首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The existing rules for combining peak response to individual components of ground motion are evaluated. The response values re to two horizontal components of ground motion estimated by four multicomponent combination rules—SRSS‐, 30%‐, 40%‐ and simplified‐SRSS‐rules—are compared with the critical response, rcr, obtained by the CQC3‐rule, which takes into account the direction of the principal ground components with respect to the structural axes and provides the largest response over all possible seismic incident angles. The following results are obtained in the first part of the paper and are valid for any elastic structure and any earthquake design response spectrum: For realistic values of the ratio γ of the design spectra for the two principal components of ground motion the SRSS‐rule estimate lies between 0.79rcr and 1.00rcr, the Simplified‐SRSS‐rule estimate lies between 1.00rcr and 1.26rcr, the 40%‐rule estimate lies between 0.99rcr and 1.25rcr, and the 30%‐rule estimate lies between 0.92rcr and 1.16rcr. None of the multicomponent combination rules account for the increase in response of systems if the vibration periods of the two modes that contribute most to the response to the x‐ and y‐components of ground motion are close to each other. Evaluated in the second part of the paper is the accuracy of the multicomponent combination rules in estimating the response of a range of one‐storey systems with (a) symmetrical plan and (b) unsymmetrical plan, and of two multistorey buildings. The SRSS‐rule underestimates the response by up to 16% and the other three rules overestimate it by up to 18%. Although these errors appear to be smaller than the many approximations inherent in structural design, they can be eliminated with very little additional computation by using an explicit formula for the critical response based on the CQC3 rule. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

2.
It is well-known that the application of the Square-Root-of-Sum-of-Squares (SRSS) method in seismic analysis for combining modal maxima can cause significant errors. Nevertheless, this method continues to be used by the profession for significant buildings. The purpose of this note is to present an improved technique to be used in place of the SRSS method in seismic analysis. A Complete Quadratic Combination (CQC) method is proposed which reduces errors in modal combination in all examples studied. The CQC method degenerates into the SRSS method for systems with well-spaced natural frequencies. Since the CQC method only involves a small increase in numerical effort, it is recommended that the new approach be used as a replacement for the SRSS method in all response spectrum calculations.  相似文献   

3.
An analytical study of the seismic response of typical base isolated structures mounted on rubber bearings is presented. Isolated buildings are liable to have closely spaced lower modes of vibration with small eccentricity between centres of mass and rigidity. The isolated structure is modelled as a rigid deck with lumped masses supported on axially inextensible elastomeric rubber bearings. This simplified system has three degrees of freedom (dof), two translations and one rotation in the horizontal plane. The Green's functions for the displacement response of the 3 dof system are derived for both undamped and damped cases with small and large eccentricities. The small eccentricity case is taken from a specific isolated building, while the large eccentricity case arises from the 5 per cent accidental eccentricity which is required by various seismic codes. An interaction equation for normalized displacements is established for an idealized flat velocity spectrum or hyperbolic acceleration spectrum. An isolated building on rubber bearings would have its fundamental period fall into this range of a design spectrum. Numerical results for the specific building subjected to the El Centro earthquake of 1940 are presented. Both the time history and the response spectrum modal superposition analysis were performed. In the response spectrum analysis, the Complete Quadratic Combination (CQC) showed superiority over the Square Root of the Sum of Squares (SRSS) in estimating maximum responses. It is concluded that the effect of torsional coupling on the transient response of base isolated structures is insignificant, due to the combined effect of the time lag between the maximum translational and torsional responses and the influence of damping in the isolation system which for elastomeric bearings can be as high as 8 to 10 per cent.  相似文献   

