首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
On the basis of seismic refraction investigations and gravimetric data we have modelled the crustal structure of the southern Central Andes (21–23°S). A pronounced variation in crustal parameters is seen in N-S- and W-E-crossing seismic profiles over the entire Andean orogene, characterized by a crustal thickness of up to 70 km under the magmatic arc and backarc, strongly reduced seismic velocities and a Bouguer minimum of −450 mGal. Anomalously low velocities of 5.9–6.0 km/s in the deeper crust of the Western Cordillera and Altiplano regions lead to an over-compensation of the Bouguer minima resulting in values of crustal densities higher than estimates based purely on seismic velocity measurements. In an attempt to reconcile these differences, the behavior of crystalline rocks based on published laboratory data was studied under varying pressure and temperature conditions up to the range of partial melting. If the temperature is increased above the melting point, a rapid decrease in seismic velocity is accompanied by a slow decrease in density. For the Central Andes, a good fit of the observed and calculated Bouguer anomalies is obtained if the densities of the rocks from the low-velocity zone (LVZ) beneath the Western Cordillera and the Altiplano are varied. Model calculations lead to a velocity-density relation for partial molten rocks that allows the melt proportions of rocks to be estimated. Model calculations indicate that 15–20 vol.% of basaltic to andesitic melt at depth is necessary to explain the LVZ and Bouguer anomaly beneath the arc and parts of the backarc. High heat flow values (100 mW/m2) support the idea that large areas of the deeper Andean crust are strongly weakened by the presence of partially molten rocks, resulting in reduced seismic velocities, with the Western Cordillera, the active volcanic arc of the Andean mountain range, acting as a ductile buffer between the two more rigid crustal blocks of the forearc and backarc regions.  相似文献   

2.
A two-dimensional model of the crust and uppermost mantle for the western Siberian craton and the adjoining areas of the Pur-Gedan basin to the north and Baikal Rift zone to the south is determined from travel time data from recordings of 30 chemical explosions and three nuclear explosions along the RIFT deep seismic sounding profile. This velocity model shows strong lateral variations in the crust and sub-Moho structure both within the craton and between the craton and the surrounding region. The Pur-Gedan basin has a 15-km thick, low-velocity sediment layer overlying a 25-km thick, high-velocity crystalline crustal layer. A paleo-rift zone with a graben-like structure in the basement and a high-velocity crustal intrusion or mantle upward exists beneath the southern part of the Pur-Gedan basin. The sedimentary layer is thin or non-existent and there is a velocity reversal in the upper crust beneath the Yenisey Zone. The Siberian craton has nearly uniform crustal thickness of 40–43 km but the average velocity in the lower crust in the north is higher (6.8–6.9 km/s) than in the south (6.6 km/s). The crust beneath the Baikal Rift zone is 35 km thick and has an average crustal velocity similar to that observed beneath the southern part of craton. The uppermost mantle velocity varies from 8.0 to 8.1 km/s beneath the young West Siberian platform and Baikal Rift zone to 8.1–8.5 km/s beneath the Siberian craton. Anomalous high Pn velocities (8.4–8.5 km/s) are observed beneath the western Tunguss basin in the northern part of the craton and beneath the southern part of the Siberian craton, but lower Pn velocities (8.1 km/s) are observed beneath the Low Angara basin in the central part of the craton. At about 100 km depth beneath the craton, there is a velocity inversion with a strong reflecting interface at its base. Some reflectors are also distinguished within the upper mantle at depth between 230 and 350 km.  相似文献   

3.
杨晓松  马瑾 《地学前缘》2003,10(Z1):240-247
块体构造理论的发展不断地深化着人们对现今大陆岩石圈运动 ,尤其是大陆强震的孕育和发生规律的认识。块体底部边界的构造性质是块体运动的核心问题之一 ,同时也是块体构造理论研究中的薄弱环节。确定块体底部边界的岩石物理性质是利用地球物理方法探测和识别块体底部边界的前提。文中依据现代实验岩石学、实验岩石物理学、地球物理学、地质学等的研究成果 ,对块体底部边界之成因属性和岩石物理性质进行了分析。将大陆块体划分为两种基本类型———地壳型块体和岩石圈型块体。地壳型块体是由大陆上部地壳所构成的“薄板” ,壳内软弱带的顶面为其底部边界和潜在的解耦带。岩石圈型块体在岩石圈尺度上是力学耦合的 ,以上地幔软流圈的顶面为其底部边界。壳内软弱带具有垂直方向低速和各向异性的基本特征 ,联合多种地震测深方法有望确定块体的底界。在现今构造活动区内 ,地壳型块体的潜在解耦带可能由壳内部分熔融带承担。青藏高原南部—川滇地区 2 0 35km的深度上广泛存在低速带。地热、岩石学、实验岩石学和模拟均显示该地区的低速带具有部分熔融的成因属性。块体沿着该壳内低速层与下伏地壳发生某种程度解耦。  相似文献   

