首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The evolution of terrestrial planets (the Earth, Venus, Mars, Mercury, and Moon) was proved to have proceeded according to similar scenarios. The primordial crusts of the Earth, Moon, and, perhaps, other terrestrial planets started to develop during the solidification of their global magmatic “oceans”, a process that propagated from below upward due to the difference in the adiabatic gradient and the melting point gradient. Consequently, the lowest melting components were “forced” toward the surfaces of the planets in the process of crystallization differentiation. These primordial crusts are preserved within ancient continents and have largely predetermined their inner structure and composition. Early tectono-magmatic activity at terrestrial planets was related to the ascent of mantle plumes of the first generation, which consisted of mantle material depleted during the development of the primordial crusts. Intermediate evolutionary stages of the Earth, Moon, and other terrestrial planets were marked by an irreversible change related to the origin of the liquid essentially iron cores of these planets. This process induced the ascent of mantle superplumes of the second generation (thermochemical), whose material was enriched in Fe, Ti, incompatible elements, and fluid components. The heads of these superplumes spread laterally at shallower depths and triggered significant transformations of the upper shells of the planets and the gradual replacement of their primordial crusts of continental type by secondary basaltic crusts. The change in the character of the tectono-magmatic activity was associated with modifications in the environment at the surface of the Earth, Mars, and Venus. The origin of thermochemical mantle plumes testifies that the tectono-magmatic process involved then material of principally different type, which had been previously “conserved” at deep portions of the planets. This was possible only if (1) the planetary bodies initially had a heterogeneous inner structure (with an iron core and silicate mantle made up of chondritic material); and (2) the planetary bodies were heated from their peripheral toward central portions due to the passage of a “thermal wave”, with the simultaneous cooling of the outer shells. The examples of the Earth and Moon demonstrate that the passage of such a “wave” through the silicate mantles of the planets was associated with the generation of mantle plumes of the first generation. When the “wave” reached the cores, whose composition was close to the low-temperature Fe + FeS eutectic, these cores started to melt and gave rise to superplumes of the second generation. The “waves” are thought to have been induced by the acceleration of the rotation of these newly formed planets due to the decrease of their radii because of the compaction of their material. When this process was completed, the rotation of the planets stabilized, and the planets entered their second evolutionary stage. It is demonstrated that terrestrial planets are spontaneously evolving systems, whose evolution was accompanied by the irreversible changes in their tectono-magmatic processes. The evolution of most of these planets (except the Earth) is now completed, so that they “dead” planetary bodies.  相似文献   

2.
In the Rio Tinto district of the Iberian Pryrite Belt of South Spain, the weathering of massive sulfide bodies form iron caps, i.e., true gossans and their subsequent alteration and re-sedimentation has resulted in iron terraces, i.e., displaced gossans. To study the stucture and evolution of both types of gossans, magnetic investigations have been carried out with two foci: (1) the characterisation and spatial distribution of magnetic fabrics in different mineralised settings, including massive sulfides, gossans, and terraces, and (2) paleomagnetic dating. Hematite has been identified as the suceptibility carrier in all sites and magnetic fabric investigation of four gossans reveals a vertical variation from top to bottom, with: (1) a horizontal foliation refered to as “mature” fabric in the uppermost part of the primary gossans, (2) highly inclined or vertical foliation interpreted as “immature” fabric between the uppermost and lowermost parts, and (3) a vertical foliation interpreted to be inherited from Hercynian deformation in the lowermost part of the profiles. In terraces, a horizontal foliation dominates and is interpreted to be a “sedimentary” fabric. Rock magnetic studies of gossan samples have identified goethite as the magnetic remanence carrier for the low-temperature component, showing either a single direction close to the present Earth field (PEF) direction or random directions. Maghemite, hematite, and occasionally magnetite are the remanence carriers for the stable high-temperature component that is characterized by non PEF directions with both normal and reversed magnetic polarities. No reliable conclusion can be yet be drawn on the timing of terrace magnetization due to the small number of samples. In gossans, the polarity is reversed in the upper part and normal in the lower part. This vertical distribution with a negative reversal test suggests remanence formation during two distinct periods. Remanence in the upper parts of the gossans is older than in the lower parts, indicating that the alteration proceeded from top to bottom of the profiles. In the upper part, the older age and the horizontal “mature” fabric is interpreted to be a high maturation stage of massive sulfides’ alteration. In the lower part, the age is younger and the inherited “imature” vertical Hercynian fabric indicates a weak maturation stage. These two distinct periods may reflect changes of paleoclimate, erosion, and/or tectonic motion.  相似文献   

