首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Using the ECMWF and NMC analyses, this study documents the composite structures of the African and of the 6–9 day waves. In spite of the fact that the two types of disturbances develop over almost the same area, i.e. Central and West Africa and the tropical Atlantic, during the same season, i.e. summer, in spite of the fact that they have almost the same East-West velocity, i.e. 7–8 degree longitude per day, the structures of the two waves are very different.At 12.5°N, the African wave has an amplitude maximum in the meridional wind component whilst the zonal wind component is almost unperturbed. On the contrary, in the 6–9 day wave, at 12.5°N and also at 12.5°S, the zonal wind component has an amplitude maximum whilst the meridional wind component is very small and there is an amplitude maximum for the meridional wind component at the equator and 20°N.With 9 Figures  相似文献   

2.
Summary  Mesosphere-Stratosphere-Troposphere (MST) Radar wind data for the period June through September 1996 have been examined to study vertical variation of Madden-Jullian Oscillations in wind and eddy kinetic energy (eke) in the normal monsoon season. The domain of analysis in the vertical is from 6 to 20 km with a height resolution of 150 m. Fast-Fourier-Transformation (FFT) has been applied to zonal (u), meridional(v) components of wind to extract the Madden-Jullian oscillations and eke. There are three dominant modes viz., 50–70, 30–40 and 10–20 day periodicity, which contain considerable fraction of energy and show high degree of vertical variability. The peak amplitude of 50–70 day mode in u, 30–40 mode in v and eke were observed at 16–17 km just below the tropopause level. The peak amplitudes of 30–40 day mode in u and 50–70 day mode in v were found in the height region of 13–16 km. To understand the origin and propagation of these waves, wave energy is calculated. The wave energy is higher at tropospheric heights than at lower stratospheric heights indicating that the origin of these waves is in the troposphere, and a part of the energy leaks into the stratosphere. Received September 17, 1998/Revised September 26, 1999  相似文献   

3.
Summary Wave-organized convective features in the southwest Indian Ocean are described using Hovmoller composites of satellite imagery, OLR anomalies and ECMWF precipitable water departures during the southern summer. Westward movement of large convective elements is noted in the 10–20°S latitude band in about half of the years between 1970 and 1984. A study of 47 convective systems from satellite imagery establishes the climatological features, including zonal propagation speeds for maritime systems in the range –2 to –4 m s–1, wavelengths of 25–35° longitude (3,000 km), lifespans of 10–20 days and convective areas of 7–10° longitude (800 km). Transient convective waves over the tropical SW Indian Ocean are slower and more diverse than their northern hemisphere counterparts. Interannual tendencies in the frequency and mode are studied. Wet summers over SE Africa correspond with an increased frequency of westward moving convective systems, whereas in dry summers convective systems tend to be quasi-stationary. INSAT data composites provide additional insight into the convective structure and show that tropical waves penetrated into southern Africa in February 1988. A more quantitative assessment of transient convective waves is provided by Hovmoller composites of OLR anomalies and precipitable water departures. Both display westward moving systems in 1976 and 1984 and highlight the wide variety and mixed mode character of convective waves. A case study is analyzed which illustrates the deepening of a moist, unstable layer coincident with the westward passage of a convective wave.With 12 Figures  相似文献   

4.
Summary Using high altitude rocketsonde data for Thumba (8.5 N, 76.9E) and Balasore (21.5 N, 86.9E) and the stratalert messages for high latitudes for the winter (December–March) 1984–1985, an examination has been made to study the perturbations in the temperature and winds in the tropical middle atmosphere and their linkage with the dynamical events occurring over the high-latitude middle atmosphere during that winter.The results of analysis indicated occurrence of strong cooling in the mesosphere over a period of seven days (5–12 December 1984) and the depth of the cooling layer was 15 km. This incident was followed by a strong warming over a period of seven days (12–19 December 1984) and the depth of the warming layer was 13 km. The major warming event, which occurred over high latitudes during the later part of December and the first week of January, was followed by the cooling in the mesosphere and warming in the stratosphere at Thumba. Also the zonal winds were strong easterly and the meridional winds were northerly in the upper stratosphere and the lower mesosphere over tropics during the same period. Weaker zonal winds/stronger easterly winds were generally noticed to be associated with coolings/warmings over tropics.With 7 Figures  相似文献   

