首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objectives of this study were: (1) to document spatial and temporal distributions of large woody debris (LWD) at watershed scales and investigate some of the controlling processes; and (2) to judge the potential for mapping LWD accumulations with airborne multispectral imagery. Field surveys were conducted on the Snake River, Soda Butte Creek, and Cache Creek in the Greater Yellowstone Ecosystem, USA. The amount of woody debris per kilometer is highest in 2nd order streams, widely variable in 3rd and 4th order streams, and relatively low in the 6th order system. Floods led to increases in woody debris in 2nd order streams. Floods redistributed the wood in 3rd and 4th order streams, removing it from the channel and stranding it on bars, but appeared to generate little change in the total amount of wood throughout the channel system. The movement of woody debris suggests a system that is the reverse of most sediment transport systems in mountains. In 1st and 2nd order tributaries, the wood is too large to be moved and the system is transport-limited, with floods introducing new material through undercutting, but not removing wood through downstream transport. In the intermediate 3rd and 4th order channels, the system displays characteristics of dynamic equilibrium, where the channel is able remove the debris at approximately the same rate that it is introduced. The spatial distribution and quantity of wood in 3rd and 4th order reaches varies widely, however, as wood is alternatively stranded on gravel bars or moved downstream during periods of bar mobilization. In the 6th order and larger channels, the system becomes supply-limited, where almost all material in the main stream can be transported out of the central channel by normal stream flows and deposition occurs primarily on banks or in eddy pool environments. Attempts to map woody debris with 1-m resolution digital four-band imagery were generally unsuccessful, primarily because the imagery could not distinguish the narrow logs within a pixel from the surrounding sand and gravel background and due to problems in precisely coregistering imagery and field maps.  相似文献   

2.
Potential fish habitat along the Drôme River, France, is a function of the distribution of large woody debris, boulders, undercut banks, gravel substrate, and pools. The distribution of these features is, in turn, a function of channel geomorphology, watershed and riparian forest characteristics. We conducted field work and analysed aerial photographs for 190 elementary segments of 500 m length along the Drôme River's 95 km course from the Alps westward to its confluence with the Rhône River near Loriol. The Drôme River does not follow the classic pattern of a monotone downstream decrease in gradient and change in channel characteristics. Although channel gradient, braided index and channel incision all decrease downstream, stream power is independent of longitudinal distance. These variables are largely controlled by geomorphic, human or hydrologic factors at the reach scale. Potential fish habitat richness decreases downstream, but individual habitat variables affecting habitat richness do not necessarily decrease downstream, many being controlled by local factors rather than by position along the continuum. Large woody debris is more abundant in braided reaches located directly downstream of confluences with main tributaries or downstream input sites. Boulders are most abundant downstream of failed bank protection works or in gorges. To improve fish habitat in the Drôme River, we recommend taking a long-term and large-scale perspective. Because structures placed in this unstable channel are likely to be washed downstream, we propose to emulate natural river dynamics and to permit large woody debris to enter the channel in unstable reaches via bank erosion, and that this debris not be removed (as is routinely done now) but permitted to migrate downstream through the system, creating fish habitat en route.  相似文献   

3.
Large woody debris (LWD) is an integral component of forested streams of the Pacific Northwest and elsewhere, yet little is known about how far wood is transported and where it is deposited in streams. In this paper, we report the results of flume experiments that examine interactions among hydraulics, channel geometry, transport distance and deposition of floating wood. These experiments were carried out in a 1.22-m-wide×9.14-m-long gravel bed flume using wooden dowels of various sizes as surrogate logs. Channel planforms were either self-formed or created by hand, and ranged from meanders to alternate bars. Floating pieces tended to orient with long axes parallel to flow in the center of the channel. Pieces were deposited where channel depth was less than buoyant depth, typically at the head of mid-channel bars, in shallow zones where flow expanded, and on the outside of bends. We hypothesize that the distance logs travel may be a function of the channel's debris roughness, a dimensionless index incorporating ratios of piece length and diameter to channel width, depth and sinuosity. Travel distance decreased as the ratio of piece length to both channel width and radius of curvature increased, but the relative importance of these variables changed with channel planform. Large pieces can move further than our debris roughness models predict if greater than 50% of the active channel area is deeper than the buoyant depth of the piece, or if momentum is high enough to carry pieces across shallows. Our debris roughness model allows first-order prediction of the amount of wood transport under various channel geometries.  相似文献   