4.
大陆浅源地震震源空间分布可以看作是一种地球物理特征,大量震源的空间位置数据可用来刻划大陆地壳结构。通过研究南北地震带南段震源的空间分布特征,发现研究区震源深度分布在横向上的疏密变化与地质构造特征相对应。剖面震源分布等密度图显示,中、下地壳不同深度广泛分布着多震层。多震层的分布与地壳低速、低阻层具有相关性,多震层一般位于低速、低阻层的上方。中地壳层次的低速、低阻层很可能是壳内滑脱层,是韧性下地壳与脆性上地壳发生拆离解耦的构造层次;下地壳低速、低阻层是部分熔融、含流体的韧性流变层;壳内多震层的构造属性应是上地壳硬的脆性层,容易发生突然破裂,产生地震。低速、低阻层是大陆板块内部上地壳脆性层构造过程的主控因素,包括对大陆内部浅源地震的控制;因此,在低速、低阻层之上往往形成多震层,越是活动性强的低速、低阻层,其上多震层震源密度越高。南北地震带南段不同层圈和块体之间的差异运动控制了其地壳层次的构造活动,包括大量地震的发生,其中,下地壳流层与上地壳脆性层的差异运动在中地壳层次发生剪切拆离是最重要的因素。  相似文献   

5.
青藏高原东南部作为板块碰撞的前缘地带一直是地球科学研究的热点,为了揭示碰撞前缘地带地壳结构特征,作者 利用布设在中国青藏高原东南部的38个宽频带流动台站记录的2487条远震P波接收函数,采用接收函数CCP叠加(共转换点 叠加)和H-κ叠加两种方法获得了研究区域详细的地壳厚度图像和泊松比值。研究结果显示:两种方法获得的地壳厚度特征 具有较好的一致性;青藏高原东南部地壳厚度存在明显的东西差异和南北差异;喜马拉雅构造区内莫霍面深度变化较大, 介于65~80 km之间;拉萨地体内莫霍面深度介于72~80 km之间;雅鲁藏布缝合带两侧地壳厚度突变,缝合带北侧和南侧地 壳厚度相差约8 km。研究区域平均泊松比值较小,为0.24,和大多数造山带泊松比偏低的特征类似。研究区域中下地壳广 泛存在强转换界面,该界面可能对应中下地壳高速层的上界面,埋深40~70 km,表明壳内发生深熔或部分熔融作用,导致 壳内发生重力分异,在中下地壳形成了高速薄层。  相似文献   

6.
D.H. Chung 《Tectonophysics》1977,42(1):T35-T42
The seismologically observed Pn velocity anomalies in the conterminous United States are restricted to the lithosphere, but the observed teleseismic delay-time variations are due principally to the regional variations in the physical state (i.e., thickness of lowvelocity zone and/or percent melt, etc.) of the asthenosphere. The observed low Pn velocity has been attributed to partial melting in the upper mantle, but it is shown that the partial-melting model alone cannot explain the seismologically observed Pn velocities in such an anomalous region as the Basin and Range Province. The present structure of the Basin and Range Province is possibly a result of rifting in the western conterminous United States; under it there may lie a mixed structure of old crust and mantle materials. The low-velocity zone under the Basin and Range Province would then be caused by downward chemical transition from the sub-Moho pyrolitic mantle material into a plagioclase-rich ophiolitic (old oceanic crust and upper mantle) composition and associated meltingand then into a peridotitic composition at the bottom of the lowvelocity zone. This mixed material model, with partial melting, would explain the low Pn velocity and low seismic Q in the region, as well as other geophysical observations.  相似文献   

