首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 437 毫秒
1.
青藏高原板内地震震源深度分布规律及其成因   总被引:6,自引:0,他引:6  
青藏高原板内地震以浅源地震为主, 下地壳基本上没有地震, 地震震源多集中在15~40 km的深度范围, 主要在中地壳内, 呈似层状弥散分布.其中30~33 km深度是一个优势层, 与壳内分层有关.总体上青藏高原南、北部的震源面略呈相向倾斜特征.70~100 km深度区间出现了比较集中的震级较小的地震, 可能与壳幔过渡带的拆离作用有关.高原内部的正断层系与板内地震密切相关, 是板内浅源地震的主控构造.总之, 青藏高原地震震源沿着活动的上地壳脆性层与软弱层之间的脆-韧性过渡带分布.这些板内地震活动属于大陆动力学过程, 与板块碰撞和板块俯冲无关.初步认为青藏高原浅层到深层多震层的成因分别是韧性基底与脆性盖层、韧性下地壳与脆性上地壳、韧性下地壳与脆性上地幔的韧-脆性转换、拆离和解耦的产物.   相似文献   

2.
大陆板内地震的发震机理与地震预报——以汶川地震为例   总被引:4,自引:0,他引:4  
大陆板内地震主要产于新生代厚壳造山带或高原,在平面上呈弥散状分布,在剖面上震源沿中地壳成层分布,为浅源地震.盆山活动断层系统呈规律性组合,盆山挤压边界为逆冲型压性发震断层;盆山走滑转换边界为走滑型扭性发震断层;造山带内部主要是伸展型张性发震断层.大陆板内地壳分层流变作用制约了板内地震的构造物理过程.大陆下地壳韧性流层为地震活动提供了热能,热软化和热融化介质发生缓慢的韧性流动,是孕震构造;中地壳韧-脆性剪切带发生热-应力转换,聚积应力和应变,为蕴震构造;当下地壳流动在中地壳积累的应变超过上地壳特定构造部位介质的应力-应变极限时,上地壳形成脆性发震断层,产生地震.震源出现在上地壳脆性断层与中地壳脆-韧性剪切带的交汇部位,青藏高原的震源深度通常为12~35 km.目前地震预报是世界科学难题,然而,大陆动力学和板内地震的理论突破可能为短临预报提供了新思路.如果大陆下地壳热动力作用是中地壳产生地震和上地壳发生地震的根源,那么上地壳脆性断层活动会释放出地壳深部的热流体和热气体,引起局部的地温异常、水文异常和大气异常.建议从大气到地表再到地下系统地监测活动断层带及邻区的地下水、地表水、大气的温度异常和成分变化,结合观测下地壳流层厚度、地应力-应交变化、重力异常、磁异常、地电异常等,综合评价地壳活动性和发震可能性.2008年5月12日发生的里氏8.0级汶川地震处于龙门山造山带与四川盆地的构造边界上,是典型的大陆板内地震,震源处于映秀-北川断层上,震源深度为12 km.350 km长的地表破裂带呈右行左阶雁行排列在具有逆冲和右行走滑性质的汶川-茂县-青川、映秀-北川和江油-都江堰3条断层带上.下地壳的韧性流动伴随中地壳韧-脆性剪切带应力和应变的积累,产生上地壳脆性活动断层,并控制地表破裂带和滑坡的分布.  相似文献   

3.
大陆地震构造系统: 以青藏高原及邻区为例   总被引:1,自引:0,他引:1       下载免费PDF全文
李德威  陈继乐  陈桂凡  梁桑 《地球科学》2014,39(12):1763-1775
青藏高原及邻区三角形发震构造域是全球大陆最显著的地震多发区.脆性活动断层及其弹性回跳模式无法合理解释该区深度集中分布在10~40 km的点状震源.针对发震构造和地震机理不明确这一重大科学问题, 以大陆动力学和地球系统动力学新思想为指导, 对青藏高原及邻区发震构造系统进行域、层、带、点相关研究, 阐明大陆地震构造系统的结构型式, 认为下地壳固态流变及其韧性剪切带是提供地震能量的孕震构造, 中地壳韧-脆性剪切带是累积地震能量的发震构造, 上地壳脆性断裂是释放地震能量的释震构造.在研究青藏高原及邻区地震构造系统及其形成背景的基础上, 进一步论证了大陆地震热流体撞击的形成机理: 地幔墙导致大洋中脊之下的软流圈热流物质层流到大陆特定部位汇聚加厚并底辟上升, 造成大陆下地壳部分熔融和固态流变, 并改变莫霍面的产状, 固态流变物质侧向非均匀流动, 形成大陆盆山体系, 流动的韧性下地壳与脆性上地壳之间具有韧-脆性剪切滑脱性质的中地壳不断积累由下地壳热能转换而来的应变能, 形成发震层, 震源定位于下地壳热流物质富集带("热河")中的固态-半固态流变物质撞击到强弱层块之间的构造边界, 不同热构造环境和撞击角度产生5种不同类型的地震.从而为大陆地震的科学预测奠定了全新的理论基础.   相似文献   