4.
The distribution of riparian vegetation in relation to channel morphology is poorly understood in canyon rivers, which are characterized by in-channel fluvial sediment deposits rather than flood plains. This study focuses on vegetation and sandbar characteristics in two reaches of the lower Little Colorado River canyon in Arizona–one reach with ephemeral flow from the watershed, and another with perennial baseflow from a spring. Both reaches have been colonized by the exotic Tamarix chinensis, a riparian species known for its geomorphic influence on river channels. On the basis of a sampling of 18 bars, results show that vegetation frequency and density is significantly greater in the perennial study reach. However, sandbar morphology variables do not differ between reaches, despite a significantly narrower and deeper ephemeral channel. Hydraulic calculations of flood depths and Pearson correlations between bar and vegetation variables indicate reach-specific biogeomorphic relationships. In the ephemeral reach, higher bars are less affected by flood inundation, support older vegetation, and may be more stable habitat for vegetation. In the wider perennial reach where bars are lower and more expansive, vegetation patterns relate to bar size, Tamarix being most common on the largest bars. Overall results suggest that (1) vegetation variation relates to baseflow hydrology, (2) bar formation relates to high discharge events, and (3) vegetation patterns respond to, rather than influence, sandbar form in this canyon riparian system.  相似文献   

5.
This research evaluates the impact of rural-to-urban land use conversion on channel morphology and riparian vegetation for three streams in the Central Redbed Plains geomorphic province (central Great Plains ecoregion) of Oklahoma. The Deep Fork Creek watershed is largely urbanized; the Skeleton Creek watershed is largely rural; and the Stillwater Creek watershed is experiencing a rapid transition from rural to urban land cover. Each channel was divided into reaches based on tributary junctions, sinuosity, and slope. Field surveys were conducted at transects in a total of 90 reaches, including measurements of channel units, channel cross-section at bankfull stage, and riparian vegetation. Historical aerial photographs were available for only Stillwater Creek watershed, which were used to document land cover in this watershed, especially changes in the extent of urban areas (impervious cover).The three streams have very low gradients (< 0.001), width-to-depth ratios < 10, and cohesive channel banks, but have incised into red Permian shales and sandstone. The riparian vegetation is dominated by cottonwoods, ash, and elm trees that provide a dense root mat on stream banks where the riparian vegetation is intact. Channels increased in width and depth in the downstream direction as is normally expected, but the substrate materials and channel units remained unchanged. Statistical analyses demonstrated that urbanization did not explain spatial patterns of changes in any variables. These three channels in the central Redbed Plains are responding as flumes during peak flows, funneling runoff and the wash-load sediment downstream in major runoff events without any effect on channel dimensions. Therefore, local geological conditions (similar bedrock, cohesive substrates and similar riparian vegetation) are mitigating the effects of urbanization.  相似文献   

