首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
西藏南部花岗岩类副成分矿物特征   总被引:1,自引:0,他引:1  
More than 50 kinds of accessory minerals have been diseovered in 13 plutons along the Kangdese, Lhagoi Kangri and Himalaya petrographical belts. The features of zircon,apatite, radioactive minerals and sulphide minerals are described in more detail. From early to late, the percentages of titanium, iron, calcium and zirconium minerals decrease,while those of niobium (tantalum), beryllium, uranium and tin minerals show an opposition. The accessory mineral associations from the Kangdese belt are rich in sphene, allanite, apatite and magnetite, whereas the associations from the Himalaya belt are rich in tourmaline, and the Lhagoi Kangri belt shows intermediate features.  相似文献   

2.
西藏南部花岗岩类中重结晶的黑云母与板块碰撞的关系   总被引:2,自引:0,他引:2  
Recrystallized biotite occurs in granitoid rocks from some plutens in the Lhagoi Kangri and Kangdese belts in southern Xizang. These plutons are characterized by well-developed micro-fractures, orientational arrangement of dark minerals showing gneissose structures to varing extents. This is consistent with the fact that K-Ar ages of crystallized biotite (30--17 my) are much younger as compared with the host rooks. Recrystallized biotites are mostly recognized along the tectonic suture line between the Indian plate and the Eurasian continental plate, i.e., in the neighborhood of the Yarlung Zangbo River and its north bank as well as in the Lhagoi Kangri Ranges.The authors postulate that when drifting north-northeastward, the Indian sub-continental plate was conteracted by the Kangdese belt as a result of the subduction of the Indian plate underneath the Eurasian Continental plate, causing a dramatic increase instress on the southern side, i.e., near the tectanic suture line, of the rock belt followed by the rising of temperature which resulted in the recrystallization of biotite in some plutons.  相似文献   

3.
Melting experiments have been carried out on major rock types from the three rock belts in Southern Xizang. These rocks, being quite different in chemical composition, are representative of granites of Late Yenshanian, Early Himalayan and Late Himalayan periods in this area, Experimental water pressures are eontrolled at 2kb. Results show the beginning temperatures of melting for the seven rock types are : Gubug tourmaline-muscovite granite 615℃, Zayu coarse-grained gneiesose biotite-granite 635℃, Kangmar finegrained gneissose two-mica granite 640℃,Dala gneissese two-mica granite 645℃, Quxu biotite granite 660℃, Lhasa granodiorite 700℃, and Gyubge hypersthene diorite 740℃. The beginning temperature of melting decreases with decreasing granite age.Spatially the temperature of formation drops progressively southwards from Kangdese through Lhagoi Kangri to Himalaya rock belt. Additionally, the beginning temperature of melting varies with the contents of mafic minerals and differentiation index of the rocks. Our experimental and geological data suggest that the three rock belts in Southern Xizang are all of magmatic origin. Himalaya and Lhagoi Kangrl rock belts arc stemed from partial melting of continental material, whereas Kangdese rock belt probably from remelting or partial melting of oceanic crustal material.  相似文献   

4.
Processes accompanied the breakup of continents, spreading of ocean floor and continent-ocean transi-tion could trigger large scale melting of the mantle beneath the continent as well as the ocean, and pro-duce mafic magmas with distinct geochemical charac-teristics. Such rocks provide us an important record for unraveling the nature and the time of deep tectonic and magmatic processes during the tectonic evolution of large-scale orogenic belts, such as the Himalayan orogenic belt. As an integrated part of the Himalaya, the Tethyan Himalaya consists of well-developed early Paleozoic to Cenozoic sediments and is noted for de-velopment of spectacular semi-continuous, thousand kilometers long gneiss (or granitic) domes. It has pre-served critical records to address the nature of defor-mation, magmatism, and metamorphism associated with the opening, spreading, and demise of the Neo-Tethyan Ocean and the final continental collision between the Indian and the Eurasian Plate at the early Cenozoic time. In addition, it also could be a type-example to address a number of first-order issues with regard to the tectonic dynamics of passive conti-nental margin during the Wilson-cycle.  相似文献   