3.
After >500 Ma of absence, major Northern Hemisphere glaciations appeared during the Plio‐Pleistocene, with Greenland leading other northern areas. Here, we propose that three major solid‐Earth processes underpinned build‐up of the Greenland ice‐sheet. First, a mantle‐plume pulse, responsible for the North Atlantic Igneous Province at ~60 Ma, regionally thinned the lithosphere. Younger plume pulses led to uplift, which accelerated at ~5 Ma, lifting the parts of the East Greenland margin closest to Iceland to elevations of more than 3 km above sea level. Second, plate‐tectonic reconstruction shows a ~6° northward component of Greenland motion relative to the mantle since ~60 Ma. Third, a concurrent northward rotation of the entire mantle and crust towards the pole, dubbed True Polar Wander (TPW), contributed an additional ~12° change in latitude. These global geodynamic processes preconditioned Greenland to sustain long‐term glaciation, emphasizing the role of solid‐Earth processes in driving long‐term global climatic transitions.  相似文献   

4.
5.
A paleomagnetic study was carried out on Neogene volcanic rocks at 30 sites within the Galatean massif (40.4°N, 31.5°E) to determine possible block rotations due to stress variations. Two phases of rotation could be characterized as the result of Neogene volcanic activity. We suggest that the first stage of rotation was isolated in Early Middle Miocene calc-alkali rocks, with a relative counterclockwise rotation of R ± ΔR = −20.2 ± 9.3° with respect to Eurasia. This accommodates the south-westward rotational collapse of the Western Anatolia peninsula across a pole on the Bitlis suture. In the neotectonic period, on other hand, a relative clockwise rotation of R ± ΔR = 27.3 ± 6.4° with respect to Eurasia is predicted. In contrast to the uniform clockwise rotations, extremely large clockwise rotations up to 264° are restricted in a narrow zone between two dextral faults. We believe that the second stage rotations support the idea of individual microblock rotations due to deformation along the North Anatolian Fault zone.  相似文献   

6.
 Polygonal serpentine (PS) from selected serpentinite were studied using transmission electron microscopy. Fiber axis selected-area electron diffraction (SAED) patterns and electron micrographs reveal orthogonal and monoclinic lizardite polytypes. The PS models by Chisholm (1992) and Baronnet et al. (1994) do not fit SAED measurements. Experimental results are matched with calculated diffraction geometry and intensities, as well as with simulated images, indicating inversion of the tetrahedral layer at sector boundaries. The structural relationships between chrysotile and PS are discussed. Two types of 30-sectored PS are distinguished. In “regular PS” the fiber axis is [100], in “helical PS” the fiber axis points into a [0] direction with large u value (u≫ν). Helical PS can be regarded as a lizardite analogue of helical chrysotile. Received December 6, 1995/Revised, accepted May 8, 1996  相似文献   

7.
Paleomagnetic research of the Neoarchean polyphase Panozero sanukitoid massif of the Fennoscandian Shield was performed. Paleomagnetic studies of three rock associations of the massif was used to obtain the paleomagnetic pole Φ = −10.2°C Λ = 226.1°C, dp = 4.9°, dm = 3.5° ϕm = − 36.1°. Positive tests of the contact zone between rocks of the sanukitoid massif and the country Mesoarchean metavolcanics, as well as overlying Jatulian amygdaloid basalts and diabases of the Segozero structural feature testify to the primary origin of the high-temperature component of rock magnetization obtained. The paleomagnetic pole obtained indicates that during the period from 2.74 to 2.73 Ga the Karelian Craton was located in tropical moderate latitudes of the South Hemisphere and it possibly moved to the tropical latitudes during the Neoarchean.  相似文献   