6.
The style and degree of channel narrowing in aggrading reaches downstream from large dams is dependent upon the dominant geomorphic processes of the affected river, the magnitude of streamflow regulation, and the post-dam sediment transport regime. We measured different magnitudes of channel adjustment on the Green River downstream from Flaming Gorge Dam, UT, USA, that are related to these three factors. Bankfull channel width decreased by an average of about 20% in the study area. In reaches with abundant debris fans and eddy deposited sand bars, the amount of channel narrowing was proportional to the decrease in specific stream power. The fan–eddy-dominated reach with the greatest decrease in stream power narrowed by 22% while the reach with the least decrease in stream power narrowed by 11%. In reaches with the same magnitude of peak flow reduction, meandering reaches narrowed by 15% to 22% and fan–eddy-dominated reaches narrowed by 11% to 12%. Specific stream power was not significantly affected by flow regulation in the meandering reaches.In the diverse array of reach characteristics and deposit types found in the study area, all pre- and post-dam deposits are part of a suite of topographic surfaces that includes a terrace that was inundated by rare pre-dam floods, an intermediate bench that was inundated by rare post-dam floods, and a post-dam floodplain that was inundated by the post-dam mean annual flood. Analysis of historical photographs and tree-ring dating of Tamarix sp. shows that the intermediate bench and post-dam floodplain are post-dam landforms in each reach type. Although these two surfaces occur at different levels, they are forming simultaneously during flows of different magnitude. And while the relative elevation and sedimentologic characteristics of the deposits differ between meandering reaches and reaches with abundant debris fans and eddies, both reach types contain deposits at all of these topographic levels.The process of channel narrowing varied between fan–eddy-dominated and meandering reaches. In the meandering reaches, where stream power has not changed, narrowing was accomplished by essentially the same depositional processes that operated prior to regulation. In fan–eddy-dominated reaches, where significant reductions in stream power have occurred, channel narrowing has been accompanied by a change in dominant depositional processes. Mid-channel sand deposits are aggrading on deposits that, in the pre-dam era, were active gravel bars. These deposits are creating new islands and decreasing the presence of open-framework gravel bars. In eddies, bare sand bars are replaced with vegetated bars that have a simpler topography than the pre-dam deposits.  相似文献   

7.
《自然地理学》2013,34(6):492-510
Coarse woody debris (CWD) is an important component of headwater streams, however, few studies have investigated the geomorphic effects of CWD in the southern Appalachians. In the Great Smoky Mountains, debris slides supply large volumes of CWD and sediment to low-order streams. This study investigates the effect of CWD on bankfull channel dimensions and in-channel sediment storage along second-order streams. Comparisons are made between streams that have experienced recent debris slides and those that have not. CWD channel obstructions are larger but less frequent along debris-slide-affected streams. Dendrochronological evidence indicates that CWD can remain in channels for over 100 yr. Relatively short residence times of CWD along debris-slide-affected streams suggest that logs are frequently flushed through these streams. CWD causes channel widening along all study streams, but the volume of sediment stored in the channel behind CWD obstructions is up to four times greater than the volume of sediment represented by bank erosion associated with CWD. Two large log jams formed by debris slides at tributary junctions stored approximately 4000 m3 of sediment. Sediment stored by CWD was finer than mean bed particle size, and thus represents a significant sediment source when CWD obstructions are breached.  相似文献   

8.
River islands are defined as discrete areas of woodland vegetation surrounded by either water‐filled channels or exposed gravel. They exhibit some stability and are not submerged during bank‐full flows. The aim of the study is to analyze the dynamics of established, building, and pioneer islands in a 30‐km‐long reach of the gravel‐bed Piave River, which has suffered from intense and multiple human impacts. Plan‐form changes of river features since 1960 were analyzed using aerial photographs, and a LiDAR was used to derive the maximum, minimum and mean elevation of island surfaces, and maximum and mean height of their vegetation. The results suggest that established islands lie at a higher elevation than building and pioneer islands, and have a thicker layer of fine sediments deposited on their surface after big floods. After the exceptional flood in 1966 (RI > 200 years) there was a moderate increase in island numbers and extension, followed by a further increase from 1991, due to a succession of flood events in 1993 and 2002 with RI > 10 years, as well as a change in the human management relating to the control of gravel‐mining activities. The narrowing trend (1960–1999) of the morphological plan form certainly enhanced the chance of islands becoming established and this explains the reduction of the active channel, the increase in established islands and reduction of pioneer islands.  相似文献   

9.
Coastal salt marsh tidal creeks are thought to show less channel adjustment/movement relative to their terrestrial fluvial counterparts. We propose a mechanism for disturbance-mediated bank failure that may allow/initiate channel migration in these otherwise stable systems. The stability of tidal creeks is promoted by the extensive vegetation root structure along the banks. However, wrack mats (i.e., dead vegetation) deposited on creek banks can cause the death of below-ground vegetation leading to bare, unstable banks that may slump into the channel. We measured the frequency of bank failures associated with wrack-disturbed sites along three creeks on Sapelo Island, Georgia, USA to determine whether these sites were vulnerable to erosion. Approximately 81% of the disturbed sites showed signs of bank failure. Therefore, wrack-induced bank failure may potentially lead to channel migration in creeks previously believed to be static landscape features.  相似文献   