4.
It is shown that the method recommended by the Nuclear Regulatory Commission to be used to combine spectral response in the case of closely spaced modes is unnecessarily conservative for certain systems. Closely spaced modes arise in structures from symmetry and where there is a light appendage with a frequency close to one of the natural frequencies of the structure. In the former case, the closely spaced modes do not involve significant interaction between components of the system and the Nuclear Regulatory Commission Guide is reasonable. The latter case, that is when there are closely spaced modes where interaction of components occurs as in the examples of light appendages and torsionally unbalanced buildings, must be treated by consideration of the interacting components. The approach proposed here is that the modes that are not closely spaced be treated by modal analysis and the closely spaced modes, in the case of two closely spaced modes, be treated as a coupled two-degree-of-freedom system. If this is done, the beat phenomenon, the most important characteristic of the interaction, is evident, as is the associated result that the peak response of the coupled system is developed much later than the peak responses obtained in the individual modes. It is shown that the square root of the sum of the squares procedure underestimates, as expected, the response for undamped and very lightly damped systems, but for damped systems the square root of the sum of the squares method can be extremely conservative. It follows that the other methods specified by the Nuclear Regulatory Commission for closely spaced modes must be even more conservative.  相似文献   

5.
目前用于结构抗震设计的反应谱仅能反映峰值反应,无法体现反应值随时间的变化。文中提出一种弹性能量半径演化谱,可反映线性单自由度体系弹性能量(即动能与弹性势能之和)随地震持时的变化,且其峰值近似等于结构峰值位移。文中给出了利用地震动演化功率谱得到该演化谱的方法并进一步发展了一种计算线性多自由度体系地震位移反应的新方法。通过两座框架结构的地震反应计算,将新方法与传统振型组合法及时程分析法的计算结果进行对比,发现对于振型稀疏结构,新方法计算结果与SRSS法接近;而对于振型密集结构,新方法计算结果较CQC法更精确,且避免了CQC法相关系数的复杂计算。  相似文献   

6.
The response-spectrum mode superposition method is widely used for seismic response analyses of linear systems. In using this method, the complete quadratic combination (CQC) is adopted for classically damped linear systems and the complex complete quadratic combination (CCQC) formula is adopted for non-classically damped linear systems. However, in both cases, the calculation of seismic response analyses is very time consuming. In this paper, the variation of the modal correlation coefficients of displacement, velocity and displacement-velocity with frequency and damping ratios of two modes of interest are studied, Moreover, the calculation errors generated by using CQC and square-root-of-the-sum-of-thesquares (SRSS) methods (or CCQC and CSRSS methods) for different damping combinations are compared. In these analyses, some boundary lines for classically and non-classically damped systems are plotted to distinguish the allowed minimum frequency ratio at given geometric mean of the damping ratios of both modes if their relativity is neglected. Furthermore, the simplified method, which is a special mode quadratic combination method considering only relativity of adjacent modes in CQC method and named simplified CQC or partial quadratic combination (PQC) method for classically damped linear system, is proposed to improve computational efficiency, and the criterion for determination of how many correlated modes should be adopted is proposed. Similarly, the simplified CCQC or complex partial quadratic combination (CPQC) method for the non-classically damped linear system and the corresponding criterion are also deduced. Finally, a numerical example is given to illustrate the applicability, computational accuracy and efficiency of the PQC and CPQC methods.  相似文献   

7.
The complete Square‐Root‐of‐Sum‐of‐Squares (c‐SRSS) modal combination rule is presented. It expresses the structural response in terms of uncoupled SDOF modal responses, yet accounting fully for modal response variances and cross‐covariances. Thus, it is an improvement over the classical SRSS rule which neglects contributions from modal cross‐covariances. In the c‐SRSS rule the spectral moments of the structural response are expressed rigorously in terms of the spectral moments of uncoupled modal responses and of some coefficients that can be computed straightforwardly as a function of modal frequencies and damping, without involving the computation of cross‐correlation coefficients between modal responses. An example shows an application of the c‐SRSS rule for structural systems with well separated and closely spaced modal frequencies, subjected to wide‐band and narrow‐band excitations. Comparisons with response calculations using the SRSS and the Complete Quadratic Combination rules are given and discussed in detail. Based on the c‐SRSS rule a response spectrum formulation is introduced to estimate the maximum structural response. An example considering a narrow‐band excitation from the great Mexico earthquake of September 19, 1985, is given and the accuracy of the response spectrum formulation is examined. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
A procedure is presented to determine new modal combination rules (both CQC and SRSS) for non‐classically damped structures. The procedure presented in this paper does not need the solution of any complex eigenvalue problem, in contrast to other methods found in the literature. Thus, the modal combination rules presented here are easily applicable, even by those engineers who are unaccustomed to using complex algebra. Moreover, these formulations show the further advantage of requiring the response spectra only for the target damping ratio value. So the use of approximated formulae, necessary for passing from the response spectrum with the target damping ratio value to other ones, is avoided. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