8.
There has been increasing concern about the lack of involvement by social scientists and humanists in a global change program, although many social scientists are already directly involved in various aspects of research on environmental change, and their research interests are clearly central to a global change research agenda. Based on a historical review, the role of social science disciplines as well as social science institutes in an emerging multidecadal global change program is discussed. Both “plan of action” and “plan of inaction” are suggested to avoid potential pitfalls due to the rush development of a social science program into the existing global climate change problem.  相似文献   

9.
本文对郯庐断裂带东西两侧的莱阳、六安、庐枞和怀宁等中新生代盆地内的中三叠世至早白垩世沉积构造变形进行了古地磁研究。采样区大多数特征磁化方向通过了褶皱检验或反极性检验,从上述地区共获得了10个可靠的中三叠世-早白垩世的古地磁极。该结果与华南地块的视极移曲线对比,可以看出,从中侏罗世以来,郯庐断裂带东西两侧不存在大规模地水平相对位移。但是,断裂带东边的华南地块部分存在15°-25°的逆时针转动。这种转动主要应发生在晚侏罗世,主要与华南、华北地块的碰撞以及太平洋板块的挤压有关。   相似文献   

10.
This study presents the results of both field and laboratory tests that have been undertaken to assess liquefaction susceptibilities of the soils in Kütahya city, located in the well-known seismically active fault zone. Liquefaction potentials of the sub-surface materials at Kütahya city were estimated by using the geological aspect and geotechnical methods such as SPT method of field testing. And, the data obtained have been mapped according to susceptibility and hazard. The susceptibility map indicated “liquefable” and “marginally liquefable” areas in alluvium, and “non-liquefable” areas in Neogene unit for the magnitude of earthquake of M=6.5; whereas, liquefaction hazard map produced by using of liquefaction potential index showed the severity categories from “very low” to “high.” However, a large area in the study area is prone to liquefy according to liquefaction susceptibility map; the large parts of the liquefable horizon are mapped as “low” class of severity by the use of the liquefaction potential index. It can be said that hazard mapping of liquefaction for a given site is crucial than producing liquefaction susceptibility map for estimating the severity. Both the susceptibility and hazard maps should be produced and correlated with each other for planning in an engineering point of view.  相似文献   

11.
The interplay between the emplacement of crustal blocks (e.g. “ALCAPA”, “Tisza”, “Dacia”) and subduction retreat is a key issue for understanding the Miocene tectonic history of the Carpathians. Coeval thrusting and basin formation is linked by transfer zones, such as the Mid-Hungarian fault zone, which seperates ALCAPA from Tisza-Dacia. The presented study provides new kinematic data from this transfer zone. Early Burdigalian (20.5 to ∼18.5 Ma) SE-directed thrusting of the easternmost tip of ALCAPA (Pienides), over Tisza-Dacia is linked to movements along the Mid-Hungarian fault zone and the Periadriatic line, accommodating the lateral extrusion of ALCAPA. Minor Late Burdigalian (∼18.5 to 16 Ma) NE-SW extension is interpreted as related to back-arc extension. Post Burdigalian (post-16 Ma) NE–SW shortening and NW–SE extension correlate with “soft collision” of Tisza-Dacia with the European foreland coupled with southward migration of active subduction. During this stage the Bogdan-Voda and Dragos-Voda faults were kinematically linked to the Mid-Hungarian fault zone. Sinistral transpression (16 to 12 Ma) at the Bogdan-Voda fault was followed by sinistral transtension (12–10 Ma) along the coupled Bogdan-Dragos-Voda fault system. During the transtensional stage left-lateral offset was reduced eastwards by SW trending normal faults, the fault system finally terminating in an extensional horse-tail splay.  相似文献   

12.
An algorithm for measuring horizontal photospheric velocities previously employed to process aerospace images is adapted for problems in solar physics and realized in a computational code. It differs from the standard procedure of local correlation tracking in a special choice of trial areas (“targets”), whose displacements are determined bymaximizing the correlation between the original and various shifted positions of the target. Specifically, an area is chosen as a target in a certain neighborhood of each node of a predefined grid if either the contrast or the entropy of the brightness distribution reaches its maximum in this area. The horizontal velocities obtained are then interpolated to the positions of imaginary “corks” using the Delaunay triangulation and affine transformations specified by the deformation of the obtained triangles at the time step considered. The motion of the corks is represented by their trajectories. A superposition of flows on different scales, from mesogranular to supergranular, can clearly be seen. “Large mesogranules” with sizes of order 15 Mm are revealed. In many cases, these are stellate in shape. Areas of strong convergence of the horizontal flows are detected; this convergence is sometimes accompanied by swirling. Evidence is found for the possible coexistence of convection cells with different circulation directions, so-called l-type and g-type cells.  相似文献   

