首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 328 毫秒
1.
系统自振频率限制是海上风机结构设计中的一个关键因素。运行状态下风机动力荷载会引起基础的水平侧移,较大的水平侧移会导致基础刚度的降低,进一步影响风机系统的自振频率。该文基于有限元软件ABAQUS平台,建立单桩式海上风机结构系统的自振频率数值模型,并讨论运行状态下基础水平侧移对大直径海上风机系统自振频率的影响。模型中考虑了塔筒的变截面特性;桩-土相互作用通过p-y曲线方法模拟;桩和塔采用梁单元模拟;通过Pushover分析汇总出水平侧移引起的桩顶水平刚度。研究结果表明:桩基侧向位移会降低风机结构体系的自振频率;桩基侧向位移对基频的影响较小,对高阶频率的影响显著;大直径海上风机的频率计算中可忽略风机运行状态对体系自振频率的影响。  相似文献   

2.
考虑桩-弹性地基相互作用,采用集中质量法和柔度法对泥面线以上的单桩风机结构进行多自由度动力分析,确定单桩风机的自振频率。通过算例给出单桩风机的自振频率值,并与不考虑桩-弹性地基相互作用的单桩风机的自振频率值进行比较。  相似文献   

3.
本文研究了考虑桩-土-结构相互作用的输电塔-线体系在地震作用下的响应。根据实际工程,采用ABAQUS有限元软件,建立了考虑桩-土-结构相互作用效应的输电塔-线体系有限元模型。选取不同场地类型下的12条天然地震波,研究了不同地震波激励下考虑桩-土-结构相互作用效应输电塔-线体系动力响应。通过与考虑刚性基础的输电塔-线体系动力响应对比,得到了输电塔的薄弱位置,并提出了基于刚性基础的输电塔抗震放大系数,可为输电塔抗震设计提供参考。  相似文献   

4.
直接针对大型振动台模型试验,建立液化场地桩-土-桥梁结构地震相互作用数值模拟的二维分析模型和计算方法。根据桩基平面应变假定,将空间桩体转换成平面板桩,并考虑桩的尺寸效应;基于桩截面节点位移协调条件和平衡力系等效原理,建立四结点梁单元刚度矩阵且对Timoshenko梁杆单元刚度矩阵进行增广修正,以考虑桩的横向尺寸影响桩周土位移场分布的尺寸效应。根据有效应力原理进行土动反应分析,采用满足M asing准则的修正双曲线模型描述土动力变形的本构关系,同时考虑因孔压上升造成土体软化而对土动力性能的影响,由迭代法处理土的动力非线性。采用并联弹簧-阻尼器模拟计算域人工边界,以考虑边界波的反射作用对体系动力反应的干扰和土粘滞阻尼的影响。采用W ilson-θ逐步积分法计算体系的地震反应。通过与试验结果的对比分析,评估数值模拟的建模途径和计算方法的可靠性。  相似文献   

5.
悬索桥主塔作为核心支撑构件,在地震作用下特别是罕遇地震作用下其结构破坏模式就显得尤其重要,也是保证生命线工程结构震后安全的基础,而目前对大跨度悬索桥破坏模式的研究还很不完善。本文借助Open Sees有限元分析程序,以哈尔滨阳明滩大跨度悬索桥的设计方案为背景,以悬索桥的钢筋混凝土桥塔为研究重点,分析三维罕遇地震作用时,桩-土-结构的动力相互作用对大跨度悬索桥桥塔顺桥向破坏模式的影响。文中以在三维地震作用下塔底截面曲率达到等效屈服曲率,从而桥塔产生具有同时性特征的双塑性铰为破坏基准。分析发现在顺桥向罕遇地震作用下,悬索桥塔结构往往在桩基产生塑性屈服后塔底截面再出现塑性;同时发现考虑桩-土-结构相互作用可以延缓塔底截面进入塑性的时间,但会加大塔底截面的地震反应。  相似文献   