7.
David E. James  Fenglin Niu  Juliana Rokosky   《Lithos》2003,71(2-4):413-429
High-quality seismic data obtained from a dense broadband array near Kimberley, South Africa, exhibit crustal reverberations of remarkable clarity that provide well-resolved constraints on the structure of the lowermost crust and Moho. Receiver function analysis of Moho conversions and crustal multiples beneath the Kimberley array shows that the crust is 35 km thick with an average Poisson's ratio of 0.25. The density contrast across the Moho is 15%, indicating a crustal density about 2.86 gm/cc just above the Moho, appropriate for felsic to intermediate rock compositions. Analysis of waveform broadening of the crustal reverberation phases suggests that the Moho transition can be no more than 0.5 km thick and the total variation in crustal thickness over the 2400 km2 footprint of the array no more than 1 km. Waveform and travel time analysis of a large earthquake triggered by deep gold mining operations (the Welkom mine event) some 200 km away from the array yield an average crustal thickness of 35 km along the propagation path between the Kimberley array and the event. P- and S-wave velocities for the lowermost crust are modeled to be 6.75 and 3.90 km/s, respectively, with uppermost mantle velocities of 8.2 and 4.79 km/s, respectively. Seismograms from the Welkom event exhibit theoretically predicted but rarely observed crustal reverberation phases that involve reflection or conversion at the Moho. Correlation between observed and synthetic waveforms and phase amplitudes of the Moho reverberations suggests that the crust along the propagation path between source and receiver is highly uniform in both thickness and average seismic velocity and that the Moho transition zone is everywhere less than about 2 km thick. While the extremely flat Moho, sharp transition zone and low crustal densities beneath the region of study may date from the time of crustal formation, a more geologically plausible interpretation involves extensive crustal melting and ductile flow during the major craton-wide Ventersdorp tectonomagmatic event near the end of Archean time.  相似文献   

8.
The 1000-km-long Darlag–Lanzhou–Jingbian seismic refraction profile is located in the NE margin of the Tibetan plateau. This profile crosses the northern Songpan-Ganzi terrane, the Qinling-Qilian fold system, the Haiyuan arcuate tectonic region, and the stable Ordos basin. The P-wave and S-wave velocity structure and Poisson's ratios reveal many significant characteristics in the profile. The crustal thickness increases from northeast to southwest. The average crustal thickness observed increases from 42 km in the Ordos basin to 63 km in the Songpan-Ganzi terrane. The crust becomes obviously thicker south of the Haiyuan fault and beneath the West-Qinlin Shan. The crustal velocities have significant variations along the profile. The average P-wave velocities for the crystalline crust vary between 6.3 and 6.4 km/s. Beneath the Songpan-Ganzi terrane, West-Qinling Shan, and Haiyuan arcuate tectonic region P-wave velocities of 6.3 km/s are 0.15 km/s lower than the worldwide average of 6.45 km/s. North of the Kunlun fault, with exclusion of the Haiyuan arcuate tectonic region, the average P-wave velocity is 6.4 km/s and only 0.5 km/s lower than the worldwide average. A combination of the P-wave velocity and Poisson's ratio suggests that the crust is dominantly felsic in composition with an intermediate composition at the base. A mafic lower crust is absent in the NE margin of the Tibetan plateau from the Songpan-Ganzi terrane to the Ordos basin. There are low velocity zones in the West-Qinling Shan and the Haiyuan arcuate tectonic region. The low velocity zones have low S-wave velocities and high Poisson's ratios, so it is possible these zones are due to partial melting. The crust is divided into two layers, the upper and the lower crust, with crustal thickening mainly in the lower crust as the NE Tibetan plateau is approached. The results in the study show that the thickness of the lower crust increases from 22 to 38 km as the crustal thickness increases from 42 km in the Ordos basin to 63 km in the Songpan-Ganzi terrane south of the Kunlun fault. Both the Conrad discontinuity and Moho in the West-Qinling Shan and in the Haiyuan arcuate tectonic region are laminated interfaces, implying intense tectonic activity. The arcuate faults and large earthquakes in the Haiyuan arcuate tectonic region are the result of interaction between the Tibetan plateau and the Sino–Korean and Gobi Ala Shan platforms.  相似文献   

