高级变质作用的一个重要特征。深熔过程中产生的熔体可为淡色花岗岩提供潜在的源区;深熔过程中锆石的行为直接影响对变质锆石记年地质意义的理解。在含Zr体系下的相平衡模拟显示泥质成分深熔过程中产生熔体的成分在P-T空间中规律变化。温度升高时熔体Zr/Si值、Zr、FeO、MgO以及CaO等含量明显增加,压力较高时K2O含量也随温度升高而明显增加。Na2O含量随温度升高而降低,但随压力升高而增加。压力升高时Al/Si值显著升高。温度较高时Na/(Na+K)等值线较陡,减压熔融过程不会显著改变熔体Na/(Na+K)值,而升温减压过程以及近等压升温过程都会明显降低熔体Na/(Na+K)值。中压时随温度升高熔体Fe/(Fe+Mg)值缓慢升高,而石榴石的生长发育会迅速降低熔体Fe/(Fe+Mg)值。不同温压条件下对应的固相线熔融、白云母脱水熔融以及黑云母脱水熔融形成的熔体成分具有明显差异。对比模拟熔体成分在P-T空间的演化,喜马拉雅地区电气石淡色花岗岩对应熔体的形成温压条件应低于二云母淡色花岗岩,同类型淡色花岗岩之间在形成条件上也可能存在一定差异,并经历了差异性演化过程。含Zr体系下的相平衡关系显示进变过程是消耗锆石的过程,因而在进变过程中变质锆石难以生长,发生深熔作用的岩石中的变质锆石主要在退变过程中形成并记录退变质年龄。熔体丢失相关模拟显示不同温度阶段发生熔体丢失对锆石稳定性的影响不同。温度较低时Zr含量较少的熔体丢失会扩大持续进变过程中锆石的稳定范围,而温度较高时富Zr熔体的丢失会降低持续进变过程中锆石的稳定温度。类似于分离熔融作用的过程最利于残留相中剩余锆石在持续进变过程中的保存。  相似文献   

11.
长英质片麻岩中堇青石的一种可能 的形成机制   总被引:6,自引:0,他引:6  
本文通过对南极拉斯曼丘陵长英质片麻岩变质过程中堇青石与其它矿物之间结构关系的研究,识别出明显不同的两种组合Pl+Kfs+Qtz(Grt)和Crd+Opq+Spl±Qtz,认为区内高级变质作用向深熔作用转化过程中发生了长英质组分和镁铁质组分的分凝。分凝出的长英质熔体与堇青石的形成没有直接关系;镁铁质组分较富Mg、Fe,贫Si、Ca,当镁铁质组分达到一定的富集程度时即形成堇青石。时间上,堇青石形成于降压过程中发生的深熔作用的晚期。  相似文献   

12.
The stability of osumilite in metapelitic granulites   总被引:4,自引:1,他引:4  
Abstract A petrogenetic grid and related diagrams derived from KFMASH-system experiments demonstrate that osumilite is stable in relatively magnesian bulk rock compositions ( X Mg > 0.6) at temperatures in excess of 875° C and pressures less than 11 kbar. The experiments, involving the dehydration melting of biotite in synthetic metapelites, were conducted in the range 850–1000° C. Both the mineral assemblages and phase compositions reported from well-documented natural examples of osumilite-bearing rocks are reproduced by the experiments at P-T conditions similar to those previously estimated for these occurrences. Peak metamorphic P-T conditions can be reliably inferred from distinctive osumilite-bearing assemblages identified in the phase diagrams, thereby avoiding the problems of diffusional re-equilibration that often prohibits conventional geothermobarometry from recovering peak conditions. Integration of the experimental data with recent independent experiments, after correcting the latter for an underestimated friction correction, allows extension of the petrogenetic grid to higher temperatures. The extended grid is applied to assess and refine the metamorphic history of the Napier Complex, East Antarctica: the high- P stability limit for osumilite in the Napier Complex is 9–10 kbar, the prograde P-T-t path is not necessarily anticlockwise and isobaric cooling in the Scott and Tula mountains occurred, respectively, at pressures greater and less than reactions in the range 8–9 kbar. The stability range for osumilite predicted by the KFMASH-system petrogenetic grid overlaps many more metamorphic terranes than osumilite is found in. Whilst osumilite is not distinctive in thin section and is prone to retrogression, it is possible that carbon dioxide present in the natural system stabilizes cordierite at the expense of osumilite.  相似文献   