10.
The Kent River flows from semi-arid headwaters in the agricultural (wheatbelt) region of Western Australia to a wetter and forested lower-catchment. It is set in an atypical fluvial environment, with rainfall decreasing inland towards a low-relief upper catchment. Replacement of native deep-rooted perennial vegetation with shallow-rooted seasonal crops has altered the hydrology of the upper catchment. Clearing for agriculture has also increased recharge of regional groundwater systems causing groundwater to rise and mobilise salt stores. This has increased stream salinity which has degradation riparian vegetation and decreased flow resistance. Elevated groundwater has also affected streamflow, increasing flow duration and annual discharge. The altered hydrological regime has affected geomorphic stability, resulting in channel responses that include incision and removal of uncohesive material. Channel response is variable, showing a high dependence on channel morphotype, channel boundary material and severity of salinity (degree of vegetation degradation). Response in confined reaches bounded by sandy material has been characterised by minor lateral bank erosion. In the fine-grained, wider, low-gradient reaches, mid-channel islands have been stripped of sandy sediment where vegetation has degraded. Following an initial period of high erosion rates in these reaches, the channel is now slowly adjusting to a new set of boundary conditions. The variable response has significant implications for management of salt affected rivers in southwestern Australia.  相似文献   

11.
Measurements of two small streams in northeastern Vermont, collected in 1966 and 2004–2005, document considerable change in channel width following a period of passive reforestation. Channel widths of several tributaries to Sleepers River in Danville, VT, USA, were previously measured in 1966 when the area had a diverse patchwork of forested and nonforested riparian vegetation. Nearly 40 years later, we remeasured bed widths and surveyed large woody debris (LWD) in two of these tributaries, along 500 m of upper Pope Brook and along nearly the entire length (3 km) of an unnamed tributary (W12). Following the longitudinal survey, we collected detailed channel and riparian information for nine reaches along the same two streams. Four reaches had reforested since 1966; two reaches remained nonforested. The other three reaches have been forested since at least the 1940s. Results show that reforested reaches were significantly wider than as measured in 1966, and they are more incised than all other forested and nonforested reaches. Visual observations, cross-sectional surveys, and LWD characteristics indicate that reforested reaches continue to change in response to riparian reforestation. The three reaches with the oldest forest were widest for a given drainage area, and the nonforested reaches were substantially narrower. Our observations culminated in a conceptual model that describes a multiphase process of incision, widening, and recovery following riparian reforestation of nonforested areas. Results from this case study may help inform stream restoration efforts by providing insight into potentially unanticipated changes in channel size associated with the replanting of forested riparian buffers adjacent to small streams.  相似文献   

12.
Northwestern California is prone to regional, high magnitude winter rainstorms, which repeatedly produce catastrophic floods in the basins of the northern Coast Ranges. Major floods on the Eel River in 1955 and 1964 resulted in substantial geomorphic changes to the channel, adjacent terraces, and tributaries. This study evaluated the changes and the effects of a moderate flood in 1997 through field observations and examination of aerial photographs that spanned from 1954 to 1996. The purpose was to document the nature and magnitude of geomorphic responses to these three floods and assess the rates and controls on the recovery of the Eel River and its tributaries. Channel widening from extensive bank erosion was the dominant geomorphic change along the lower Eel River during major floods. As a result of the 1964 flood, the largest amount of widening was 195 m and represented an 80% change in channel width. Channel narrowing characterized the periods after the 1955 and 1964 floods. More than 30 years after the 1964 flood, however, the river had not returned to pre-flood width, which suggests that channel recovery required decades to complete. A long recovery time is unusual given that the Eel River is located in an area with a “superhumid” climate and has an exceptionally high sediment yield. This long recovery time may reflect highly seasonal precipitation and runoff, which are concentrated in 3–5 months each winter. In contrast to the main stem of the Eel River, the dominant effects of floods on the tributaries of the Eel River were rapid aggradation of channel bed and valley floor followed by immediate downcutting. Dendrogeomorphic data, aerial photographs, and field observations indicate that thick wedges of gravel, derived largely from hillslope failures in upper reaches of the tributaries, are deposited at and immediately upstream of the mouths of tributaries as the stage of the Eel River exceeded that of the tributaries during major floods. In the waning stages of the flood, the tributaries cut through the gravel at a rate equal to the lowering of the Eel and generated unpaired terraces and nickpoints. The complete process of deposition and incision can occur within a few days of peak discharge. Although reworking of some sediment on the valley floor may continue for years after large floods, channel morphology in the tributaries appears to be a product of infrequent, high magnitude events. The morphology of the tributary channel also appears to be greatly influenced by the frequency and magnitude of mass wasting in headwater areas of small basins.  相似文献   