9.
范兴利  陈棋福  郭震 《岩石学报》2020,36(7):2081-2091
近年来,有关长白山火山是否存在潜在喷发危险的讨论引起了国内外地学研究者的广泛关注,但人们目前对其壳幔岩浆系统的了解却十分不足,已有的研究对长白山火山壳内岩浆房存在的深度位置、形态规模及其部分熔融程度的认识仍存在较大分歧。本研究通过汇集长白山火山及邻区(包括朝鲜境内)多个密集流动地震台阵和区域固定地震台网的观测资料,采用背景噪声成像方法获得了长白山火山区高精度的Rayleigh面波相速度模型。成像结果表明:长白山火山中-下地壳深度位置存在显著低波速异常,可能指示了岩浆房的存在。上地壳局部低速区可能反映了壳内深部岩浆向上运移的通道或者是区域小尺度的岩浆聚集体。长白山火山上地幔顶部的低速可能揭示了软流圈热物质上涌,其减压熔融为壳内岩浆房提供了幔源岩浆补给。  相似文献   

10.
We adopted the seismic tomography technique to refine the three-dimensional velocity structure model of the western part of Hokkaido, Japan. Using the P-wave first arrival data listed by Japan Meteorological Agency from 2002 to 2005, we could estimate a 3-D inhomogeneous velocity structure model with a low velocity at a depth of 14 km beneath Asahikawa. The crustal structure near Sapporo was characterized by lateral velocity change toward the southern seaside. The low-velocity zone near Urakawa, proposed by previous research, was also clarified. In general, the present model showed lower-velocity values for most of the crustal layers in the area concerned. The results of this study were affected by less number of higher magnitude events (M?≥?0.5) in the central part of the area of interest. However, the perturbation results for comparatively shallow layers (6–50 km) were good in resolution. It was found that the source region of the Rumoi–Nanbu earthquake of December 14, 2004 was characterized by a low-velocity zone, located between high velocity zones. Such an inhomogeneous crustal structure might play an important role in the relatively high seismic activity in the Rumoi–Nanbu earthquake source region.  相似文献   

11.
Group velocity dispersion data of fundamental-mode Rayleigh and Love waves for 12 wave paths within southeastern China have been measured by applying the multiple-filter technique to the properly rotated three-component digital seismograms from two Seismic Research Observatory stations, TATO and CHTO. The generalized surface wave inversion technique was applied to these group velocity dispersion data to determine the S-wave velocity structures of the crust and upper mantle for various regions of southeastern China. The results clearly demonstrate that the crust and upper mantle under southeastern China are laterally heterogeneous. The southern China region south of 25°N and the eastern China region both have a crustal thickness of 30 km. The eastern Tibet plateau along the 100°E meridian has a crustal thickness of 60 km. Central China, consisting mainly of the Yangtze and Sino-Korean platforms, has a crustal thickness of 40 km. A distinct S-wave low-velocity layer at 10–20 km depth in the middle crust was found under wave paths in southeastern China. On the other hand, no such crustal low-velocity layer is evident under the eastern Tibet plateau. This low-velocity layer in the middle crust appears to reflect the presence of a sialic low-velocity layer perhaps consisting of intruded granitic laccoliths, or possibly the remnant of the source zone of widespread magmatic activities known to have taken place in these regions since the late Carboniferous.  相似文献   

12.
青藏高原地壳的低速层与部分熔融   总被引:10,自引:1,他引:10  
青藏高原各地体的地壳结构与厚度存在明显差异,依据过去多年中法合作的地震探测资料结合其它资料给出了青藏高原的地壳结构图。对高原多数地体的地壳中存在的低速层进行了研究,表明低速层的形成主要来自地体碰撞时,地壳的推覆叠置,使部分高原浅部上地壳的中酸性成分地层进入中下地壳的位置,仍为长英质岩性成分,尚未跨越固相点进入部分熔融状态。  相似文献   

13.
Crustal shear wave velocity structure beneath the Malawi and Luangwa Rift Zones (MRZ and LRZ, respectively) and adjacent regions in southern Africa is imaged using fundamental mode Rayleigh waves recorded by 31 SAFARI (Seismic Arrays for African Rift Initiation) stations. Dispersion measurements estimated from empirical Green's functions are used to construct 2-D phase velocity maps for periods between 5 and 28 s. The resulting Rayleigh wave phase velocities demonstrate significant lateral variations and are in general agreement with known geological features and tectonic units within the study area. Subsequently, we invert Rayleigh wave phase velocity dispersion curves to construct a 3-D shear wave velocity model. Beneath the MRZ and LRZ, low velocity anomalies are found in the upper-most crust, probably reflecting the sedimentary cover. The mid-crust of the MRZ is characterized by an ~3.7% low velocity anomaly, which cannot be adequately explained by higher than normal temperatures alone. Instead, other factors such as magmatic intrusion, partial melting, and fluid-filled deep crustal faults might also play a role. Thinning of the crust of a few kilometers beneath the rifts is revealed by the inversion. A compilation of crustal thicknesses and velocities beneath the world's major continental rifts suggests that both the MRZ and LRZ are in the category of rifts beneath which the crust has not been sufficiently thinned to produce widespread syn-rifting volcanisms.  相似文献   