13.
The characteristic feature of many Upper Neoproterozoic glacial sequences is their “cap carbonates” (CC) resting without visible unconformity upon glaciogenic diamictites. Such an unusual association, peculiar structures and textures, and negative δ13C values (approximately −4 ± 2‰) that are atypical of marine carbonates provoked long debates about the nature of these carbonates, which play an important role in the Snowball Earth hypothesis. According to this hypothesis, the Earth was entirely covered by ice during large-scale glaciations, and CC accumulation was related to the global change in geochemical processes. In this work, we discuss data on the chemical and isotopic (C, O, Sr) compositions of CCs, which overlie glacial sediments of the Nichatka and Bol’shoi Patom formations accumulated in different parts of the Neoproterozoic Patom paleobasin (Central Siberia). High concentrations of Fe (up to 6400 ppm), Mn (2320 ppm), and radiogenic Sr (87Sr/86Sr0 up to 0.7172) established in CCs indicates a strong influence of the continental flow. Extraordinary Snowball Earth conditions are not necessary for the accumulation of these rocks, geochemical and sedimentological properties of which may be explained by the discharge of thawing waters into partly or completely isolated near-glacier basin, their intermittent freezing, and/or washout of “frozen” carbonates from the surface of thawing glaciers. The peculiar thin-laminated texture of CC may be related to seasonal processes of climatic cycles. They were accumulated in the course of general (relatively long-term) depletion of the atmosphere and hydrosphere in 13C, which has nothing to do with the CC formation as a specific type of carbonate sediments. Amplitude and duration of the negative δ13C excursion in carbonates associated with the Lower Vendian glacial sediments (665–635 Ma) are appreciably lower than the negative anomaly in rocks of the Zhuya Group that likely correspond to the Shuram-Vonoka Event (∼560−580 Ma ago), which probably marks the crucial point in the Precambrian deglaciation: mass destabilization of methane hydrates and degradation of the Early Vendian psychrosphere in oceans.  相似文献   

14.
The appearance of coelenterates marks the real beginning of metazoan evolution. It therefore has a prominent position in the origin and evolutionary history of organisms, and is also a pivotal question of evolutionary biology. Punctatus is an extinct, ancient marine animal from the early stage of the Cambrian explosion, occurring at the lowermost Cambrian of both Kuanchuanpu (Ningqiang, Shaanxi) and Maidiping (Emei, Sichuan) areas. Punctatus has been studied for many years since the discovery of its fragments. Systematic and phylogenetic analysis has long been limited because of the rarity of complete specimens. In order to improve research into Punctatus, more than ten thousand globular fossils were recovered by means of “Chemistry Retting”. On the basis of the study of these globular fossils, a series of Punctatus fossils with cone parts and finely preserved soft-tissue mouthparts and fossilized metazoan embryo were recovered. Through research on characteristics such as shape, modality and structure of these fossils symbiotic with Punctatus emeiensis, the author found many possible embryo fossils including the evidence of gastrula-stage animal fossils. The sequence of fetation might have appeared on the corolliform oral region of Punctatus emeiensis. A study of the soft tissues, functional morphology and the sequence of embryo fossils shows evidence that Punctatus resembles coelenterate polyps in systematic classification. Perhaps it also represents an ancestor of the coelenterate with an original tentacle. A comparison with the real “tentacle animal” found in the Chengjiang Fauna, shows that the original tentacle is very tiny and its function range is limited. This reveals the primitive nature of the animal. Although the original tentacle is so small, it does exist, representing the first big step towards the real flexible tentacle with a strong function from the early evolving tentacle. Translated from Journal of Acta Palaeontologica Sinica, 2006, 45(2): 182–194 [译自: 古生物学报]  相似文献   