13.
Fluvial process and morphology of the Brahmaputra River in Assam, India   总被引:1,自引:0,他引:1  
The Brahmaputra River finds its origin in the Chema Yundung glacier of Tibet and flows through India and Bangladesh. The slope of the river decreases suddenly in front of the Himalayas and results in the deposition of sediment and a braided channel pattern. It flows through Assam, India, along a valley comprising its own Recent alluvium. In Assam the basin receives 300 cm mean annual rainfall, 66–85% of which occurs in the monsoon period from June through September. Mean annual discharge at Pandu for 1955–1990 is 16,682.24 m3 s 1. Average monthly discharge is highest in July (19%) and lowest in February (2%). Most hydrographs exhibit multiple flood peaks occurring at different times from June to September. The mean annual suspended sediment load is 402 million tons and average monthly sediment discharge is highest in June (19.05%) and lowest in January (1.02%). The bed load at Pandu was found to be 5–15% of the total load of the river. Three kinds of major geomorphic units are found in the basin. The river bed of the Brahmaputra shows four topographic levels, with increasing height and vegetation. The single first order primary channels of this braided river split into two or more smaller second order channels separated by bars and islands. The second order channels are of three kinds. The maximum length and width of the bars in the area under study are 18.43 km and 6.17 km, respectively. The Brahmaputra channel is characterised by mid-channel bars, side bars, tributary mouth bars and unit bars. The geometry of meandering tributary rivers shows that the relationship between meander wavelength and bend radius is most linear. The Brahmaputra had been undergoing overall aggradation by about 16 cm during 1971 to 1979. The channel of the Brahmaputra River has been migrating because of channel widening and avulsion. The meandering tributaries change because of neck cut-off and progressive shifting at the meander bends. The braiding index of the Brahmaputra has been increasing from 6.11 in 1912–1928 to 8.33 in 1996. During the twentieth century, the total amount of bank area lost from erosion was 868 km2. Maximum rate of shift of the north bank to south resulting in erosion was 227.5 m/year and maximum rate of shift of the south bank to north resulting in accretion was 331.56 m/year. Shear failure of upper bank and liquefaction of clayey-silt materials are two main causes of bank erosion.  相似文献   

14.
A.M. Harvey   《Geomorphology》2007,84(3-4):192
A 100-year storm that occurred in 1982 caused major geomorphic changes in the main valleys of the northern Howgill Fells, northwest England. Those changes, which were documented at that time, involved extensive hillslope gully erosion, alluvial fan sedimentation, and substantial sediment input to the stream systems. The streams channels, which had hitherto been dominantly single-thread, relatively stable channels, responded in many reaches by switching to wide shallow unstable locally braided channels. Over the 20 years since the event there has been a partial recovery to channel geometries similar to the pre-flood conditions, however the degree of recovery contrasts between two neighbouring valleys, Bowderdale and Langdale. The channel of Bowderdale Beck has largely recovered. Flood sedimentation zones have largely stabilised and new single-thread channels have cut through most of the former braided reaches. In some places channel widths remain higher than the pre-flood values, and locally recovery has been modified by a lagged complex response. In Langdale, recovery is only partial with many reaches demonstrating sustained instability over the 20-year post-flood period. Furthermore, the overall spatial patterns suggest some reach-to-reach transfer of coarse sediment, shifting zones of instability downstream. The contrasts between the two valleys appear to relate to different hillslope-to-channel coupling characteristics, themselves inherited from late Pleistocene conditions. These contrasts are also evident in the longer-term (post-1949) history of channel change and stability in these two streams, indicative of the higher intrinsic instability of the Langdale system.  相似文献   