13.
Contact metamorphism associated with mafic intrusives is one of several mechanisms that has been invoked to produce extensive high‐temperature (HT) metamorphism and associated partial melting of the crust. Indisputable evidence for polymetamorphism in these settings can be difficult to decipher because both melt loss and retrogression (i.e. rehydration) can erase or obscure the records of earlier HT metamorphism by modifying HT mineral parageneses and compositions. Here, a combination of detailed field and petrographical observations, inverse mineral thermometry, and thermodynamic forward modelling is used to delineate the polymetamorphic history of migmatites from the Smith River Allochthon (SRA) in the central Appalachians. Bulk rock geochemical data suggest that some metapelitic samples lost a significant amount of melt during interpreted contact metamorphism with the Rich Acres gabbro, resulting in a residual bulk composition (<50 wt% SiO2, ~30 wt% Al2O3). Garnet cores (Grt1) in SiO2‐depleted samples are interpreted to grow during this HT contact metamorphism, with Fe‐Ti oxide thermometry on spinel inclusions in Grt1, cordierite–garnet thermometry, and thermodynamic forward modelling constraining peak P–T conditions during contact heating of the migmatites to ~800ºC and ~0.5 GPa. This is associated with an inferred peak assemblage prior to melt loss of crd+kfs+pl+grt+bt+spl (mag+usp+hc)+ilm+sil+qtz+melt. Garnet in SiO2‐depleted samples has a distinct high‐Ca rim (Grt2), which appears to record a younger metamorphic event. A combination of substantial melt loss and later rehydration appears to be a major control on the ability of SiO2‐depleted samples to faithfully record evidence for this polymetamorphism. The tectonic implications of this younger metamorphic event are not entirely clear, but it appears to record renewed burial and heating of the SRA sometime after the Taconic orogeny, which may be related to either the neo‐Acadian or Alleghanian orogenies.  相似文献   

14.
The reaction muscovite+cordierite→biotite+Al2SiO5 +quartz+H2O is of considerable importance in the low pressure metamorphism of pelitic rocks: (1) its operation is implied in the widespread assemblage Ms + Crd +And± Sil + Bt + Qtz, a common mineral assemblage in contact aureoles and low pressure regional terranes; (2) it is potentially an important equilibrium for pressure estimation in low pressure assemblages lacking garnet; and (3) it has been used to distinguish between clockwise and anticlockwise P–T paths in low pressure metamorphic settings. Experiments and thermodynamic databases provide conflicting constraints on the slope and position of the reaction, with most thermodynamic databases predicting a positive slope for the reaction. Evidence from mineral assemblages and microtextures from a large number of natural prograde sequences, in particular contact aureoles, is most consistent with a negative slope (andalusite and/or sillimanite occurs upgrade of, and may show evidence for replacement of, cordierite). Mineral compositional trends as a function of grade are variable but taken as a whole are more consistent with a negative slope than a positive slope. Thermodynamic modelling of reaction 1 and associated equilibria results in a low pressure metapelitic petrogenetic grid in the system K2O–FeO–MgO–Al2O3–SiO2–H2O (KFMASH) which satisfies most of the natural and experimental constraints. Contouring of the Fe–Mg divariant interval represented by reaction 1 allows for pressure estimation in garnet‐absent andalusite+cordierite‐bearing schists and hornfelses. The revised topology of reaction 1 allows for improved analysis of P–T paths from mineral assemblage sequences and microtextures in the same rocks.  相似文献   