9.
The peak floor acceleration (PFA) is a critical parameter influencing the performance of non‐structural elements in buildings. This paper develops a response spectrum analysis method based on the complete quadratic combination (CQC) rule to estimate the PFA. The method accounts for the rigid contribution of truncated higher modes and the cross‐correlations between all pairs of modes. The approximation is introduced in the time domain and then formulated in the frequency domain by CQC. Application of the method to a continuous cantilever beam idealizing a building with shear walls is presented and compared with alternative formulations. The proposed method is able to provide a consistent estimation of the PFA along the entire structure, not only where the PFA is principally influenced by the first few flexible modes but also where the PFA is mainly related to the rigid response of the structure, for example, near its base. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
Two mode combination methods are presented for structures with non-classical (non-proportional) damping. They are of the same level of complexity as the well-known SRSS and CQC methods. They require only a single, real-valued participation factor for each mode, a single correlation coefficient, and standard relative displacement response spectra. A base-isolation study shows that the standard SRSS and CQC methods for classically damped structures give under-conservative response predictions, and that the proposed methods give accurate predictions.  相似文献   

11.
An analysis is made of the coupled lateral-torsional response of a partially symmetric single-storey building model to horizontal translatory earthquake excitation. Interest centres on the evaluation of realistic estimates for two equivalent static actions (a shear and a torque) which account for the worst dynamic consequences of torsional unbalance. The results substantiate the findings of previous investigations which have given rise to the belief that strong modal coupling and severely coupled lateral and torsional responses are possible even in nominally symmetric buildings. The response of the model is assumed to be linearly elastic and viscously damped. In a preliminary analysis the equations of motion are solved using the modal analysis technique and the conditions necessary for full modal coupling are ascertained. Then by employing the design spectrum concept, together with suitably conservative procedures for combining the modal maxima, dimensionless forms of the equivalent static actions are evaluated as functions of two independent parameters. The final results are furnished by modified square root of the sum of the squares (SRSS) combination functions which take account of the spacing between the translational and torsional frequencies. Examples at the end of the paper illustrate the practical significance of the work.  相似文献   

12.
在地震来临时,一般假设建筑结构同时受到两个正交水平方向分量与一个竖向分量的地震动作用。双向水平地震效应组合方法用于估计两个正交水平分量地震动同时作用时结构的内力效应。本文主要对我国与美国抗震设计规范中规定使用的平方和开平方根(SRSS)方法与百分比组合方法的有效性进行了评估。首先,对比了我国与美国规范在考虑双向水平地震效应时的适用情况及相关规定上的异同。以一4层中心支撑-框架结构为工程案例,考虑两国规范在适用情况上的规定,设置了三个结构布置方案。对三个结构布置方案建立有限元模型,选取22组地震动,开展了动力时程分析。提出了针对SRSS方法与百分比组合方法的评估指标,基于时程分析结果,发展了双向水平地震效应组合的概率性评估方法。评估结果表明:SRSS方法与百分比组合方法用于平面扭转不规则结构的设计较为保守。在简化组合规则的适用条件上,美国规范对平面扭转不规则结构不进行考虑有一定的合理性。建议我国规范对中心支撑-框架结构中含双向受压柱的设计要求考虑双向水平地震效应组合。  相似文献   