6.
桩-土-结构动力相互作用的线弹性地震反应分析   总被引:17,自引:2,他引:17  
采用集中质量法(简化模型),用ANSYS软件作为桩—土—结构动力相互作用分析的工具,建立了小震下钢筋混凝土剪切型结构考虑桩—土—结构动力相互作用效应的计算模型,进行了桩—土—结构相互作用线性体系的模态分析,研究了考虑桩—土—结构相互作用体系的自振特性;进行了小展下桩—土—结构相互作用体系弹性地震反应时程分析,研究了土—结构动力相互作用效应对结构地震反应的影响;得出如下结论;考虑桩—土—结构相互作用效应后,结构体系的自振特性及结构的地震反应将有所改变。  相似文献   

7.
目前,我国尚缺乏液化场地桩-土-桥梁结构地震相互作用分析的合理数值模型与简化分析方法。鉴于此,直接针对振动台试验,基于非线性文克尔地基梁模型,考虑桩周参振土的质量惯性力、上部结构的惯性力、土体辐射阻尼等效应,建立了液化场地桩-土-桥梁结构地震相互作用的p-y曲线分析模型,并给出相应的简化方法。针对振动台试验进行了0.1g El Centro波输入下的分析,验证了桩-土地震相互作用分析方法的正确性,并且推荐了计算参数的合理选取方法,可用于液化场地桩-土地震相互作用的分析。提出的液化场地桩-土地震相互作用p-y曲线简化分析方法,为实际桥梁桩基抗震设计与分析提供一定参考。  相似文献   

8.
通过对群桩-土-偏心结构相互作用体系振动台试验,分析了结构偏心效应对相互作用体系自振特性、地基振动和桩基变形的影响规律。试验结果表明:地基土的加入使得相互作用体系前两阶自振频率相差增大,平扭振动耦联程度降低,体系阻尼比明显增加;结构偏心效应增大了角桩的加速度响应,高出同深度边桩测点10~15%,桩身振动频率特性较场地土有明显差别;角桩变形幅度较边桩更为突出,桩长范围内角桩应变峰值始终大于边桩测点,两者相差在桩顶附近达到最大;桩间土承担了部分扭转效应,角桩较边桩应变增幅约为对应位置筏板位移增幅的一半;土的动力放大特性与以往研究规律相近,结构偏心效应对地基整体振动产生的影响不很明显;桩土界面动力响应与筏板平动位移时程相对应,且随深度的增加而逐步增大。  相似文献   

9.
桩-土-上部结构体系的动力相互作用是一个复杂的过程,尤其是在倾斜液化侧向扩展流动(侧扩流)场地中,由于地震过程中场地产生地面永久大变形,桩土间有可能产生错动滑移与开裂等非线性反应,因此桩-土相互作用模拟至关重要。为了探究桩-土非线性接触对倾斜液化场地-群桩基础-上部结构体系动力响应的影响,本文基于OpenSees分别建立了考虑桩-土相互作用弹簧和桩土结点之间直接绑定的有限元数值模型。结果表明:考虑桩-土相互作用Pyliq弹簧时,土体加速度幅值略微降低,桩基对土体的约束明显变弱,土体残余位移增大。同时,具有Pyliq弹簧的模型能较好地模拟桩的曲率响应,而采用桩土结点直接绑定的模型高估了桩顶曲率,进而无法准确估计桩基抗弯最不利位置。桩-土相互作用弹簧对上部结构动力响应的影响较小。  相似文献   

10.
在一定程度上,桩长是影响桩-土-结构体系动力分析复杂程度的关键因素之一,在桩-土-结构相互作用的数值模拟中对桩长进行适当简化可以提高计算效率,尤其对具有大量长桩基础的结构体系。基于Boulanger模型和OpenSees软件,分析了软粘土地基-单桩结构体系地震反应中桩身的位移、弯矩、剪力的分布特点以及桩顶上部结构的加速度响应,探讨了结构体系振型及振型周期随桩长的变化特点,进一步提出了等效计算桩长的桩-土-结构模型。研究表明,当结构体系前3阶的振型周期的变化率控制到2.5%时,对应的等效计算桩长分析模型能实现较高的动力响应计算精度,其动力响应误差已降低至5%以内;等效计算桩长可以通过动力响应误差控制精度要求确定,对于软粘土地基中的单桩基础结构,建议将前3阶振型周期的变化率控制到2.5%时的计算桩长作为等效计算桩长。  相似文献   