4.
李德威 《地学前缘》2010,17(5):179-192
青藏高原东北部东昆仑、汶川、玉树等强震的同震地表破裂不对称发育,伴随余震有规律地分别向东、南东和北北东方向迁移,很可能是源于恒河盆地流经亚东、当雄、安多、库赛湖、治多、玉树、甘孜、汶川的弧形下地壳“热河”的流速和流向变化形成的,下地壳热流物质正在向云南及邻区汇聚形成下地壳“热海”,导致长时间跨季度构造热干旱,其影响超过大气环流的作用。地表破裂不一定受断层控制,震源也不在断层面上,下地壳流动导致中地壳发震并进一步影响上地壳形成同震脆性破裂系统。大陆板内盆山过渡带地震密集,大陆板内地震是在下地壳层流的热动力作用下导致活动地壳分层变形的产物。在大陆盆山耦合、圈层耦合的非线性开放系统中,从大洋底部的软流圈层流进入大陆底部使得地幔软流圈加厚,底辟上升为大陆下地壳流动,为地震活动提供了巨量热能;热软化的下地壳缓慢的韧性流动孕育了大陆板内地震;中地壳韧 脆性剪切带易于积累能量,发生热能与应变能的转化,产生地震,形成震源层;上地壳脆性断层活动和地表破裂是地震释放深部能量的载体和方式之一。地壳稳定性评价的依据应当是地壳的活动性而不是断层的活动性。大陆活动构造区地震活跃期与平静期交替实际上是下地壳地震能量的聚散过程,体现在下地壳热主导的韧性流动构造与上地壳应力主导的脆性破裂构造之间的相互作用。下地壳热软化物质流动过程中流速、流向等突然改变触发地震,并产生共振波。大陆下地壳流层在厚度、温度、粘度、流速、流向上的变化产生一定程度的温度异常、流体异常及与其相关的大气层、电场、磁场、重力场、地球化学场、应力场、应变场、生物场等异常。合理布置天空网、地面网、地下网,综合立体监测有效的地震前兆,系统地开展长期、中期和短临地震预测,能够不断地提高地震预测水平。  相似文献   

5.
龙山门断裂带活动特征与工程区域地壳稳定性评价理论   总被引:3,自引:0,他引:3  
2008年5月12日发生的里氏8.0级汶川地震处于龙门山造山带与四川盆地的构造边界上。350km长的地表破裂带呈右行左阶雁行排列在具有逆冲和右行走滑性质的汶川茂县青川、映秀北川和江油都江堰3条断层带上。下地壳的韧性流动伴随中地壳韧-脆性剪切带应力和应变的积累,产生上地壳脆性发震断层,并控制地表破裂带和滑坡的分布。震源出现在上地壳脆性断层与中地壳脆-韧性剪切带的交汇部位。〖KG2〗以汶川地震为例,结合板内地震基本特征,提出引入大陆动力学理论完善工程区域稳定性理论基础,构建基于板块学说、地质力学和大陆动力学理论的相互补充的工程区域稳定性评价体系;对活断层与地震活动性预测提出见解,强调仅仅从活断层的存在及其活动强度来预测地震活动性与强度是远远不够甚至是错误的,必须将下地壳、中地壳和上地壳结构作为一个整体加以研究和判别;提出工程区域地壳稳定性评价指标体系,指出了大陆内部安全岛划分应采用的核心指标。  相似文献   

