首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
地震损失预测评估中的易损性分析   总被引:16,自引:1,他引:15  
陈Yong  陈棋福 《中国地震》1999,15(2):97-105
代表着地震易损性中最坏情形的哥斯达黎加土坯房和中国老旧民房有着几乎相同的易损性,而表示地震易损性中最好情形的哥斯达黎加高质量楼房和中国钢筋混泥土结构楼房,由于采用了现代设计和建筑技术,也有着相同的易损性。陈Yong等提出的宏观经济易损性位于常规易损性分类清单中的这两种极端情况之间,因为宏观经济损失是各种建筑设施损失的总和,故宏观经济易损性差于最好的建筑情况,而优于最坏的情况。采用宏观经济易损性的地  相似文献   

2.
结合天然地震推导水库地震的建筑物易损性   总被引:1,自引:1,他引:0       下载免费PDF全文
通过类比的方法,选择有现场调查资料并有建筑物破坏比结果的天然地震,基于地震中建筑物震害表现的一致性,以震级、震源深度和极震区烈度为标准,聚类得到与水库地震震害相似的天然地震震例。考虑到宏观经济水平与地震经济损失已有的统计模型,采用了人口密度、人均GDP和三产比例等3个宏观经济指标来反映不同地区的建筑物总体抗震水平,以加权海明(Hamming)距离来定义已知矩阵与目标矩阵的近似度,最终的加权结果即为待求地区的易损性矩阵。通过实际检验,所得的建筑物易损性关系能够反映水库地震的破坏特点,较中强天然地震的易损性要高。这种工作思路也可以用于水库地震其它方面的研究中  相似文献   

3.
李文俊    曲哲    孙海林  熊政辉   《世界地震工程》2021,(4):109-121
房屋建筑的地震易损性是地震损失评估和地震巨灾风险模型的基础。作为房屋建筑的重要组成部分,各类非结构构件的损失在现有的易损性模型中并未得到足够重视。本文以一栋典型钢筋混凝土框架结构教学楼为对象,通过将房屋建筑中的各类构件划分为具有不同地震损伤特性和损失后果的易损性组,考察建筑内的损失分布和非结构损失对房屋建筑地震易损性的影响。分析结果表明:由于许多非结构构件在中小地震作用下即可能发生较严重的破坏,房屋建筑在中小地震下的易损性主要受非结构损失控制;随着地震动强度等级的不断提高,结构损伤渐趋严重,结构损失对整体建筑易损性的影响不断增大;在结构进入震后不可修状态之前,建筑不同楼层的损失分布是评估建筑地震损失时不可忽略的因素。  相似文献   

4.
地震作用下结构的易损性分析是地震灾害损失预测方法的重要组成部分。本文针对多层砌体房屋结构、排架结构和多层钢筋混凝土结构等3种城市典型建筑,首先给出了该类单体建筑的地震结构易损性分析方法,然后对群体建筑的地震易损性分析方法,以及群体建筑的易损性分类方法进行了探讨,为城市典型建筑的地震灾害损失预测和评估提供参考,并为宁波市抗震防灾规划的地震损失预测提供基础。  相似文献   

5.
在地震危险性分析及建筑物和生命等的易损性分析的基础上,预测未来地震造成自然和人工建筑环境的灾害及其损失,这是地震灾害及其损失研究的基本思路。本文基于宏观经济指标的地震灾害损失预测模型,以2000年全国不变价格计算的人均GDP作为地震宏观易损性的分类指标,以某市(A、B县)为例进行未来15年地震灾害损失预测。其预测结果包括两大部分:县行政区预测结果和网格预测结果,其预测结果可以为确定地震重点监视防御区提供参考依据。  相似文献   

6.
城市典型建筑的地震损失预测方法Ⅰ: 结构易损性分析   总被引:2,自引:1,他引:1  
地震作用下结构的易损性分析是地震灾害损失预测方法的重要组成部分。本文针对多层砌体房屋结构、排架结构和多层钢筋混凝土结构等3种城市典型建筑,首先给出了该类单体建筑的地震结构易损性分析方法,然后对群体建筑的地震易损性分析方法,以及群体建筑的易损性分类方法进行了探讨,为城市典型建筑的地震灾害损失预测和评估提供参考,并为宁波市抗震防灾规划的地震损失预测提供基础。  相似文献   