11.
一种改进后的海上风机动力特性理论分析方法研究   总被引:1,自引:0,他引:1       下载免费PDF全文
海上风机是一种高柔性海洋结构物,其支撑结构的动力响应对风、浪、流等环境因素、风机荷载及基础刚度的影响异常敏感。建立基础-塔架-顶部集中质量为一体的风机简化计算模型,在底部弹性约束条件下考虑水平刚度和转动刚度之间的耦合。基于改进后的计算模型、经典微分方程及其边界条件,通过对方程的求解,系统研究底部基础刚度和顶部竖向轴压等设计参数对结构前四阶自振频率的影响规律。本文研究结论在一定程度上可揭示风机运行过程中因基础刚度变化而引起的支撑结构动力特性变化规律,可为今后实际工程中风机基础、支撑结构的选型及设计提供相关启示。  相似文献   

12.
The purpose of this study, which concerns the stochastic dynamic stiffness of foundations for large offshore wind turbines, is to quantify uncertainties related to the first natural frequency of a turbine supported by a surface footing and to estimate the low event probabilities. Herein, a simple model of a wind turbine structure with equivalent coupled springs at the base is calibrated with the mean soil property values. A semianalytical solution, based on the Green׳s function for a layered half-space is utilized for estimation of foundation responses. Soil elastic modulus and layer depth are considered as random variables with lognormal distributions. The uncertainties are quantified, and the estimation of rare events of the first natural frequency is discussed through an advanced reliability approach based on subset simulation. This analysis represents a first step in the estimation of the safety with respect to the failure of a turbine in the fatigue limit state.  相似文献   

13.
A comprehensive study is performed on the dynamic behavior of offshore wind turbine (OWT) structure supported on monopile foundation in clay. The system is modeled using a beam on nonlinear Winkler foundation model. Soil resistance is modeled using American Petroleum Institute based cyclic p–y and t–z curves. Dynamic analysis is carried out in time domain using finite element method considering wind and wave loads. Several parameters, such as soil–monopile–tower interaction, rotor and wave frequencies, wind and wave loading parameters, and length, diameter and thickness of monopile affecting the dynamic characteristics of OWT system and the responses are investigated. The study shows soil–monopile–tower interaction increases response of tower and monopile. Soil nonlinearity increases the system response at higher wind speed. Rotor frequency is found to have dominant role than blade passing frequency and wave frequency. Magnitude of wave load is important for design rather than resonance from wave frequency.  相似文献   

14.
Preliminary design of offshore wind turbines requires high precision simplified methods for the analysis of the system fundamental frequency. Based on the Rayleigh method and Lagrange's Equation, this study establishes a simple formula for the analysis of system fundamental frequency in the preliminary design of an offshore wind turbine with a monopile foundation. This method takes into consideration the variation of cross-section geometry of the wind turbine tower along its length, with the inertia moment and distributed mass both changing with diameter. Also the rotational flexibility of the monopile foundation is mainly considered. The rigid pile and elastic middle long pile are calculated separately. The method is validated against both FEM analysis cases and field measurements, showing good agreement. The method is then used in a parametric study, showing that the tower length Lt, tower base diameter d0, tower wall thickness δt, pile diameter db and pile length Lb are the major factors influencing the fundamental frequency of the offshore wind turbine system. In the design of offshore wind turbine systems, these five parameters should be adjusted comprehensively. The seabed soil condition also needs to be carefully considered for soft clay and loose sand.  相似文献   