5.
The Pamir Plateau can be divided into three secondary tectonic units from north to south: the North, the Middle and the South Pamir Blocks. The North Pamir Block belonged to the southern margin of Tarim-Karakum, thermochronological study of the Pamir structural intersection indicates that accretion of the Middle Pamir Block to the Eurasian Continental Margin and its subduction and collision with the North Pamir Block occurred in the Middle–Late Jurassic. Due to the Neo-Tethys closure in the Early Cretaceous, the South Pamir Block began to collide with the accretion(the Middle Pamir Block) of the Eurasian Continental Margin. Affected by the collision and continuous convergence between the Indian Plate and the Eurasian Plate since the Cenozoic, Pamir is in a multi-stage differential uplift process. During 56.1–48.5 Ma, North Pamir took the lead in uplifting, that is, the first rapid uplift in the Pamir region began there. The continuous compression and contraction of the Indian and Eurasian plates during 22.0–15.1 Ma forced the Pamir tectonic syntaxis to begin its overall uplift, i.e. Pamir began to enter the second rapid uplift stage in the Early Oligocene, which lasted until the Middle Miocene. During 14.6–8.5 Ma, South Pamir was in a rapid uplift stage, while North Pamir was in a relatively stable state, showing asymmetry of tectonic deformation in the Pamir region in space. Since 6.5 Ma, Pamir began to rapidly uplift again.  相似文献   

6.
SEISMIC GEOLOGY     
<正>20102196 Chen Bailin(Institute of Geomechanics,Chinese Academy of Geological Sciences,Beijing 100081,China);Liu Jiansheng Geodetic Deformation in Northern Qilianshan margin and Hexi Corridor Area,Northwest China and Its Related Earthquake(Geological Bulletin of China,ISSN1671-2552,CN11-4648/P,28(10),2009,p.1439-1447,8 illus.,31 refs.)Key words:ground deformation,seismicity,Qilian Mountains,Hexi CorridorNorthern Qilianshan margin-Hexi Corridor area is situated in the northern margin of Qinghai-Tibetan Plateau.Because of the collision of the Indian Plate and the Eurasian Plate from Late Mesozoic to Early Cenozoic and their  相似文献   

7.
<正>Objective The Qinling orogenic belt is a typical complex continental orogenic belt which has experienced multiperiod tectonic evolution and where some important tectonic belts formed.The Luoluan fault is one of the most important belts,which is the boundary fault of the North China Plate and the Qinling orogenic belt.The Shirenshan block is located in the north section between Luanchuan and Fangcheng of the Luoluan fault.The north part is  相似文献   

8.
The central structure belt in Turpan-Hami basin is composed of the Huoyanshan structure and Qiketai structure formed in late Triassic-early Jurassic, and is characterized by extensional tectonics. The thickness of strata in the hanging wall of the growth fault is obviously larger than that in the footwall, and a deposition center was evolved in the Taibei sag where the hanging wall of the fault is located. In late Jurassic the collision between Lhasa block and Eurasia continent resulted in the transformation of the Turpan-Hami basin from an extensional structure into a compressional structure, and consequently in the tectonic inversion of the central structure belt of the Turpan-Hami basin from the extensional normal fault in the earlier stage to the compressive thrust fault in the later stage. The Tertiary collision between the Indian plate and the Eurasian plate occurred around 55Ma, and this Himalayan orogenic event has played a profound role in shaping the Tianshan area, only the effect of the collision to this area was delayed since it culminated here approximately in late Oligocene-early Miocene. The central structure belt was strongly deformed and thrusted above the ground as a result of this tectonic event.  相似文献   