14.
Based upon the deep seismic sounding profiles carried out in the Tengchong Volcano-Geothermal Area (TVGA), western Yunnan Province of China, a 2-D crustal P velocity structure is obtained by use of finite-difference inversion and forward travel-time fitting method. The crustal model shows that a low-velocity anomaly zone exists in the upper crust, which is related to geothermal activity. Two faults, the Longling–Ruili Fault and Tengchong Fault, on the profile extend from surface to the lower crust and the Tengchong Fault likely penetrates the Moho. Moreover, based on teleseismic receiver functions on a temporary seismic network, S-wave velocity structures beneath the geothermal field show low S-wave velocity in the upper crust. From results of geophysical survey, the crust of TVGA is characterized by low P-wave and S-wave velocities, low resistivity, high heat-flow value and low Q. The upper mantle P-wave velocity is also low. This suggests presence of magma in the crust derived from the upper mantle. The low-velocity anomaly in upper crust may be related to the magma differentiation. The Tengchong volcanic area is located on the northeast edge of the Indian–Eurasian plate collision zone, away from the eastern boundary of the Indian plate by about 450 km. Based on the results of this paper and related studies, the Tengchong volcanoes can be classified as plate boundary volcanoes.  相似文献   

15.
对班公湖-怒江缝合带内的岩浆作用进行LA-ICP-MS锆石U-Pb测年和地球化学分析,在辉绿岩中获得138.7±1.0Ma的~(206)Pb/~(238)U年龄加权平均值,在流纹岩中获得了110.4±0.4Ma的谐和年龄,表明区内岩浆作用具有2期成因。地球化学研究认为,辉绿岩是地幔熔融的产物,花岗闪长岩为岩石圈地幔熔融的产物,而流纹岩显示2类不同的岩石地球化学特征,低Sr流纹岩为古老岩石圈地幔熔体经历分离结晶作用的产物,高Sr流纹岩具有埃达克岩的特征,为增厚下地壳熔融的产物。综合已有的研究,早白垩世岩浆作用在缝合带两侧均有展布,其中早期岩浆岩为班公湖-怒江洋双向俯冲的产物,末期岩浆岩是碰撞后俯冲洋壳前缘断离形成的。早白垩世班公湖-怒江洋经历了双向俯冲到大洋闭合的演化过程,并在早白垩世末期发生了俯冲洋壳的断离事件。同时,高Sr流纹岩的发现表明,早白垩世末期班公湖-怒江缝合带已经发生了明显的地壳增厚作用。  相似文献   

16.
We use seismic tomography, exploiting group velocities derived from ambient noise, to delineate the crustal structure beneath Mt Isa and the surrounding blocks and basins. The depth extent of the blocks can be traced into the mid-crust and the spatial extent of the associated velocity anomalies mapped over an area of approximately 500 km by 500 km. The Proterozoic Mt Isa block is imaged as a region of elevated seismic velocities comparable to the Yilgarn craton in Western Australia, while the surrounding basins have relatively low velocities. Seismic velocity anomalies display correlations with the regional Bouguer gravity data and with high crustal temperatures in the region. There are a number of isolated low-velocity anomalies under the Millungera basin that suggest either previously unknown thermal anomalies or zones with high permeability, which can also produce lowered velocities.  相似文献   

17.
On the basis of a one-by-one latitude-longitude grid three-dimensional seismic velocity model, the crustal P-wave velocity structure in eastern China (105-125°E and 18-41°N) is obtained, and a set of geotherms for each grid is established for P-T correction on P-wave velocities. The average depths of sub-crustal layers and their average P-wave velocities of 18 tectonic units in eastern China are exhibited. Our result presents a 32-34 km thick crust beneath eastern China, which is thinner than previous studies, with an average velocity of 6.54 km/s, corresponding to a 5 kg/m3 variation in crustal mean density. The thicker upper but thinner middle and lower crust results in a lower average seismic velocity of eastern China. An intermediate crustal composition with a SiO2 content of 59.7 wt% has been estimated. However, there exists a significant lateral variation in the crustal structures among the tectonic units of eastern China. The structure and composition features of some regions in eastern China in  相似文献   