5.
Scale analyses for long wave, zonal ultralong wave (with zonal scale of disturbance L1~104 km and meridional scale L2~103 km) and meridional ultralong wave (L1~103 km, L2~104 km) are carried out and a set of approximate equations suitable for the study of these waves in a dry tropical atmosphere is obtained. Under the condition of sheared basic current, frequency analyses for the equations are carried out. It is found that Rossby waves and gravity waves may be separated for n ≥ l where n is the meridional wave number, whereas for n = 0 and L1~1000 km, the mixed Rossby-gravity wave will appear. Hence it is confirmed that the above results of scale analyses are correct. The consistency be-tween frequency analysis and scale analysis is established.The effect of shear of basic current on the equatorial waves is to change their frequencies and phase velocities and hence their group velocities. It increases the velocity of westward travelling Rossby waves and inertia-gravity and mixed waves, but decelerates the eastward inertia-gravity waves and the Kelvin wave. The recently observed low-frequency equatorial ocean wave may be interpreted as an eastward Kelvin wave in a basic current with shear.  相似文献   

6.
A cloud-resolving model is configured to span the full meridional extent of the tropical atmosphere and have sufficient zonal extent to permit the representation of tropical cloud super-clusters. This is made computationally feasible by the use of anisotropic horizontal grids where one horizontal coordinate direction has over an order of magnitude finer resolution than the other direction. Typically, the meridional direction is chosen to have the coarser resolution (40 km grid spacing) and the zonal direction has enough resolution to ‘permit’ crude convective squall line ascent (1 km grid spacing). The aim was to run in cloud-resolving model (CRM) mode yet still have sufficient meridional resolution and extent to capture the equatorial trapped waves and the Hadley circulation. The large-scale circulation is driven by imposed uniform tropospheric cooling in conjunction with a fixed sea surface temperature distribution. At quasi-equilibrium the flow is characterized by sub-tropical jetstreams, tropical squall line systems that form eastward-propagating super-clusters, tropical depressions and even hurricanes.Two scientific issues are briefly addressed by the simulations: what forces the Hadley circulation and the nature of stratospheric waves appearing in the simulation. It is found that the presence of a meridional sea surface temperature gradient is not sufficient on its own to force a realistic Hadley circulation even though convection communicates the underlying temperature gradient to the atmosphere. It is shown in a simulation that accounts for the observed time and zonal-mean momentum forcing effect of large-scale eddies (originating in middle latitudes) that the heaviest precipitation is concentrated near the equator in association with moisture flux convergence driven by the Trade winds.A spectral analysis of the stratospheric waves found on the equator using the dispersion relation for equatorially-trapped waves provides strong evidence for the existence of a domain-scale Kelvin wave together with eastward and westward propagating inertia-gravity waves. The eastward-propagating stratospheric waves appear to be part of a convectively coupled wave system travelling at about 15 ms−1.  相似文献   

7.
As part of the TROPOZ II large-scale measurement campaign in January 1991 we deployed a Four Laser Airborne Infra Red (FLAIR) tunable diode laser spectrometer on board a Caravelle 116 research aircraft. We report here in situ CO measurements which were obtained with one of the four channels of the FLAIR instrument at a time resolution of either one or two minutes. The flight route of the TROPOZ II campaign followed the Atlantic coasts of North America, the Pacific and Atlantic coasts of South America and the Atlantic coasts of West Africa and Europe. A total of 48 CO vertical profiles extending from the surface to 10.5 km altitude were obtained. In the meridional direction adjacent profiles were separated by less than 10° latitude. Polewards of 30°S the CO distribution was very homogeneous with a mean mixing ratio of 55 ppbv. Between 30°S and the equator, the CO mixing ratio above 8 km altitude ranged up to 130 ppbv and was 20–60 ppbv higher than in the mid free troposhere. Three day backward trajectories for these CO rich airmasses originated over Amazonia. Earlier trace gas measurements as well as circulation studies suggested that these airmasses were of Northern Hemispheric origin and had been rapidly convected to the upper troposphere over central South America. The influence of biomass burning is clearly apparent from the measurements performed at 10°N on the African side of the Atlantic with CO mixing ratios being 100–300% higher than on the Central American side. CO mixing ratios further north ranged from 80 to 130 ppbv in the free troposphere and increased to 130–150 ppbv at lower altitudes.  相似文献   