15.
A wind turbine system equipped with a tuned liquid column damper(TLCD) is comprehensively studied via shaking table tests using a 1/13-scaled model. The effects of wind and wave actions are considered by inputting responseequivalent accelerations on the shaking table. The test results show that the control effect of the TLCD system is significant in reducing the responses under both wind-wave equivalent loads and ground motions, but obviously varies for different inputs. Further, a blade-hub-tower integrated numerical model for the wind turbine system is established. The model is capable of considering the rotational effect of blades by combining Kane’s equation with the finite element method. The responses of the wind tower equipped with TLCD devices are numerically obtained and compared to the test results, showing that under both controlled and uncontrolled conditions with and without blades’ rotation, the corresponding responses exhibit good agreement. This demonstrates that the proposed numerical model performs well in capturing the wind-wave coupled response of the offshore wind turbine systems under control. Both numerical and experimental results show that the TLCD system can significantly reduce the structural response and thus improve the safety and serviceability of the offshore wind turbine tower systems. Additional issues that require further study are discussed.  相似文献   

16.
Offshore wind turbines (OWTs) are dynamically loaded structures and therefore the estimation of the natural frequency is an important design calculation to avoid resonance and resonance related effects (such as fatigue). Monopiles are currently the most used foundation type and are also being considered in deeper waters (>30 m) where a stiff transition piece will join the monopile and the tapered tall tower. While rather computationally expensive, high fidelity finite element analysis can be carried to find the Eigen solutions of the whole system considering soil–structure interaction; a quick hand calculation method is often convenient during the design optimisation stage or conceptual design stage. This paper proposes a simplified methodology to obtain the first natural frequency of the whole system using only limited data on the WTG (Wind Turbine Generator), tower dimensions, monopile dimensions and the ground. The most uncertain component is the ground and is characterised by two parameters: type of ground profile (i.e. soil stiffness variation with depth) and the soil stiffness at one monopile depth below mudline. In this framework, the fixed base natural frequency of the wind turbine is first calculated and is then multiplied by two non-dimensional factors to account for the foundation flexibility (i.e. the effect of soil–structure interaction). The theoretical background behind the model is the Euler–Bernoulli and Timoshenko beam theories where the foundation is idealised by three coupled springs (lateral, rocking and cross-coupling). 10 wind turbines founded in different ground conditions from 10 different wind farms in Europe (e.g. Walney, Gunfleet sand, Burbo Bank, Belwind, Barrow, Kentish flat, Blyth, Lely, Thanet Sand, Irene Vorrink) have been analysed and the results compared with the measured natural frequencies. The results show good accuracy (errors below 3.5%). A step by step sample calculation is also shown for practical use of the proposed methodology.  相似文献   

17.
海上风电工程基础结构抗震性能研究   总被引:1,自引:0,他引:1  
为了探讨海上风电工程基础与结构体系的抗震性能,采用ANSYS程序建立了三种基础型式的风电塔架结构数值模型,先采用振型分解反应谱法计算了结构的地震响应,进而分别将传统地震动和最不利地震动作为输入地震动,分析了三种基础结构体系的最大地震响应。结果显示:风电结构属典型的长周期结构,基础型式对结构的振动周期影响明显,单立柱桩式结构振动周期最长,八桩承台结构振动周期最短。地震作用下,单立柱桩结构的顶端位移响应也最大;振型反应谱法与传统地震动作用下结构的响应满足现行建筑抗震规范的要求,但最不利地震作用下结构的位移响应偏大,不满足规范对位移的相关规定;组合三桩结构底部基础与结构连接处是应力集中区。海上风电工程结构抗震设计的重要性应引起充分重视。  相似文献   

18.
本文提出了圆球减振装置对风力发电高塔振动控制的工作原理和计算方法,并对其控制效果进行了理论研究。首先利用拉格朗日方程推导得到圆球减振装置的自振频率及其对单自由度系统的被动控制力,并推广至多自由度系统。进而将风力发电高塔等效为集中质点模型,建立了风塔-减振装置体系的运动微分方程。用谐波叠加法模拟得到脉动风速时程,分析比较了风力发电高塔在无控及有控状态下的动力响应及疲劳寿命。计算结果表明,圆球减振装置是一种简单、经济和实用的减振装置,能够有效减小风塔的动力响应,延长其疲劳寿命。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号