9.
Studies show that the Tianshan orogenic belt was built in the late stage of the Paleozoic, as evidenced by the Permian red molasses and foreland basins, which are distributed in parallel with the Tianshan belt, indicating that an intense folding and uplifting event took place. During the Triassic, this orogenic belt was strongly eroded, and basins were further developed. Starting from the Jurassic, a within-plate regional extension occurred, forming a series of Jurassic-Paleogene extensional basins in the peneplaned Tianshan region. Since the Neogene, a collision event between the Indian and the Eurasian plates that took place on the southern side of the Tianshan belt has caused a strong intra-continental orogeny, which is characterized by thrusting and folding. Extremely thick coarse conglomerate and sandy conglomerate of the Xiyu Formation of Neogene System were accumulated unconformably on the Tianshan piedmont. Studies have revealed that the strong compression caused by the Indian-Eurasian collision  相似文献   

10.
In the Central Orogenic Belt, China, two UHP metamorphic belts are discriminated mainly based on a detailed structural analysis of the Kanfenggou UHP metamorphic fragment exposed in the eastern Qinling orogen, and together with previous regional structural, petrological and geochronological data at the scale of the orogenic domain. The first one corresponds to the South Altun-North QaidamNorth Qinling UHP metarnorphic belt. The other is the Dabie-Sulu UHP and HP metamorphic belts. The two UHP metamorphic belts are separated by a series of tectonic slices composed by the Qiniing rock group, Danfeng rock group and Liuling or Foziling rock group etc. respectively, and are different in age of the peak UHP metamorphism and geodynamic implications for continental deep subduction and collision. Regional field and petrological relationships suggest that the Kanfenggou UHP metamorphic fragment that contains a large volume of the coesite- and microdiamond-bearing eclogite lenses is compatible with the structures recognized in the South Altun and North Qaidam UHP metamorphic fragments exposed in the western part of China, thereby forming a large UHP metamorphic belt up to 1000 km long along the orogen strike. This UHP metamorphic belt represents an intercontinental deep subduction and collision belt between the Yangtze and Sino-Korean cratons, occurred during the Paleozoic. On the other hand, the well-constrained Dabie-Sulu UHP and HP metamorphic belts occurred mainly during Triassic time (250-220 Ma), and were produced by the intracontinental deep subduction and collision within the Yangtze craton. The Kanfenggou UHP metamorphic fragment does not appear to link with the DabieSulu UHP and HP metamorphic belts along the orogen. There is no reason to assume the two UHP metamorphic belts as a single giant deep subduction and collision zone in the Central Orogenic Belt situated between the Yangtze and Sino-Korean cratons. Therefore, any dynamic model for the orogen must ac-count for the development of UHP metarnorphic rocks belonging to the separate two tectonic belts of different age and tectono-metamorphic history.  相似文献   

11.
西藏南部中酸性岩中锆石铀-铅计时讨论   总被引:2,自引:0,他引:2  
U-Pb isotopie geological ages were determined on more than 30 specimens of zircon,feldspar, sphene and apatite from the Kangdeee rock belt and its eastern Bome-Zayu areas in Xizang (Tibet). The study of common lead derivation and its mode of occurrence in zircon indicates that large amounts of common lead occur as sulphide-faeies minerals er exist in the cyrstal lattice of zircon, rather than introduced by contamination during analytical procedure. Described in this paper is the validity of subtracting zircon-containing common lead from the isotopie components of syngenetic galena, consequently leading te the conelusion that intermediate-acid rocks in the studied region are brought forth by late Yenshanian (120--80 m. y.) movement, It is suggested from the quantity of common lead and the difference in lead isotopic composition that the western segment of the Kangdese belt and its eastern Beme-Zayu areas may have two different material sources.  相似文献   