7.
For the insurance and reinsurance industries, earthquake loss estimation is crucial not only to adequately price its product but also to manage the accumulation risk in the face of the ever-increasing exposure in highly seismic regions. Changes in the built environment and a continuously evolving earthquake science make it a necessity for the industry to constantly refine earthquake loss estimation models. In particular, it has been recognized for a long time that the vulnerability of buildings to ground shaking is a key parameter in any earthquake risk model. Current methods tend either to rely on the limited historical damage and loss data or on the numerical simulation of the response of individual buildings to the ground-shaking produced by earthquakes. Although both methods have their advantages and pitfalls, we are proposing here a simple solution, using transparent input data, that can be realistically used for the needs of the insurance and reinsurance industry, whether detailed information about the insured structures is available or not. The resulting product is known as GEVES (Global Earthquake Vulnerability Estimation System). It is primarily intended for evaluating the mean damage ratio (MDR) suffered by a portfolio of buildings classified by use, under the action of a given earthquake scenario (i.e. an earthquake of given size at a given distance from the portfolio of buildings). A key assumption was that macroseismic intensity rather than spectral displacement would be the basis of loss estimation. The paper describes the model with emphasis on its structure and the justification for the assumptions made. In addition to a new set of earthquake vulnerability functions, the paper also provides recommendations on some aspects of the earthquake hazard, in particular about how to define macroseismic intensity at the site of interest, for a given earthquake scenario. This paper also discusses validation of the GEVES model against calculated vulnerability approaches, and the treatment of uncertainty within the model.  相似文献   

8.
汶川地震中极震区砌体结构教学楼典型震害分析   总被引:2,自引:3,他引:2  
汶川8.0级大地震造成了巨大的损失,大量学校建筑遭受严重破坏,其中大部分是砌体结构教学楼。在此次地震中,极震区北川县擂鼓镇城区内的初中、小学和幼儿园等砌体结构教学楼的破坏极其严重,结构特征和震害现象十分典型。本文详细地介绍了擂鼓镇城区内5栋砌体结构教学楼的结构构造特点和震害现象特征,同时,总结归纳了砌体结构教学楼的典型震害并分析了震害原因;讨论并分析了建筑含墙率、开间大小、高宽比等因素对建筑的抗震能力的影响;通过结构易损性分析方法对教学楼在不同烈度下的破坏状态进行了计算,并与实际震害进行了对比分析;最后,为灾后教学楼的重建工作提出了建议。  相似文献   

9.
村镇房屋是历次震害中最薄弱的建筑,提高其抗震性能刻不容缓。本文依据《中国地震动参数区划图》(GB18306-2015)的地震动峰值加速度、反应谱特征周期和地震烈度的取值,以陕南6县18镇54个自然村的1161栋村镇房屋为抽样样本,完成样本的结构类型、结构类型的破坏比及破坏损失比、场地条件、抗震概念设计、村民的抗震知识和抗震防灾意识等现状的统计分析。结果表明:陕南村镇房屋的结构类型有生土结构、木结构、砖木结构、砖混结构和框架结构,其中砖混结构是其主要的抗震结构类型;砖木结构、砖混结构和框架结构在不同地震烈度影响下的破坏比有差异,而破坏损失比相同;陕南村镇房屋的场地条件变化复杂,抗震概念设计存在缺陷且村民的抗震知识和抗震防灾意识淡薄,亟待提高。  相似文献   

10.
汶川地震区砖砌体住宅房屋易损性研究   总被引:1,自引:0,他引:1  
砖砌体住宅房屋占城乡建筑的80%以上,它的易损性分析是进行地震灾害损失预测的重要组成部分。文中介绍了砖砌体住宅房屋易损性的分析方法及存在的问题,充分利用汶川地震区砖砌体住宅房屋的震害调查数据,考虑到建筑物数据的离散性,分别给出了城区砖砌体住宅房屋、农村砖砌体住宅房屋两类建筑物群体的破坏状态易损性曲线包络(最大、平均、最小值),从而给出了其破坏概率矩阵,并给出了每个破坏概率的偏差值。  相似文献   