8.
王林  陈文  黄荣辉 《大气科学》2007,31(3):377-388
利用高分辨率的再分析资料ERA40,分析了纬向平均状态下北半球不同尺度的定常波对西风动量沿经向输送的气候态及其年变化。结果表明,对流层中定常波对西风动量输送最强的区域位于中纬度对流层的中上层,定常波在该区域长年向北输送纬向动量,且输送中心随季节有南北移动和强弱变化。此外,在高纬度地区的对流层中上层以及赤道对流层顶附近还有两个相对较弱的输送中心。前者对西风动量的输送长年向南,其垂直范围从对流层低层一直伸展到平流层下层,中心位置相对固定,强度有明显的季节变化。后者位置也相对固定,但输送方向随季节改变。平流层中定常波对西风动量的输送主要位于中高纬度的平流层中上层,定常波在该区域长年向北输送西风动量,中心位置非常稳定,而强度则随季节变化明显。行星尺度定常波的输送作用与总波动的输送作用非常一致,并在很大程度上决定了波动对动量输送强度的季节变化。天气尺度定常波和10波以上的短波的输送作用主要集中在中纬度对流层的中高层。前者与行星尺度定常波共同决定了该区域内的输送强度,并主导了输送中心的南北移动;后者的作用很小,除夏季外均可以忽略。作者给出的不同尺度定常波对西风动量输送的气候态分布不但可以作为日后研究其年际变化的基础,而且还可以为大气环流模式对大气环流模拟能力的评估提供重要的参考。  相似文献   

9.
Summary In order to improve our understanding of the interannual variability of the 30–50 day oscillations of the northern summer monsoon, we have performed numerical experiments using a 5-level global spectral model (GSM). By intercomparing the GSM simulations of a control summer experiment (E1) and a warm ENSO experiment (E2) we have examined the sensitivity of the low frequency intraseasonal monsoonal modes to changes in the planetary scale component of the monsoon induced by anomalous heating in the equatorial eastern Pacific during a warm ENSO phase.It is found that the anomalous heating in the equatorial eastern Pacific induces circulation changes which correspond to weakening of the time-mean divergent planetary scale circulation in the equatorial western Pacific, weakening of the east-west Walker cell over the western Pacific ocean, weakening of the time-mean Reverse Hadley circulation (RHC) over the summer monsoon region and strengthening of the time-mean divergent circulation and the subtropical jet stream over the eastern Pacific and Atlantic oceans. These changes in the large scale basic flow induced by the anomalous heat source are found to significantly affect the propagation characteristics of the 30–50 day oscillations. It is noticed that the reduction (increase) in the intensity of the time-mean divergent circulation in the equatorial western (eastern) Pacific sectors produces weaker (stronger) low-level convergence as a result of which the amplitude of the eastward propagating 30–50 day divergent wave decreases (increases) in the western (eastern) Pacific sectors in E2. One of the striking aspects is that the eastward propagating equatorial wave arrives over the Indian longitudes more regularly in the warm ENSO experiment (E2). The GSM simulations reveal several small scale east-west cells in the longitudinal belt between 0–130°E in the E1 experiment. On the other hand the intraseasonal oscillations in E2 show fewer east-west cells having longer zonal scales. The stronger suppression of small scale east-west cells in E2 probably accounts for the greater regularity of the 30–50 day oscillations over the Indian longitudes in this case.The interaction between the monsoon RHC and the equatorial 30–50 day waves leads to excitation of northward propagating modes over the Indian subcontinent in both cases. It is found that the zonal wind perturbations migrate northward at a rate of about 0.8° latitude per day in E1 while they have a slightly faster propagation speed of about 1° latitude per day in E2. The low frequency monsoonal modes have smaller amplitude but possess greater regularity in E2 relative to E1. As the wavelet trains of low latitude anomalies progress northward it is found that the giant meridional monsoonal circulation (RHC) undergoes well-defined intraseasonal oscillations. The amplitude of the monsoon RHC oscillations are significantly weaker in E2 as compared to E1. But what is more important is that the RHC is found to oscillate rapidly with a period of 40 days in E1 while it executes slower oscillations of 55 days period in E2. These results support the observational findings of Yasunari (1980) who showed that the cloudiness fluctuations on the 30–60 day time scale over the Indian summer monsoon region are associated with longer periods during El Nino years. The oscillations of the monsoon RHC show an enhancement of the larger scale meridional cells and also a stronger suppression of the smaller scale cells in E2 relative to E1 which seems to account for the slower fluctuations of the monsoon RHC in the warm ENSO experiment. It is also proposed that the periodic arrival of the eastward propagating equatorial wave over the Indian longitudes followed by a stronger inhibition of the smaller meridional scales happen to be the two primary mechanisms that favour steady and regular northward propagation of intraseasonal transients over the Indian subcontinent in the warm ENSO experiment (E2). This study clearly demonstrates that the presence of E1 Nino related summertime SST anomalies and associated convection anomalies in the tropical central and eastern Pacific are favourable criteria for the detection and prediction of low frequency monsoonal modes over India.With 11 Figures  相似文献   