15.
高级变质岩中深熔作用的相平衡研究   总被引:3,自引:0,他引:3  
魏春景  王伟 《地学前缘》2007,14(1):125-134
深熔作用在高级变质岩中非常普遍并受到广泛关注。自20世纪90年代以来,随着变质相平衡研究的突破性发展,利用THERMOCALC程序和视剖面图方法可以定量研究固相线以上的熔体形成、熔体分馏和退变质反应。变质沉积岩中的熔融作用主要有三种机制饱和水固相线上的熔融、白云母脱水熔融和黑云母脱水熔融。在模拟泥质岩石的KFMASH体系和NCKFMASH体系中的相平衡计算表明,NCKFMASH体系中铁镁矿物的相平衡关系受KFMASH亚体系中矿物相平衡关系的控制,但KFMASH亚体系中固相线位置要比实际的高50~60℃。因此,模拟泥质岩石的固相线以上的相平衡关系最好在NCKFMASH或组分更多的体系中进行。相平衡研究表明麻粒岩相岩石的保存与熔体丢失有关;混合岩的形成过程包括部分熔融作用、不同程度熔体分凝与汲取和不同程度的逆反应和退变反应。  相似文献   

16.
Regional metamorphic zones, based on mineral assemblages in pelites, are presented for the Dalradian rocks of Aberdeenshire and Banffshire, in the type area of Buchan metamorphism; electron microprobe analyses of cordierite (C), staurolite (S), chlorite (Chl), biotite (B) and white mica (Ms) are reported for rocks from the classic sections of the Banffshire coast and the valley of the Ythan.A low grade biotite zone, separates two NE-SW trending sets of higher grade zones, in which the sequence s defined by the entry of cordierite, andalusite (A) and (in the west only) staurolite. The zones are characterised by the assemblages (with quartz and muscovite) B-Chl, C-B-Chl, A-C-B and S-A-B.The western sequence contains a transition towards higher pressure, Barrovian type, metamorphism. The isograds arise from continuous reactions affecting rocks of restricted bulk composition (M/FM). With increasing grade, there is a regular trend towards more magnesian ranges of composition for the assemblages C-B-Chl, A-C-B and finally (as P increases in the west), S-A-B. The isograds form when these assemblages intersect the most Fe++-rich rock compositions present which occurs in each case when the biotite M/FM=40. A complex of divariant equilibria, derived for the system KFMASH, is used to model the natural reactions.  相似文献   

17.
Petrogenetic grids in the KFMASH and KMnFMASH model systems calculated with the software thermocalc 3.1 are presented for the P–T range 0.5–12 kbar and 450–900 °C, for assemblages involving garnet, muscovite, chloritoid, biotite, chlorite, staurolite, cordierite, spinel, orthopyroxene, K‐feldspar, Al2SiO5 phases, quartz, water and melt. Based on calculated compatibility diagrams and P–T and T–MMn [Mn/(Mg + Fe + Mn)] pseudosections for different metapelitic bulk compositions, the principal conclusions are that the addition of Mn to the KFMASH system: (i) enhances the stability of garnet, and, to a lesser extent, aluminosilicates; (ii) reduces the stability of staurolite, cordierite and, to a lesser extent, chlorite; and (iii) extends the medium pressure stability of muscovite and the low‐P stability field of K‐feldspar. The influence of Mn on individual mineral stabilities is strongly related to rock composition, in particular, to the relative contents of Al2O3 and K2O. For metapelites of a range of compositions and MMn values, P–T pseudosections in the KFMASH system, in most cases, do not adequately predict the mineral assemblages observed in natural assemblages under medium and low‐pressure conditions. In contrast, the P–T pseudosections in the KMnFMASH system generally provide more satisfactory results, suggesting that MnO is one of the non‐KFMASH components that should not be neglected in documenting the phase equilibria of medium‐ and low‐P metapelites.  相似文献   