12.
Lying at the junction of the Dabashan, Longmenshan and Qinling mountains, the Micangshan Orogenic Belt coupled with a basin is a duplex structure and back-thrust triangular belt with little horizontal displacement, small thrust faults and continuous sedimentary cover. On the basis of 3D seismic data, and through sedimentary and structural research, the Micangshan foreland can be divided into five subbelts, which from north to south are: basement thrust, frontal thrust, foreland depression-back-thrust triangle, foreland fold belt or anticline belt, and the Tongjiang Depression. Along the direction of strike from west to east, the arcuate structural belt of Micangshan can be divided into west, middle and east segments. During the collision between the Qinling and Yangtze plates, the Micangshan Orogenic Belt was subjected to the interaction of three rigid terranes: Bikou, Foping, and Fenghuangshan (a.k.a. Ziyang) terranes. The collision processes of rigid terranes controlled the structural development of the Micangshan foreland, which are: (a) the former collision between the Micangshan-Hannan and Bikou terranes forming the earlier rudiments of the structure; and (b) the later collision forming the main body of the structural belt. The formation processes of the Micangshan Orogenic Belt can be divided into four stages: (1) in the early stage of the Indosinian movement, the Micangshan-Hannan Rigid Terrane was jointed to the Qinling Plate by the clockwise subduction of the Yangtze Plate toward the Qinling Plate; (2) since the late Triassic, the earlier rudiments of the Tongnanba and Jiulongshan anticlines and corresponding syncline were formed by compression from different directions of the Bikou, Foping and Micangshan-Hannan terranes; (3) in the early stage of the Himalayan movement, the Micangshan-Hannan Terrane formed the Micangshan Nappe torwards the foreland basin and the compression stresses were mainly concentrated along both its flanks, whereas the Micangshan-Hannan Terrane wedged into the Qinling Orogenic Belt with force; (4) in the late stage of the Himalayan movement, the main collision of the Qinling Plate made the old basement rocks of the terrane uplift quickly, to form the Micangshan Orogenic Belt. The Micangshan foreland arcuate structure was formed due to the non-homogeneity of terrane movement.  相似文献   

13.
An earthquake of Ms 8 struck Wenchuan County,western Sichuan,China,on May 12~(th), 2008 and resulted in long surface ruptures (>300 km).The first-hand observations about the surface ruptures produced by the earthquake in the worst-hit areas of Yingxiu,Beichuan and Qingchuan, ascertained that the causative structure of the earthquake was in the central fault zones of the Longmenshan tectonic belt.Average co-seismic vertical displacements along the individual fault of the Yingxiu-Beichuan rupture zone reach 2.5-4m and the cumulative vertical displacements across the central and frontal Longmenshan fault belt is about 5-6 m.The surface rupture strength was reduced from north of Beichuan to Qingchuan County and shows 2-3 m dextral strike-slip component.The Wenchuan thrust-faulting earthquake is a manifestation of eastward growth of the Tibetan Plateau under the action of continuous convergence of the Indian and Eurasian continents.  相似文献   

14.
《地学前缘(英文版)》2020,11(4):1123-1131
Collision between the Indian and Eurasian plates formed the ~2500 km long Yarlung Zangbo Suture Zone and produced the Himalaya mountains and Tibetan plateau.Here we offer a new explanation for tectonic events leading to this collision:that the northward flight of India was caused by an Early Cretaceous episode of subduction initiation on the southern margin of Tibet.Compiled data for ophiolites along the Yarlung Zangbo Suture Zone show restricted ages between 120 Ma and 130 Ma,and their supra-subduction zone affinities are best explained by seafloor spreading in what became the forearc of a north-dipping subduction zone on the southern margin of Tibet.The subsequent evolution of this new subduction zone is revealed by integrating data for arcrelated igneous rocks of the Lhasa terrane and Xigaze forearc basin deposits.Strong slab pull from this new subduction zone triggered the rifting of India from East Gondwana in Early Cretaceous time and pulled it northward to collide with Tibet in Early Paleogene time.  相似文献   