10.
Summary The climatology and variability of summer convection and circulation over the tropical southwest Indian Ocean is investigated using satellite imagery, routine synoptic observations, outgoing longwave radiation (OLR) data, sea surface temperatures (SST) and areal averaged rainfall departures. OLR has a –0.90 correlation with rainfall departures and the OLR minimum (ITCZ) in January and February lies across the 10°S latitude, extending further south near Madagascar. The intensity of ITCZ convection is greatest in the longitudes 20–35°E over northern Zambia and is considerably reduced over the SW Indian Ocean. Spatial correlations are analyzed for standardized departures of OLR, rainfall and SST. The correlations change sign in a coherent fashion, creating a climatic dipole between southern Africa and the SW Indian Ocean. Interannual trends are examined through analysis of January–February zonal and meridional wind indices constructed from significantly correlated variables at Zimbabwe, Madagascar and Mauritius. Circulation variability is dominated by quasi-decadal cycles and a trend of inereasing westerly winds. Zonal wind shear alternates from easterly (barotropic) to westerly and together with SST appears to regulate the frequency and intensity of tropical cyclogenesis. Areally averaged rainfall departures exhibit 6.25 year cycles in NE Madagascar and 12.5 and 18.75 year cycles in SW Madagascar and Zimbabwe, respectively. Summer rainfall and meridional winds in NE Madagascar and Zimbabwe are out of phase and negatively correlated in most summers. The presence of synoptic weather systems is assessed using daily Hovmoller-type satellite imagery composites. Convective structure is dominated by transient waves in the 10°–20°S latitude band, with periods of 15–20 days common. The waves are more prominent in summers with increased easterly shear and contribute to fluctuations in rainfall over SE Africa.With 8 Figures  相似文献   

11.
寒潮期间高空波动与东亚急流的相互作用   总被引:5,自引:9,他引:5  
本文分析了东亚寒潮爆发过程中,高空波动和高空急流的相互作用,得出如下结果:(1)高空波动的动量和热通量输送,使高空急流迅速加速并同时导致急流入口区质量环流的加强.(2)质量环流引起中高纬度对流层顶下沉并使高空锋区加强.(3)对流层顶下沉和高空锋区的加强促使平流层下层的气流沿对流层顶折叠处下伸进入对流层,造成对流层中、上部层结及位涡分布的改变.(4)位涡分布的改变制约了斜压波发展的能量源,致使高空波动减弱.  相似文献   

12.
Summary The MST (Mesosphere-Stratosphere-Tropospher) Radar Facility at Gadanki (13.47° N, 79.18° E), near Tirupati, Andhra Pradesh, India has been operated over seven diurnal cycles—three in November 1994, one in September 1995 and three in January–February 1996 with an objective to study the wind and stability characteristics in the troposphere and lower-stratosphere. The radar-measured height profiles of both zonal (EW) and meridional (NS) wind components and near-simultaneous radiosonde measurements from Madras (13.04° N, 80.7° E) and Bangalore (12.85° N, 77.58° E), the two stations close to either side of the radar site, have been compared and they are found to be in gross agreement within the limitations of the sensing techniques.The results of the study also indicated multiple stable and turbulent structures/stratification throughout the height region from about 4 to 30 km. It is noticed that the stable layers are well marked around the altitudes 4 km, 12 km and the tropopause while the turbulent layers exist a few kilometers below the tropopause. These stable and turbulent layer structures showed good correspondence with the radar-measured wind gradients and also with the radiosonde-derived temperature and wind distributions over Madras. The maximum positive gradient in the signal-tonoise ratio (SNR) which corresponds to radar tropopause is found to coincide with the greater potential temperature gradient and smaller wind gradient. The time evolution of atmospheric stability structure, derived from the SNR, spectral width and vertical wind revealed a diffused tropopause or tropopause weakening which is found to be associated with broader spectral width and larger gradients of winds. This feature is considered to be due either to the instability associated with large vertical gradients in horizontal winds (dynamical instability) or to the instability generated by the convection (convective instability).With 6 Figures  相似文献   