18.
Crustal isovelocity lines are constructed along the European Geotraverse for the seismic velocities 6.0, 6.4, 7.1 and 7.8 km/s. Using this velocity structure and a correlation between heat generation and seismic velocity for crustal rocks, the contribution of the crust to the surface heat flow density value is calculated. The heat flow density at the Moho varies from 5 to 40 mW/m2 from Paleo-Europe in the north to Neo-Europe in the south, while the mantle heat flow density is close to zero beneath the Alps; the temperatures calculated for the Moho are 260°–390°C for Paleo- to Meso-Europe, 420°–520°C for Neo-Europe and 700°C for the mountain-root beneath the Alps.  相似文献   

19.
花海盆地—北山构造带南部位于青藏高原东北缘以北地区,是特提斯洋和古亚洲洋两大构造域的交接部位,自新元古代晚期以来经历了多期次、多阶段的板块裂解-俯冲-碰撞-拼合的演化历史,尤其是中生代以来的逆冲推覆和走滑作用,以及受新生代以来印度板块和欧亚板块碰撞的远程效应影响,导致青藏高原东北缘的向北扩展,形成了现今复杂的地质地貌结构。其地壳结构记录了多期构造作用的叠加,上地壳结构更是促进我们理解青藏高原东北缘向外的扩展机制及其对周缘块体的改造作用的天然记录本。本文利用2018年中国地质科学院在北山构造带南部完成的180 km深反射地震剖面的初至波(Pg震相)数据,通过层析成像反演方法,获得了花海盆地—北山构造带4 km深度范围内的上地壳P波速度结构。其主要特征为:花海盆地、总口子盆地和扎格高脑盆地均表现为较低的速度和较小的垂向速度梯度;研究区内的晚古生代花岗岩体具有明显的高速异常和较大的垂向速度梯度特征;左行走滑的阿尔金断裂带在花海盆地内表现为向北倾的高角度走滑性质,深度至少切穿花海盆地基底;北山南缘断裂带的推测隐伏区呈现速度等值线下凹的低速异常特征。同时,反演揭示的多处低速异常区指示了北山构造带南部的多处断层发育情况。  相似文献   

20.
Two NE-SW trending wide-angle seismic profiles were surveyed across the Chinese side Two NE-SW trending wide-angle seismic profiles were surveyed across the Chinese side of the Yinggehai (莺歌海) basin (YGHB) with ocean bottom hydrophones (OBHs) and piggyback recorded by onshore stations located on the Hainan (海南)Island.Detailed velocity-depth models were obtained through traveltime modeling and partially constrained by amplitude calculations.More than 15 km Tertiary sedimentary infill within the YGHB can be divided in to three layers with distinct velocity-depth distribution.Overall,the upper layer has a high velocity gradient with 3.8-4.1 km/s at its bottom,consistent with progressive compaction and diagenesls.Its thickness increases gradually towards the basin center,reaching 4.5 km along the southern profile.The middle layer is characterized in its most part as a pronounced low velocity zone (LVZ) with average velocity as low as 3.0 km/s.Its thickness increases from 3.0 to over 4.5 km from NW towards SE.The primary causes of the velocity inversion are high accumulation rate and subsequent under-compaction of sediments.The velocity at the top of the lower layer is estimated at about 4.5 km/s.Despite strong energy source used (4 x 12L airgun array),no reflections can be observed from deeper levels within the basin.Towards NE the basin is bounded sharply by a clear and deep basement fault (Fault No.1),which seems to cut through the entire crust.A typical continental crust with low-velocity middle crust is found beneath the coast of the western Hainan Island.Its thickness is determined to be 28 km and shows no sign of crustal thinning towards the basin.The sharp change in crustal structure across Fault No.1 indicates that the fault is a strike-slip fault.The crustal structure obtained in this study clearly favors the hypothesis that the YGHB is a narrow pull-apart basin formed by strike-slip faulting of the Red River fault zone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号