6.
中国岩石圈三维结构雏型   总被引:6,自引:3,他引:3       下载免费PDF全文
根据岩石圈的流变习性,可以将中国岩石圈分成3层,即:弹性上地壳、塑性下地壳和岩石圈地幔.它们的构造各不相同,并且各层间呈现复杂的关系.在新疆地区,上地壳推覆叠置形成以三山四盆为特点的盆山构造,驮伏在一系列东西走向的条带状背型构造与向型构造的下地壳之上.在强烈隆升中的西藏地区,它的周边是差异隆升,但它的腹部地区的弹性上地壳完整未遭破坏.这是因为它的腹部的下地壳和岩石圈地幔发生局部熔融,上地壳被局部熔融的下地壳和岩石圈地幔顶托,以液压的方式整体抬升.华北地区,则是软流圈上升破坏了岩石圈地幔,形成新生地幔与残留地幔并存的蘑菇云岩石圈地幔构造.并由于软流圈的上升,使地壳拉张减薄形成裂谷盆地.中国大陆下除了东北吉辽地区太平洋板块向大陆俯冲外,东部其他地区都没有发现太平洋板块俯冲的证据.中生代以来中国东部发生的岩石圈巨变不是太平洋板块向中国大陆的俯冲而造成的,而是软流圈物质上涌的结果.因此,中国大陆当今的构造动力,是西部由印度板块俯冲推挤和东部东亚-西太平洋软流圈上升构成的二元系统.这两个动力系统的分界是南北地震带.在南北地震带以西整体处在压缩环境中:南北地震带以东,则处在拉张环境中.正是由于应力场由压缩转变成拉张产生的剪应力造成了南北地震带.华北地区所以成为地震活动地区是因为它的岩石圈地幔已被强烈的改造成为蘑菇云构造.热流上升,弹性层急剧减薄,弹性极限下降所致.  相似文献   

7.
贺赤诚  李献瑞  王杰  曾佐勋 《地球科学》2015,40(10):1653-1666
2013年8月31日8时4分, 云南省迪庆藏族自治州香格里拉县(28.12°N, 99.4°E)发生5.9级地震, 震源深度10 km.区域范围内历史地震频繁, 为滇西北地震多发区.据震源机制解结果, 此次地震为正断兼左旋走滑型地震, NW向截面产状与德钦-香格里拉-中甸断裂基本吻合.利用EIGEN-6C2模型对震中附近进行布格重力异常探讨, 震源位置位于莫霍面起伏部位, 下部地壳厚度不稳定之处; 而从P波速度与地壳结构剖面可知研究区上地壳底部存在低速层, 认为韧性低速层与地震能量的积聚和存储关系密切.而韧性低速(高导)层与德钦-中甸断裂交接部位, 是流变界面能量释放的位置, 即本次地震的震源位置.这为板内地震3层次构造模式提供了一个新的案例.   相似文献   

8.
板内地震过程的三层次构造模式   总被引:7,自引:4,他引:3       下载免费PDF全文
地震的本质是一个能量长期积累和突发释放的地质过程。在板内地震特征分析的基础上,我们提出板内地震的三层次构造模式——软流圈上隆的深部构造、中地壳韧性流变层(低速高导层)及其上、下的强硬层组成的中部三明治构造和上地壳浅表脆性断裂构造。软流圈上隆使岩石圈减薄并为震源提供热能和机械能,提升地震三明治构造中韧性流变层的温度,且降低其粘度,相应地加大了高导层与高阻层的能干差,使得热能和机械能引起的应变能在两种不同流变性质介质边界附近强烈集中。三明治构造上面脆性断裂加速了应力集中,当活动断层达到三明治构造边界,即可触发地震的发生,引起应变能、热能的突然释放。基于以上模式,我们初步设计了对三层次构造信息的地震监测系统。  相似文献   

9.
论壳内韧性流层及其构造表现   总被引:11,自引:0,他引:11  
地球物理探测表明,在上地壳之下有一不均匀分布的壳内低速层,中地壳之中还有一些局部的低速层。现代破坏性地震震源主要集中于10~15km深处,相当于这一低速层之顶部,处于脆韧性过渡带内。从岩石变形的角度看,这个低速层是一个壳内的韧性流变层,以发育近水平的韧性剪切带和褶叠层构造为其特征。它在纵向上和横向上都是不均一的,代表了地壳尺度的韧性剪切带,在地壳构造的演化中起着极重要的作用。  相似文献   

10.
大陆下地壳地球物理异常及其构造意义   总被引:3,自引:3,他引:3  
下地壳反射层 (或反射下地壳 )、下地壳低速层和低阻层等一系列惊人发现唤醒我们必须重新认识大陆岩石圈 ,研究大陆下地壳。大陆下地壳中的地震反射层、低速层和下地壳低阻层相互伴生 ,在中、新生代伸展构造区和年轻造山带等活动构造区带的发育程度远远高于前寒武纪地盾和克拉通等稳定构造单元 ,其成因可能与层流构造及其相关的热活动、韧性剪切、岩浆作用、部分熔融、变质反应等有关 ,并随着大陆地壳构造 -热演化而变化。  相似文献   