13.
大气定常波传播的运动学特征的时空变化   总被引:1,自引:0,他引:1  
利用时间平均全球大气环流资料,本文计算了纬向平均位涡的南北梯度的时空分布,以及波动水平传播的临界波数n_s,和垂直传播的临界波数K_c的时空分布。由此研究全球大气定常波传播的运动学特征及其年变化。  相似文献   

14.
Summary Using scattering coefficient profiles of the Pinatubo aerosols derived from the observation of skylight polarization and lidar backscattering ratio in Beijing, the radiative effect of Pinatubo aerosols in middle latitudes is assessed by a delta-four-stream radiative transfer model. It is shown that the Pinatubo aerosols significantly change the radiation field. Due to the presence of the volcanic aerosols, the downward short wave flux at the surface decreases with a maximum of 8 W/m2 while the upward short wave flux at the top of the atmosphere increases with a maximum of 6.5 W/m2. The volcanic aerosols are injected into the region bounded below by the tropopause and up by the 25 km level. The upward and downward radiative fluxes are changed in opposite directions at those two boundaries. Downward short wave fluxes below the tropopause are 7–9 W/m2 less than background values and downward long wave fluxes below the tropopause are 2 W/m2 more than background values. Upward short wave fluxes above 25 km level is 5–7 W/m2 more and upward fluxes above there are about 3 W/m2 less.The effects of the Pinatubo aerosols on heating rates are also significant. The maximum increase in the short wave heating rate can be as large as 0.2 K/day at 22 km. The increase in the long wave heating rate is less with a maximum amplitude of about 0.15 K/day. The maximum increase of the total heating rate is about 0.35 K/day, which is comparable with the heating rate caused by the ozone 9.6 µm band in this region.Results of this study are compared with studies of Lacis et al. (1992) and Russell et al. (1993) as well as ERBE measurements. The results generally agree well. Causes for the differences are analyzed.Based on the numerical study, it is also found that the LOWTRAN fresh volcanic model is not representative for the Pinatubo aerosols.With 9 Figures  相似文献   

15.
Results of more than 800 new measurements of methane (CH4) concentrations in the Southern Hemisphere troposphere (34–41° S, 130–150° E) are reported. These were obtained between September 1980 and March 1983 from the surface at Cape Grim, Tasmania, through the middle (3.5–5.5 km) to the upper troposphere (7–10 km). The concentration of CH4 increased throughout the entire troposphere over the measurement period, adding further support to the view that CH4 concentrations are currently increasing on a global scale. For data averaged vertically through the troposphere the rate of increase found was 20 ppbv/yr or 1.3%/yr at December 1981. In the surface CH4 data a seasonal cycle with a peak to peak amplitude of approximately 28 ppbv is seen, with the minimum concentration occurring in March and the maximum in September–October. A cycle with the same phase as that seen at the surface, but with a significantly decreased amplitude, is apparent in the mid troposphere but no cycle is detected in the upper tropospheric data. The phase and amplitude of the cycle are qualitatively in agreement with the concept that the major sink for methane is oxidation by hydroxyl radicals. Also presented is evidence of a positive vertical gradient in methane, with a suggestion that the magnitude of this gradient has changed over the period of measurements.  相似文献   

16.
Summary Based on analysis of ECMWF data (1981–1987) and numerical simulations using a general circulation model (GCM), a quasi-two-week (10–20 day) oscillation in the tropical atmosphere is studied in this paper. It is shown that the kinetic energy of the quasi-two-week oscillation is larger than that of the intraseasonal oscillation, and is another important low-frequency system in the tropical atmosphere. By comparing it with the intraseasonal oscillation, some obvious differences can be found. For example, the zonal scale of the quasi-two-week oscillation is dominated by perturbations with wavenumber 2–4; its vertical structure mainly shows barotropic features; the zonal propagation is basically westward; and its meridional and zonal components the same size.With 10 Figures  相似文献   