13.
The modal combination rules commonly used in response spectrum analyses implicitly assume that the peak factor associated with the response quantity of interest is equal to the peak factors of the contributing modal responses. In this paper, we examine the validity of this assumption and demonstrate that it causes the modal combination rules to over‐represent the contribution of the higher modes of vibration to the total response and under‐represent the contribution of the lower modes. Consequently, a response‐spectrum‐based analysis can yield a biased estimate for the peak value of a response quantity when two or more well‐separated modal frequencies make significant contributions to the total response. To correct this potential bias in response‐spectrum‐based estimates, we develop a procedure for estimating the peak factors that is suitable to the response spectrum analysis calculations commonly used in the current design practice. Examples are presented to demonstrate the proper use and potential impact of the proposed procedure. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
An Erratum has been published for this article in Earthquake Engng. Struct. Dyn. 2004; 33:1429. Based on structural dynamics theory, the modal pushover analysis (MPA) procedure retains the conceptual simplicity of current procedures with invariant force distribution, now common in structural engineering practice. The MPA procedure for estimating seismic demands is extended to unsymmetric‐plan buildings. In the MPA procedure, the seismic demand due to individual terms in the modal expansion of the effective earthquake forces is determined by non‐linear static analysis using the inertia force distribution for each mode, which for unsymmetric buildings includes two lateral forces and torque at each floor level. These ‘modal’ demands due to the first few terms of the modal expansion are then combined by the CQC rule to obtain an estimate of the total seismic demand for inelastic systems. When applied to elastic systems, the MPA procedure is equivalent to standard response spectrum analysis (RSA). The MPA estimates of seismic demand for torsionally‐stiff and torsionally‐flexible unsymmetric systems are shown to be similarly accurate as they are for the symmetric building; however, the results deteriorate for a torsionally‐similarly‐stiff unsymmetric‐plan system and the ground motion considered because (a) elastic modes are strongly coupled, and (b) roof displacement is underestimated by the CQC modal combination rule (which would also limit accuracy of RSA for linearly elastic systems). Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

15.
The square root of the sum of the squares (SRSS) procedure and its modified forms are often used to obtain seismic design response. The design inputs for such procedures are usually defined in terms of pseudo velocity or acceleration response spectra. Erroneous results have been obtained with these existing SRSS procedures, especially in the calculation of responses where high frequency effects dominate. Here an alternative SRSS procedure is developed using the so-called mode acceleration approach of structural dynamics. The design input in this procedure is defined in terms of relative acceleration and relative velocity spectra. The relative spectra can be related to pseudo spectra. For a given number of modes to be included in the analysis the new SRSS rule proposed here will reduce the error due to the so-called ‘missing mass’ effect and predict a more accurate response value than the rules which use pseudo spectra as input, for systems either with or without dominant high frequency mode effects.  相似文献   

16.
多维地震输入下首都机场航站楼T3反应谱分析   总被引:2,自引:0,他引:2  
首都机场航站楼(T3)下部为混凝土和钢混合框架,上部为复杂的双曲面形双层扁网壳,长960 m,宽780 m,为超大体量大跨度复杂空间钢结构体系。本文采用SAP2000有限元软件,对其进行了单维和多维地震输入下的反应谱分析,研究了单维和多维地震输入对构件内力、节点位移和地震总剪力的影响;研究了多维地震输入下地震响应值与按规范地震组合公式计算所得地震响应值的关系;研究了模态提取数目和质量参与系数的关系,CQC法中参与组合的模态数目与结构地震响应的关系。研究表明,采用振型分解反应谱法时,模态频率越高,对结构内力的影响越小,对于对结构影响较小的高频模态,可以忽略其对结构的影响;根据单维和多维地震反应的对比分析,对超大跨度复杂钢结构宜进行三维地震输入的反应谱分析。另外,本文提出了一种新的地震效应组合方法,可替代多维地震反应分析,并弥补现行规范的不足。  相似文献   