11.
亚洲大陆岩石圈多层构造模型和塑性流动网络   总被引:38,自引:2,他引:38  
王绳祖 《地质学报》1993,67(1):1-18
中、东部亚洲大陆的广大地区存在着由两族大型地震带共轭相交而成的统一地震网络;位于中、上地壳的这种地震网络,实际上是岩石圈下层(含下地壳和岩石圈地幔)塑性流动网络的一种响应。统一塑性流动网络系统的存在,证实了板内构造变形的驱动力源主要来自印度板块的碰撞推挤,而作用力的远程传递主要借助于网络状塑性流动。塑性流动网络对板内构造变形起着控制作用。  相似文献   

12.
The study addresses the space distribution of lithospheric density contrasts in 3D and 2D surface (spherical) sources of gravity anomalies to depths of 120 km below the geoid surface and their relationship with shallow deformation and Archean, Early Paleozoic, and Late Mesozoic geodynamic environments. The lithospheric section in northeastern Transbaikalia and the Upper Amur region includes two layers of low-density gradients attendant with low seismic velocities and low electrical resistivity. The lower layer at depths of 80–120 km is attributed to an asthenospheric upwarp that extends beneath the North Asian craton from the Emuershan volcanic belt and the Songliao basin. The concentric pattern of density contrasts in the middle and lower crust beneath the Upper Amur region may be produced by the activity of the Aldan-Zeya plume, which spatially correlates with the geometry of the asthenospheric upwarp as well as with the regional seismicity field, magnetic and heat flow anomalies, and stresses caused by large earthquakes and recent vertical crustal movements. The relationship between shallow and deep structures in the crust and upper mantle bears signature of horizontal displacement (subduction) of the lower crust of the Baikal-Vitim and Amur superterranes beneath the North Asian craton.  相似文献   

13.
We applied a tomographic method to image an aseismic strike–slip fault in North Morocco and found that the occurrence of earthquakes is not only controlled by the state of tectonic stress but also by material heterogeneity in the crust. We have constructed an integrated model of seismic, electric, magnetic and heat flow properties across northeastern Morocco primarily based on a tomography inversion of local earthquake arrival times. The seismic images obtained show a pronounced low-velocity zone at 5 km depth parallels to the Nekor fault, coinciding with an anomalously high conductive and low gravity structure, which is interpreted as a fault gouge zone and/or a fluid-filled subsurface rock matrix. Below 10 km depth, a weak positive velocity zone indicates that the fault gouge is stable. The seismicity and the seismic velocity results for the Al-Hoceimas region show that the concentrations of earthquakes are confined in the high velocity area. This anomaly is interpreted to be a brittle and competent layer of the upper crust that sustains seismogenic stress. On the eastern coast line of Morocco, we infer that a high density, high velocity body exists in the shallowest layers of the upper crust, probably formed by Miocene volcanic rocks.  相似文献   

14.
Field investigation and seismic section explanation showed that the Longmen Mountain Thrust Belt has obvious differential deformation: zonation, segmentation and stratification. Zonation means that, from NW to NE, the Longmen Mountain Thrust Belt can be divided into the Songpan-Garzê Tectonic Belt, ductile deformation belt, base involved thrust belt, frontal fold-thrust belt, and foreland depression. Segmentation means that it can be divided into five segments from north to south: the northern segment, the Anxian Transfer Zone, the center segment, the Guanxian Transfer Zone and the southern segment. Stratification means that the detachment layers partition the structural styles in profile. The detachment layers in the Longmen Mountain Thrust Belt can be classified into three categories: the deep-level detachment layers, including the crust-mantle system detachment layer, intracrustal detachment layer, and Presinian system basal detachment layer; the middle-level detachment layers, including Cambrian-Ordovician detachment layer, Silurian detachment layer, etc.; and shallow-level detachment layers, including Upper Triassic Xujiahe Formation detachment layer and the Jurassic detachment layers. The multi-level detachment layers have a very important effect on the shaping and evolution of Longmen Mountain Thrust Belt.  相似文献   