15.
While studies on gravel mantled and mixed alluvial bedrock rivers have increased in recent decades, few field studies have focused on spatial distributions of bedrock and alluvial reaches and differences between reach types. The objective of this work is to identify the spatial distribution of alluvial and bedrock reaches in the Upper Guadalupe River. We compare reach length, channel and floodplain width, sinuosity, bar length and spacing, bar surface grain size, and slope in alluvial and bedrock reaches to identify whether major differences exist between channel reach types. We find that local disturbances, interaction of the channel and valley sides, variation in lithology, and regional structural control contribute to the distribution of bedrock reaches in the largely alluvial channel. Alluvial and bedrock channel reaches in the Upper Guadalupe River are similar, particularly with respect to the distribution of gravel bars, surface grain size distributions of bars, and channel slope and width. Our observations suggest that the fluvial system has adjusted to changes in base level associated with the Balcones Escarpment Fault Zone by phased incision into alluvial sediment and the underlying bedrock, essentially shifting from a fully alluvial river to a mixed alluvial bedrock river.  相似文献   

16.
J.M. Hooke   《Geomorphology》2007,84(3-4):277
This paper addresses questions of the spatial pattern of instability and the mechanisms of change in an active meandering river, particularly whether and how change is propagated. More than 20 years of monitoring of a sequence of nearly 100 bends on one dynamic meandering river, combined with historical data and previous analyses of processes of change, provide a unique insight into the link between annual changes produced by erosion and deposition and the longer-term changes in planform. The study reach of the River Dane in NW England exhibits stable and unstable sections adjacent to one another. Rates of movement range up to 3 m a− 1, with maxima occurring in high curvature, free bends. Stable reaches are due to factors of gradient, curvature and bank resistance. Analysis of the large amount of data on occurrence of erosion and deposition in each bend each year reveals no definite association of changes in one bend with another. The detailed evidence of the morphological features in the bends shows that changes do not take place by bars moving progressively through reaches. Case studies of bends upstream of constrained, stable reaches indicate an oscillation of widening and narrowing of the channel, over a period of a few years, producing a net rotation of the bend. These areas are zones of stalling of sediment and change takes place by absorption and lateral movement. Overall, changes tend to be localised and fit the bend theory of meanders, but with low sensitivity reaches pinning the planform for longer periods in certain locations.  相似文献   

17.
Anabranching is characteristic of a number of rivers in diverse environmental settings worldwide, but has only infrequently been described from bedrock-influenced rivers. A prime example of a mixed bedrock-alluvial anabranching river is provided by a 150-km long reach of the Orange River above Augrabies Falls, Northern Cape Province, South Africa. Here, the perennial Orange flows through arid terrain consisting mainly of Precambrian granites and gneisses, and the river has preferentially eroded bedrock joints, fractures and foliations to form multiple channels which divide around numerous, large (up to 15 km long and 2 km wide), stable islands formed of alluvium and/or bedrock. Significant local variations in channel-bed gradient occur along the river, which strongly control anabranching style through an influence on local sediment budgets. In relatively long (>10 km), lower gradient reaches (<0.0013) within the anabranching reach, sediment supply exceeds local transport capacity, bedrock usually only crops out in channel beds, and channels divide around alluvial islands which are formed by accretion in the lee of bedrock outcrop or at the junction with ephemeral tributaries. Riparian vegetation probably plays a key role in the survival and growth of these islands by increasing flow roughness, inducing deposition, and stabilising the sediments. Less commonly, channels may form by eroding into once-continuous island or floodplain surfaces. In shorter (<10 km), higher gradient reaches (>0.0013) within the anabranching reach, local transport capacity exceeds sediment supply, bedrock crops out extensively, and channels flow over an irregular bedrock pavement or divide around rocky islands. Channel incision into bedrock probably occurs mainly by abrasion, with the general absence of boulder bedforms suggesting that hydraulic plucking is relatively unimportant in this setting. Mixed bedrock-alluvial anabranching also occurs in a number of other rivers worldwide, and appears to be a stable and often long-lived river pattern adjusted to a number of factors commonly acting in combination: (1) jointed/fractured granitoid rock outcrop; (2) erosion-resistant banks and islands; (3) locally variable channel-bed gradients; (4) variable flow regimes.  相似文献   