17.
Summary Lower tropospheric (1000–500) hPa kinetic energy (KE), temporal variations of KE and nonlinear KE transfer of rotational and divergent flows and energy conversion between them, partitioning further into stationary and transient components in the Fourier spectral domain and the mechanism for the evolution of significant transient waves for the month July 1979 in the latitudinal belt 10° S–30° N are studied.Divergent zonal and eddy KE show their maxima at the lowest level 1000 hPa. Lower tropospheric monsoon motion provides a non-divergent level close to 850 hPa. The daily flow patterns bear little resemblence to the climatology over tropics at 500 hPa. Although the transient mode of synoptic scale waves is stronger than that of planetary scale waves they are comparable. Analysis of energetics over global tropics can get signature of transient activities embedded in the large scale system. Summer momentum flux in the lower troposphere is essentially associated with stationary planetary and transient synoptic scale waves. Waves 1, 3 and 6 are the most preferred transient waves. Divergent to rotational KE conversion is the most dominating mechanism for the maintenance of planetary and synoptic scale waves. All categories of waves contribute towards the maintenance of zonal flows. The primary source of energy for transient synoptic scale waves is the transient divergent rotational KE transfer whereas the interaction between zonal stationary and transient wave is likely to be secondary source. Transient KE and all transient interactions, stationary KE and all stationary interactions are found to be strongest at 500 hPa and 850 hPa respectively. Growth and decay of transient waves 1 and 3 are mainly controlled by divergent-rotational KE conversions whereas those of transient wave 6 are controlled by KE transfer due to zonal-wave interaction.With 13 Figures  相似文献   

18.
Wind characteristics in the lowest 340 m (agl) of the atmospheric boundary layer at Pune (18°32N, 73°51E, 559 m ASL) have been investigated using the pilot balloon wind observations obtained during the summer monsoon seasons of 1976, 1979 and 1980. Variations in the zonal and meridional components of wind at the surface, 40, 150 and 340 m (agl) have been described. Frequency distribution of the zonal component showed an unimodal character at the surface, which gradually approached a multimodal character at 340 m. The distribution pattern of the wind components was, by and large, normal. Spectral analysis of the wind components showed that the spectral energy was predominantly shared by 5–7 and 2–3 day periods.  相似文献   

19.
When a broad ocean current encounters a large-scale topographic feature, standing Rossby wave patterns can be generated. Short Rossby waves with a scale Li = √ Q/β (Q is the speed of the approaching flow; β is the meridional gradient of f) are generated east of the topography. If the zonal scale of the topography, L, is planetary, long standing Rossby waves can be generated west of the topography, when the current has a meridional component. The long waves focus the disturbance zonally and produce alternating regions of intensified or reduced zonal flow. The meridional scale that characterizes these zonal bands is the intermediate scales, L = Li2/3L1/3. When the meridional topographic scale is comparable to L, the amplitude of the long-wave disturbance is dominant. Using multiple-scale methods to exploit the scale gap between the planetary, intermediate and Rossby wave scales, the topographically induced pressure and velocity fields due to a zonal ridge are obtained. When the planetary-scale flow field is directed poleward, a westward counterflow can occur along the poleward flank of the ridge. The meridional scales of these topographically induced flows are comparable to those observed along the Indian-Antarctic Ridge by Callahan (1971).  相似文献   

20.
北半球准定常行星波气候平均态的资料分析和数值模拟   总被引:2,自引:1,他引:1  
杨蕾  陈文  黄荣辉 《大气科学》2006,30(3):361-376
利用NCEP/NCAR再分析资料和大气环流模式(CCSR/NIES AGCM Ver 5.6),对北半球准定常行星波的气候平均态分布进行分析和模拟.再分析资料分析的结果表明:北半球冬季,准定常行星波沿两支波导向上传播,其中一支在对流层上层转向中低纬度传播,另外一支折向高纬度,通过极地波导上传到平流层.其中,1波和2波可以上传到平流层,因而其振幅分布除在中低纬的对流层上层出现一个次大值外,在高纬度平流层中上层会出现一个最大值,3波则主要限制在对流层,其振幅分布除在副热带对流层上层出现一个次大值外,最大值出现在中纬度对流层上层.北半球夏季,整个平流层为东风环流,极地波导不存在,行星波不能上传到平流层,在对流层活动也较弱,1波、2波、3波的传播情况大致相似,表现为在对流层上层由中纬度向赤道地区的传播.相应的振幅分布是,对1波和2波而言,最大值出现在中低纬对流层顶附近,同时在中高纬对流层上层出现一个次大值,而3波的振幅分布正好相反,最大值出现在中高纬对流层上层,次大值则在中低纬对流层顶附近.利用大气环流模式进行的数值模拟表明,模式可以比较好地模拟冬夏季准定常行星波的传播路径,但模拟的北半球冬季沿极地波导向平流层的传播明显偏弱,其结果是对1波、2波而言,高纬度平流层中上层的振幅最大值明显小于再分析资料的数值.文中还讨论了数值模拟与资料分析中行星波的差异可能对大气环流模拟的影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号