17.
A response spectrum method for stationary random vibration analysis of linear, multi-degree-of-freedom systems is developed. The method is based on the assumption that the input excitation is a wide-band, stationary Gaussian process and the response is stationary. However, it can also be used as a good approximation for the response to a transient stationary Gaussian input with a duration several times longer than the fundamental period of the system. Various response quantities, including the mean-squares of the response and its time derivative, the response mean frequency, and the cumulative distribution and the mean and variance of the peak response are obtained in terms of the ordinates of the mean response spectrum of the input excitation and the modal properties of the system. The formulation includes the cross-correlation between modal responses, which is shown to be significant for modes with closely spaced natural frequencies. The proposed procedure is demonstrated for an example structure that is subjected to an ensemble of earthquake-induced base excitations. Computed results based on the response spectrum method are in close agreement with simulation results obtained from time-history dynamic analysis. The significance of closely spaced modes and the error associated with a conventional method that neglects the modal correlations are also demonstrated.  相似文献   

18.
The responses, re, given by several multicomponent combination rules used in seismic codes for determining peak responses to three ground motion components are evaluated for elastic systems and compared with the critical response rcr; this is defined as the largest response for all possible incident angles of the seismic components and obtained by means of the CQC3‐rule when a principal seismic component is vertical, or the GCQC3‐rule when it departs from the vertical direction. The combination rules examined are the SRSS‐, 30%‐, 40%‐ and IBC‐rules, considering different alternatives for the design horizontal spectrum. Assuming that a principal seismic component is along the vertical direction, the upper and lower bounds of the ratio re/rcr for each combination rule are determined as a function of the spectral intensity ratio of the horizontal seismic components and of the responses to one seismic component acting alternately along each structural axis. Underestimations and overestimations of the critical response are identified for each combination rule and each design spectrum. When a component departs from the vertical direction, the envelopes of the bounds of the ratio re/rcr for each combination rule are calculated, considering all possible values of the spectral intensity ratios. It is shown that the inclination of a principal component with respect to the vertical axis can significantly reduce the values of re/rcr with respect to the case when the component is vertical. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

19.
This investigation is concerned with accidental torsion in buildings resulting from rotational excitation (about a vertical axis) of the building foundations as a result of spatially non-uniform ground motions. Because of this accidental torsion, the displacements and deformations in the structural elements of the building are likely to increase. This increase in response is evaluated using actual base rotational excitations derived from ground motions recorded at the base of 30 buildings during recent California earthquakes. Accidental torsion has the effect of increasing the building displacements, in the mean, by less than 5 per cent for systems that are torsionally stiff or have lateral vibration periods longer than half a second. On the other hand, short period (less than half a second) and torsionally flexible systems may experience significant increases in response due to accidental torsion. Since the dependence between this increase in response and the system parameters is complex, two simplified methods are developed for conveniently estimating this effect of accidental torsion. They are the ‘accidental eccentricity’ and the ‘response spectrum’ method. The computed accidental eccentricities are much smaller than the typical code values, 0.05bb or 0.1b, except for buildings with very long plan dimensions (b ≥ 50 m). Alternatively, by using the response spectrum method the increase in response can be estimated by computing the peak response to each base motion independently and combining the peak values using the SRSS rule.  相似文献   

20.
大跨度钢桁架转换层结构的竖向地震反应分析   总被引:1,自引:1,他引:0  
对某一带钢桁架转换层的复杂高层结构进行了有限元建模,分别采用振型分解反应谱法、时程分析法和《建筑抗震设计规范》(GB50011-2001)的设计反应谱法对大跨高位钢桁架转换层结构的竖向地震响应进行了分析.对采用振型分解反应谱法计算此类结构响应时所要选取的振型数及振型组合方法进行了探讨,并对规范采用10%的重力荷载代表值...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号