18.
Mineral textures in metapelitic granulites from the northern Prince Charles Mountains, coupled with thermodynamic modelling in the K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3 (KFMASHTO) model system, point to pressure increasing with increasing temperature on the prograde metamorphic path, followed by retrograde cooling (i.e. an anticlockwise P–T path). Textural evidence for the increasing temperature part of the path is given by the breakdown of garnet and biotite to form orthopyroxene and cordierite in sillimanite‐absent rocks, and through the break‐down of biotite and sillimanite to form spinel, cordierite and garnet in more aluminous assemblages. This is equated to the advective addition of heat from the regional emplacement of granitic and charnockitic magmas dated at c. 980 Ma. A subsequent increase in pressure, inferred from the break‐down of spinel and quartz to sillimanite, cordierite and garnet in aluminous rocks, is attributed to crustal thickening related to upright folding dated at 940–910 Ma. The terrane attained peak metamorphic temperatures of c. 880 °C at pressures of c. 6.0–6.5 kbar during this event. Subsequent cooling is inferred from the localised breakdown of cordierite and garnet to form biotite and sillimanite that developed in the latter stages of the same event. The textural observations described are interpreted via the application of P–T and P–T–X pseudosections. The latter show that most rock compositions preserve only fragments of the overall P–T path; a result of different rock compositions undergoing mineral assemblage changes, or changes in mineral modal abundance, on different sections of the P–T path. The results also suggest that partial melting during granulite facies metamorphism, coupled with melt loss and dehydration, initiated a switch from pervasive ductile, to discrete ductile/brittle deformation, during retrograde cooling.  相似文献   

19.
We discuss upper-amphibolite to granulite facies, early Palaeozoic metamorphism and partial melting of aluminous greywackes from the Sierra de Comechingones, SE Sierras Pampeanas of Central Argentina. Consistent P–T estimates, obtained from equilibria involving Al and Ti exchange components in biotite and from more traditional thermobarometric equilibria, suggest that peak metamorphism of the exposed section took place at an essentially constant pressure of 7–8 kbar, and at temperatures ranging from 650 to 950 °C. Mineral compositions record an initial decompression, after peak metamorphism, of c. 1.5 kbar, which was accompanied by a cooling of c. 100 °C. Upper-amphibolite facies gneisses consist of the assemblage Qtz+Pl+Bt+Grt+Rt/Ilm. The transition to the granulite facies is marked by the simultaneous appearance of the assemblage Kfs+Sil and of migmatitic structures, suggesting that the amphibolite to granulite transition in the Sierra de Comechingones corresponds to the beginning of melting. Rocks with structural and/or chemical manifestations of partial melting range from metatexites, to diatexites, to melt-depleted granulites, consisting of the assemblage Grt+Crd+Pl+Qtz+Ilm±Ath. The melting stage overlapped at least partially with decompression, as suggested by the occurrence of cordierite, in both the migmatites and the residual granulites, of two distinct textural types: idiomorphic porphyroblasts (probably representing peritectic cordierite) and garnet-rimming coronas. Metapelitic rocks are unknown in the Sierra de Comechingones. Therefore, it appears most likely that the Al-rich residual assemblages found in the migmatites and residual granulites were formed by partial melting of muscovite- and sillimanite-undersaturated metagreywackes. We propose a mechanism for this that relies on the sub-solidus stabilization of garnet and the ensuing changes in the octahedral Al content of biotite with pressure and temperature.  相似文献   

20.
Shale and greywacke compositions from the Archean to Phanerozoic record a secular change in the siliciclastic material that comprises much of Earth's continental margins, past and present. This study explores the metamorphic consequence of these compositional changes, by comparing phase equilibrium models constructed for average Archean, Proterozoic, and Phanerozoic shale and greywacke compositions equilibrated along two Barrovian-type geotherms: 1330℃/GPa(A) and 800 ℃/GPa(B). Our models show that Archean siliciclastic rocks can retain up to 4 vol.% water at middle to lower crustal conditions, nearly twice that of Proterozoic and Phanerozoic compositions. The increased ferromagnesium content of Archean siliciclastic rocks stabilizes chlorite to higher temperatures and results in a biotite-rich assemblage at solidus temperatures. Accordingly, water-absent biotite dehydration melting is predicted to play a greater role in the generation of melt in the metamorphism of Archean aged units,and water-absent muscovite dehydration melting is of increasing importance through the Proterozoic and Phanerozoic. This secular variation in predicted mineral assemblages demonstrates the care with which metamorphic facies diagrams should be applied to Archean compositions. Moreover, secular changes in the composition of shale and greywacke is reflected in the evolution of anatectic melt towards an increasingly less viscous, Ca-rich, and Mg-poor monzogranite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号