15.
天山南北前陆冲断带具有较强的差异变形特征,滑脱层的差异对前陆冲断带变形特征及圈闭样式的影响较大,对于天山南北油气勘探具有重要意义。以地震资料解释为基础,通过断距测量、缩短量统计及平衡剖面复原等手段,对天山南北前陆冲断带构造变形差异进行研究,取得如下认识:(1)天山南北前陆冲断带滑脱层性质不同,库车前陆冲断带以古近系膏盐岩为滑脱层,分层变形特征显著;准噶尔盆地南缘前陆冲断带深层断层多穿过滑脱层,分层性差;(2)天山南北前陆冲断带新生代构造变形差异明显,库车前陆冲断带在该时期的平均缩短率为12.1%,准噶尔盆地南缘前陆冲断带的平均缩短率为9.93%,库车前陆冲断带的新生代变形强度比准噶尔盆地南缘前陆冲断带更强;(3)受滑脱层差异的影响,库车前陆冲断带滑脱层上下平均断距总体大于准噶尔盆地南缘前陆冲断带,且库车前陆冲断带的缩短量呈现“单段多峰”复杂的变化趋势,这是准噶尔盆地南缘前陆冲断带没有的特点,表明库车前陆冲断带滑脱层塑性和分层能力比准噶尔盆地南缘前陆冲断带强;(4)基于天山南北前陆冲断带断层活动和滑脱层差异的影响,准噶尔盆地南缘前陆冲断带以岩性—构造的复合圈闭为主,而库车前陆冲断带以盐下大型构造圈闭为主,岩性—构造圈闭为辅。准噶尔盆地南缘前陆冲断带深层和库车前陆冲断带的侏罗系—三叠系煤层、泥岩层等滑脱层控制的岩性—构造圈闭是未来油气勘探的有利目标。  相似文献   

16.
Located at the center of the Eurasian continent and accommodating as much as 44% of the present crustal shortening between India and Siberia, the Tianshan orogenic belt (TOB) is one of the youngest (<20 Ma) and highest (elevation>7000 m) orogenic belts in the world. It provides a natural laboratory for examining the processes of intracontinental deformation. In recent years, wide angle seismic reflection/refraction profiling and magnetotelluric sounding surveys have been carried out along a geoscience transect which extends northeastward from Xayar at the northern margin of the Tarim basin (TB), through the Tianshan orogenic belt and the Junggar basin (JB), to Burjing at the southern piedmont of the Altay Mountain. We have also obtained the 2D density structure of the crust and upper mantle of this area by using the Bouguer anomaly data of Northwestern Xinjiang. With these surveys, we attempt to image the 2D velocity and the 2D electric structure of the crust and upper mantle beneath the Tianshan orogenic belt and the Junggar basin. In order to obtain the small-scale structure of the crust–mantle transitional zone of the study area, the wavelet transform method is applied to the seismic wide angle reflection/refraction data. Combining our survey results with heat flow and other geological data, we propose a model that interprets the deep processes beneath the Tianshan orogenic belt and the Junggar basin.Located between the Tarim basin and the Junggar basin, the Tianshan orogenic belt is a block with relatively low velocity, low density, and partially high resistivity. It is tectonically a shortening zone under lateral compression. A detachment exists in the upper crust at the northern margin of the Tarim basin. Its lower part of the upper crust intruded into the lower part of the upper and the middle crust of the Tianshan, near the Korla fault; its middle crust intruded into the lower crust of the Tianshan; and its lower crust and lithospheric mantle subducted into the upper mantle of the Tianshan. In these processes, the mass of the lower crust of the Tarim basin was carried down to the upper mantle beneath the Tianshan, forming a 20-km-thick complex crust–mantle transitional zone composed of seven thin layers with a lower than average velocity. The thrusting and folding of the sedimentary cover, the intrusive layer in the upper and middle crust, and the mass added by the subduction of the Tarim basin into the upper mantle of the Tianshan are probably responsible for the crustal thickening of the Tianshan. Due to the important mass deficiency in the crust and the upper mantle of the Tianshan, buoyancy must occur and lead to rapid ascent of the Tianshan.The episodic tectonic uplift of the Tianshan and tectonic subsidence of the Junggar basin are closely related to the evolution of the Paleozoic, Mesozoic, and Cenozoic Tethys.  相似文献   

17.
Lower crustal earthquake occurrence in the Central Indian Tectonic Zone(CITZ) of the Indian sub-continent was investigated using magnetotelluric(MT) data. MT models across the CITZ, including the new resistivity model across the 1938 Satpura lower crustal earthquake epicenter, show low resistive(80 ?m) mid-lower crust and infer small volume(1 vol%) of aqueous fluids existing in most part of lower crust. This in conjunction with xenoliths and other geophysical data supports a predominant brittle/semi-brittle lower crustal rheology. However, the local deep crustal zones with higher fluid content of 2.2%–6.5% which have been mapped imply high pore pressure conditions. The observation above and the significant strain rate in the region provide favorable conditions(strong/moderate rock strength, moderate temperature, high pore pressure and high strain rate) for brittle failure in the lower crust. It can be inferred that the fluid-rich pockets in the mid-lower crust might have catalyzed earthquake generation by acting as the source of local stress(fluid pressure), which together with the regional stress produced critical seismogenic stress conditions. Alternatively, fluids reduce the shear strength of the rocks to favor tectonic stress concentration that can be transferred to seismogenic faults to trigger earthquakes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号