15.
Summary of the Lithospheric Dynamics in China   总被引:1,自引:0,他引:1  
This paper presents a summary of the explanatory notes for the 1: 4, 000.000 scale"Lithgspheric Dynamics Map of China and Adjacent Seas". Which gives an outline of the geological and geophysical processes that are presently active or were once active during the Cenozoic. The focus is concentrated on intraplate phenomena and on explaining them in terms of fundamental plate tectonic processes.The lithosphere in China is very heterogeneous. Its dynamics can be described in terms of the relative motions of 8 active subplates and related 17 tectonic blocks, and the characteristics of neotectonic deformation. The present-day movement and deformation of the lithosphere in China, their relationship with the deep-seated processes, and the lateral heterogeneity, mass difference and stress state within it that will tend to cause crustal movement in the future are illustrated.The intraplate tectonics and stress field are mainly controlled by the heterogeneity of the lithosphere and the mode of interaction between subplates and their boundary conditions. The collision of the Indian plate with the Eurasian plate began and proceeded along the Tethys ocean side, which has produced a strong compressional stress in western China and brought about a high shear stress in the regions round the eastern and western corners of the Himalaya block. However, the eastern part of China is directly influenced by the western Pacific plate boundaries. The minimum principal stress here is tensional. which makes the shear stress high, it may be the cause of the high seismicity in North China and maritime region of southeastern China.  相似文献   

16.
Architecture and Kinematics of the Dabie Orogen,Central Eastern China   总被引:3,自引:0,他引:3  
The geometry of the Dabie Mountains is manifested in terms of the distribution of petro-tectonic units in three dimensions. It is identified into three segments from east to west, four horizons in vertical profiles and eight petrotectonic units from north to south. Three segments are the east, middle and west segments. Four horizons, from top to bottom, are two different meta-tectonic melange in the uppermost part, underthrust basement and cover below them, and mantle at the bottom of the profiles. Eight petro-tectonic units from north to south are: (1) the hinterland basin, (2) the meta-flysch, (3) the ultramafic rock belt (UM) Sujiahe eclogite belt (SH), (4) eclogite belt 2 (Ec2) with most eclogites of continental affinity, (5) eclogite belt 1 (Ecl1) with some eclogite of oceanic affinity, (6) the Dabie complex or underthrust basement of the Yangtze continent, (7) the Susong and Zhangbaling Groups or underthrust cover of the Yangtze continent and (8) the foreland belt. The (3), (4) and (5) units belong to meta-tectonic melange. Some ultrahigh pressure metamorphic minerals such as coesite and micro-diamonds have been found in (3) and (4) units; a possible ultrahigh pressure mineral,clinozoisite aggregate pseudomorph after lawsonite, was found in unit (5). The three tectonic units are speculated to be coherent initially; the UM and SH units are suggested to be the root belt in the east, middle and west segments respectively.The kinematics of the Dabie orogen is divided into three stages: top-to-south thrusting during the eclogite-granulite facies metamorphism, top-to-north extension during the amphibolite metamorphic stage, and faults or shear bands of brittle deformation and greenschist facies metamorphism were formed in the post-orogenic stage since the Late Jurassic and the movement pictures of these faults is different from each other.  相似文献   

17.
西藏高原南部花岗岩类同位素地质年代学   总被引:19,自引:0,他引:19  
In the study of isotopic geochronology of grauitoids in the southern part of Xizang plateau, 103 mica and zircon ages were determined by K-At method and U-Pb method. Based upon the above mica and zircon ages of various types of granitoid, together with their geological setting, three intrusive stages have been distinquished for granitoids in Southern Xizang : the first stage, 120--70 m. y. (late Yenshanian) ; the second stage,50---30 m.y. (early Himalayan) ; the third stage, 20--10 m.y. (late Himalayan). It is evident from the characteristic zonal distribution patterns of granitoids and the spacial-temporal consistency in their isotopic geochronology that there exists a close inter-connection between the subduetion stage and the collision stage.  相似文献   