18.
High sediment delivery due to catchment and channel erosion can impact on waterway health and reservoir sedimentation. Methods that decrease sediment connectivity within the system are needed to address these potential impacts. Vegetation has the potential to decrease channel erosion and sediment transfers in dryland environments by increasing channel bed resistance and roughness. Detailed studies of vegetation and process interactions were undertaken within an ephemeral channel in SE Spain at three scales (channel network, reach and patch) by repeat surveys and mapping after floods. Connectivity mapping showed variations in vegetation type and density along the channel and that these influence sediment retention and channel erosion. Hydraulic calculations of vegetation roughness effects at 25 cross-sections down the channel indicate the influence of different vegetation type and characteristics. Particular attention was paid to the perennial grass Lygeum spartum because of its potential benefits in channel stabilisation. Sedimentation takes place within these reaches, mainly by trapping within and downstream of individual plants. Check dams have a profound influence on vegetation and sediment distribution in this channel but use of vegetated zones may be a more sustainable strategy of sediment control.  相似文献   

19.
In volcanic areas of Idaho, Oregon and Montana, a number of perennial streams emerge from single springs or zones of springs. Surface drainage areas to these springs can be very small, often much smaller than the recharge area of the springs. Channels downstream of springs are often straight, or if sinuous, without regularity to the pattern. Bars are absent or poorly defined, but islands or downed timber are common in the channel. Channel width-to-depth ratios are large relative to those of runoff-dominated channels. Downstream hydraulic geometry exponents are similar, but the exponents for width and velocity are greater in spring-dominated channels. Manning roughness values are relatively large. The bedsurface in gravel-bed spring-dominated streams is armored. Computations indicate that bed material is probably capable of moving at bankfull stage.The hydrograph of spring-dominated streams is damped as compared to runoff-dominated streams locally and elsewhere. Peak flows occur months after precipitation or snowmelt. Mean annual flow for spring-dominated streams averages 72% of the flood with a recurrence interval of 2 years; the mean annual flow for runoff-dominated channels averages 18% locally and 25% elsewhere. The 50-year flood averages 1.6 times the 2-year flood on the annual series while the corresponding value for runoff-dominated channels in the region is 2.5. The damped hydrograph of spring-dominated streams suggests that they are somewhat different from runoff-dominated channels in the relationship between water and sediment. In spring-dominated channels, 34% of sediment is transported by flows above the 2-year flood—less than is observed typically in runoff-dominated channels. The effective discharge is similar in magnitude to the 2-year flood.  相似文献   

20.
Bank sediments along a 40 km reach of the South River, downstream of Waynesboro, VA, store mercury from historical contamination as a result of textile manufacturing. Knowledge of the rate at which contaminated sediment is released to the stream channel through bank erosion is required to implement restoration programs designed, for example, to minimize its ecological impact and to reduce risk to human health. Digitized stream channel boundaries based on visual interpretations of georeferenced aerial imagery from 1937 and 2005 were compared to calculate a minimum estimate of the total area of bank sediment eroded between Waynesboro and Port Republic, Virginia. Estimates of riverbank height were extracted from aerial LIDAR data, allowing areal estimates of bank retreat to be converted to volumes. Nominal annual rates of bank retreat, averaged over the 68-year period, for several example locales along the study reach are very low, ranging from 3 to 15 cm per year. Bank erosion occurs at the outside banks of bends, through the development of islands, where deposition on confluence bars pushes the main flow into the opposite bank, and in small areas along the channel that are difficult to classify or explain. A minimum estimate of the total volume eroded for the study reach is approximately 161,000 m3; the corresponding annual mass of mercury supplied to the channel by bank erosion is 109.6 kg/year. Our work demonstrates that a careful analysis of aerial imagery and LIDAR data can provide detailed, spatially explicit estimates of mercury loading from bank erosion, even when rates of riverbank erosion are unusually low.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号