15.
The “PTVAM” tsunami vulnerability assessment model [Papathoma and Dominey-Howes: 2003, Nat. Hazards Earth Syst. Sci. 3, 733–744; Papathoma et al.: 2003, Nat. Hazards Earth Syst. Sci. 3, 377–389], like all models, requires validation. We use the results from post-tsunami surveys in the Maldives following the December 26, 2004 Indian Ocean tsunami to ‘evaluate’ the appropriateness of the PTVAM attributes to understanding spatial and temporal vulnerability to tsunami damage and loss. We find that some of the PTVAM attributes are significantly important and others moderately important to understanding and assessing vulnerability. Some attributes require further investigation. Based upon the ground-truth data, we make several modifications to the model framework and propose a revised version of the PTVAM (PTVAM 2).  相似文献   

16.
The tectono-magmatic evolution of the Earth and Moon started after the solidification of their magmatic “oceans”, whose in-situ crystallization produced the primordial crusts of the planets, with the composition of these crusts depending on the depths of the “oceans”. A principally important feature of the irreversible evolution of the planetary bodies, regardless of their sizes and proportions of their metallic cores and silicate shells, was a fundamental change in the course of their tectono-magmatic processes during intermediate evolutionary stages. Early in the geological evolution of the Earth and Moon, their magmatic melts were highly magnesian and were derived from mantle sources depleted during the solidification of the magmatic “oceans”; this situation can be described in terms of plume tectonics. Later, geochemically enriched basalts with high concentrations of Fe, Ti, and incompatible elements became widespread. These rocks were typical of Phanerozoic within-plate magmatism. The style of tectonic activity has also changed: plate tectonics became widespread at the Earth, and large depressions (maria) started to develop at the Moon. The latter were characterized by a significantly thinned crust and basaltic magmatism. These events are thought to have been related to mantle superplumes of the second generation (thermochemical), which are produced (Dobretsov et al., 2001) at the boundary between the liquid core and silicate mantle owing to the accumulation of fluid at this interface. Because of their lower density, these superplumes ascended higher than their precursors did, and the spreading of their head parts resulted in active interaction with the superjacent thinned lithosphere and a change in the tectonic regime, with the replacement of the primordial crust by the secondary basaltic one. This change took place at 2.3–2.0 Ga on the Earth and at 4.2–3.9 Ga on the Moon. Analogous scenarios (with small differences) were also likely typical of Mars and Venus, whose vast basaltic plains developed during their second evolutionary stages. The change in the style of tectonic-magmatic activity was associated with important environmental changes on the surfaces of the planets, which gave rise to their secondary atmospheres. The occurrence of a fundamental change in the tectono-magmatic evolution of the planetary bodies with the transition from depleted to geochemically enriched melts implies that these planets were originally heterogeneous and had metal cores and silicate shells enriched in the material of carbonaceous chondrites. The involvement of principally different material (that had never before participated in these processes) in tectono-magmatic processes was possible only if these bodies were heated from their outer to inner levels via the passage of a heating wave (zone) with the associated cooling of the outermost shells. The early evolutionary stages of the planets, when the waves passed through their silicate mantles, were characterized by the of development of super-plumes of the first generation. The metallic cores were the last to melt, and this processes brought about the development of thermochemical super-plumes.  相似文献   

17.
We present paleomagnetic results of Paleocene welded tuffs of the 53–50 Ma Bogopol Group from the northern region (46°N, 137°E) of the Sikhote Alin volcanic belt. Characteristic paleomagnetic directions with high unblocking temperature components above 560 °C were isolated from all the sites. A tilt-corrected mean paleomagnetic direction from the northern region is D=345.8°, I=49.9°, α95=14.6° (N=9). The reliability of the magnetization is ascertained through the presence of normal and reversed polarities. The mean paleomagnetic direction from the northern region of the Sikhote Alin volcanic belt reflects a counterclockwise rotation of 29° from the Paleocene mean paleomagnetic direction expected from its southern region. The counterclockwise rotation of 25° is suggested from the paleomagnetic data of the Kisin Group that underlies the Bogopol Group. These results establish that internal tectonic deformation occurred within the Sikhote Alin volcanic belt over the past 50 Ma. The northern region from 44.6° to 46.0°N in the Sikhote Alin volcanic belt was subjected to counterclockwise rotational motion through 29±17° with respect to the southern region. The tectonic rotation of the northern region is ascribable to relative motion between the Zhuravlevka terrane and the Olginsk–Taukhinsk terranes that compose the basements of the Sikhote Alin volcanic belt.  相似文献   