18.
The area from the Greater Caucasus to the southeast Turkey is characteri:;.ed and shaped by several major continental blocks. These are Scythian Platform, Pontian-Transcaucasu.,; Continent-Arc System (PTCAS), the Anatolian-lranian and the Arabian Platforms. The aim of this paper is to define these continental blocks and describe and also compare their boundary relationships along the suture zones. The Scythian Platform displays the evidence of the Hercynian and Alpine orogens. This platform is separated from the PTCAS by the Greater Caucasus Suture Zone. The incipient collision began along this suture zone before middle-late Carboniferous whereas the final collision occurred before Oligocene. The PTCAS can be divided into four structural units: (1) the Georgian Block - northern part of the Pontian-Transcaucasian island-arc, (2) the southern and eastern Black Sea Coast-Adjara-Trialeti Unit, (3) the Artvin-Bolnisi Unit, comprising the northern part of the southern Transcaucasus, and (4) the Imbricated Bayburt-Garabagh Unit. The PTCAS could be separated from the Anatolian Iranian Platform by the North Anatolian-Lesser Caucasus Suture (NALCS) zone. The initial collision was developed in this suture zone during Senonian-early Eocene and final collision before middle Eocene or Oligocene-Miocene. The Anatolian-lranian Platform (AIP) is made up of the Tauride Platform and its metamorphic equivalents together with Iranian Platform. It could be separated from the Arabian Platform by the Southeastern Anatolian Suture (SEAS) zone. The collision ended before late Miocene along this suture zone. The southernmost continental block of the geotraverse is the Arabian Platform, which constitutes the northern part of the Arabian-African Plate. This platform includes a sequence from the Precambrian felsic volcanic and clastic rocks to the Campanian-early Maastrichtian fiyschoidal clastics. All the suture zones include MORB and SSZ-types ophiolites in different ages. However, the ages of the suture  相似文献   

19.
The apatite fission track dating of samples from the Dabashan(i.e., the Langshan in the northeastern Alxa Block) by the laser ablation method and their thermal history modeling of AFT ages are conducted in this study. The obtained results and lines of geological evidence in the study region indicate that the Langshan has experienced complicated tectonic-thermal events during the the Late Cretaceous-Cenozoic. Firstly, it experienced a tectonic-thermal event in the Late Cretaceous(~90–70 Ma). The event had little relation with the oblique subduction of the Izanagi Plate along the eastern Eurasian Plate, but was related to the Neo-Tethys subduction and compression between the Lhasa Block and Qiangtang Block. Secondly, it underwent the dextral slip faulting in the Eocene(~50–45 Ma). The strike slip fault may develop in the same tectonic setting as sinistral slip faults in southern Mongolia and thrusts in West Qinling to the southwest Ordos Block in the same period, which is the remote far-field response to the India-Eurasia collision. Thirdly, the tectonic thermal event existed in the late Cenozoic(since ~10 Ma), thermal modeling shows that several samples began their denudation from upper region of partial annealing zone(PAZ), and the denudation may have a great relationship with the growth of Qinghai-Tibetan Plateau to the northeast. In addition, the AFT ages of Langshan indicate that the main body of the Langshan may be an upper part of fossil PAZ of the Late Cretaceous(~70 Ma). The fossil PAZ were destroyed and deformed by tectonic events repeatedly in the Cenozoic along with the denudation.  相似文献   

20.
Based on the deformation characteristics of the ductile shear zones in Sumdo (松多) Group, the quartz fabric by EBSD (electron backscatter diffraction), the data of muscovite 40Ar-39Ar geochronology (220-230 Ma) from ductile shear zones and the zircon SHRIMP U-Pb chronology (190 Ma) of granites in Snmdo region, Lhasa (拉萨) terrane is thought to have experienced an important Indosinian orogenic event at 220-230 Ma, which caused the closure of the paleo-Tethys Ocean along the tectonic zone of eclogite and the collision between northern part and southern part of the Lhasa terrane. The zircon SHRIMP U-Pb chronology of 190 Ma for biotite adamellite, with the distributing characteristics of the granite massif intruding in Sumdo Group, indicates that the biotite adamellitc should be the late orogenic or post-orogenic granite resulting from the lndosinian orogenesis. The discovery of Indosinian orogenic belt in Lhasa terrane expansed the southern boundary of lndosinian orogenic belt in Qinghai (青海)-Tibet plateau to Lhasa terrane from Qiangtang (羌塘) terrane, which changed the understanding about the distribution of Indosinian orogenic belt in Qinghai-Tibet plateau and extended the "T" type lndosinian orogenic belt in China. The study is very important for the formation and distribution of paleo-Tethys Ocean in Tibet. The ancient terrane framework and evolution of Qinghai-Tibet plateau need further research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号