18.
Timing, Displacement and Growth Pattern of the Altyn Tagh Fault: A Review   总被引:1,自引:0,他引:1  
The Altyn Tagh Fault (ATF) is the longest, lithospheric scale and strike-slip fault in East Asia. In the last three decades, multidisciplinary studies focusing on the timing, displacement of strike-slip and growth mechanics of the ATF have made great progresses. Most studies revealed that the ATF is a sinistral strike-slip and thrust fault, which underwent multiple episodes of activation. The fault is oriented NEE with a length of 1600 km, but the direction, timing of activity and magnitude of its extension eastward are still unclear. The AFT was predominately active during the Mesozoic and Cenozoic, in relation to the Mesozoic collision of the Cimmerian continent (Qiangtang and Lhasa block) and Cenozoic collision of India with Asia. The AFT strike-slipped with a left-lateral displacement of ca. 400 km during the Cenozoic and the displacement were bigger in the western segment and stronger in the early stage of fault activation. The slip-rates in the Quaternary were bigger in the middle segment than in the western and eastern segment. We roughly estimated the Mesozoic displacement as ca. 150-300 km. The latest paleomagnetic data showed that the clockwise vertical-axis rotation did not take place in the huge basins (the Tarim and Qaidam) at both side of ATF during the Cenozoic, but the rotation happened in the small basins along the ATF. This rotation may play an important role on accommodating the tectonic deformation and displacement of the ATF. Even if we have achieved consensus for many issues related to the ATF, some issues still need to be study deeply; such as: (a) the temporal and spatial coupling relationship between the collision of Cimmerian continent with Asia and the history of AFT in the Mesozoic and (b) the tectonic deformation history which records by the sediments of the basins within and at both side of AFT and was constrained by a high-resolution and accurate chronology such as magnetostratigraphy and paleomagnetic data.  相似文献   

19.
Dolostones of the ∼1200 Ma Society Cliffs Formation within the hydrothermal zone surrounding the Nanisivik zinc deposits retain a stable characteristic remanent magnetization (ChRM) on alternating field and thermal step demagnetization. Based on the thermal data and saturation isothermal remanence analyses, the ChRM resides in pseudosingle domain magnetite and hematite. A paleomagnetic fold test favours a post-folding ChRM, and a paleomagnetic contact test, using a Franklin gabbro dike, indicates that the ChRM predates ∼720 Ma. The pole position calculated from the ChRM direction is at 168.2°E, 42.8°N (δp=4.9°, δm=6.8°), giving an age of 1095 ± 10 Ma on the well-defined “Logan Loop” portion of the North American apparent polar wander path. This age is considered to date recrystallization of the dolostone host rocks in the halo around the hydrothermal sulfide deposits. No evidence is found for a postulated Cretaceous remagnetization event in the region. Received: 9 January 1999 / Accepted: 3 March 2000  相似文献   

20.
Spatial pattern analysis of marine terrace elevations from 40–30 thous. years BP was used to reconstruct sea level/geoid surface and geoid parameters during that time. The polar flattening of geodetic ellipsoid was lower than its present value (1/298.81 and 1/298.26) respectively because of glacial-induced mass redistribution. Increase in polar stress occurred during the last 30 thous. years was possibly driven by pertubation brought to the gravitational field by disintegration of polar ice sheets in the Northern hemisphere. But the polar flattening value becomes only half-restored during the last deglacial hemicycle. So repetitive glacial advances during Pleistocene acted as a global “pump” for uncondensed zones at the upper/lower mantle boundary. Dissipation of tidal energy is an order of magnitude less intensive in its Earth's rotation effect. A contribution to the International Geological Correlation Programme Project JGCP — 274 “Coastal Evolution in the Quaternary”.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号