11.
In June 2000, two Mw6.5 earthquakes occurred within a 4-day interval in the largest agricultural region of Iceland causing substantial damage and no loss of life. The distance between the earthquake epicentres and the fault rupture was approximately 15 km. Nearly 5000 low-rise residential buildings were affected, some of which were located between the faults and exposed to strong ground motion from both events. The post-earthquakes damage and repair costs for every residential building in the epicentral region were assessed for insurance purposes. The database is detailed and complete for the whole region and represents one of the best quality post-earthquake vulnerability datasets used for seismic loss estimation. Nonetheless, the construction of vulnerability curves from this database is hampered by the fact that the loss values represent the cumulative damage from two sequential earthquakes in some areas, and single earthquakes in others. A novel methodology based on beta regression is proposed here in order to define the geographical limits on areas where buildings sustained cumulative damage and predict the seismic losses for future sequence of events in each area. The results show that the average building loss in areas affected by a single event is below 10% of the building replacement value, whilst this increases to an average of 25% in areas affected by the two earthquakes. The proposed methodology can be used to empirically assess the vulnerability in other areas which experienced sequence of events such as Emilia-Romagna (Italy) in 2012.  相似文献   

12.
Models capable of estimating losses in future earthquakes are of fundamental importance for emergency planners, for the insurance and reinsurance industries, and for code drafters. Constructing a loss model for a city, region or country involves compiling databases of earthquake activity, ground conditions, attenuation equations, building stock and infrastructure exposure, and vulnerability characteristics of the exposed inventory, all of which have large associated uncertainties. Many of these uncertainties can be classified as epistemic, implying—at least in theory—that they can be reduced by acquiring additional data or improved understanding of the physical processes. The effort and cost involved in refining the definition of each component of a loss model can be very large, for which reason it is useful to identify the relative impact on the calculated losses due to variations in these components. A mechanically sound displacement‐based approach to loss estimation is applied to a test case of buildings along the northern side of the Sea of Marmara in Turkey. Systematic variations of the parameters defining the demand (ground motion) and the capacity (vulnerability) are used to identify the relative impacts on the resulting losses, from which it is found that the influence of the epistemic uncertainty in the capacity is larger than that of the demand for a single earthquake scenario. Thus, the importance of earthquake loss models which allow the capacity parameters to be customized to the study area under consideration is highlighted. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

13.
The degree and distribution of damage to buildings subjected to earthquakes is a concern of the Chinese Government and the public.Seismic damage data indicates that seismic capacities of different types of building structures in various regions throughout mainland of China are different.Furthermore,the seismic capacities of the same type of structure in different regions may vary.The contributions of this research are summarized as follows:1)Vulnerability matrices and earthquake damage matrices of masonry structures in mainland of China were chosen as research samples.The aim was to analyze the differences in seismic capacities of sample matrices and to present general rules for categorizing seismic resistance.2)Curves relating the percentage of damaged masonry structures with different seismic resistances subjected to seismic demand in different regions of seismic intensity(VI to X)have been developed.3)A method has been proposed to build vulnerability matrices of masonry structures.The damage ratio for masonry structures under high-intensity events such as the Ms 6.1 Panzhihua earthquake in Sichuan province on 30 August2008,was calculated to verify the applicability of this method.This research offers a significant theoretical basis for predicting seismic damage and direct loss assessment of groups of buildings,as well as for earthquake disaster insurance.  相似文献   

14.
本文提出一种评估同一地区不同类型结构的抗震投入产出效益的新指标,即结构价值损失比率。利用"5·12"汶川地震后对甘肃陇南的学校、住宅、办公、医院和生命线工程等9类建筑物的调查统计结果,研究了震害等级、经济损失与结构抗震初始投入之间的关系,建立了结构价值损失比率与结构初始投入之间的关系和高烈度区危房率与地震地面运动峰值之间的关系。对比分析了土-木组合、砖-木组合、砖砌体结构、非隔震框架结构和基础隔震结构等不同类型结构的抗震性能,并与实际鉴定的震害等级相比较。利用结构价值损失比率,初步说明了采用隔震新技术结构的减灾效益。  相似文献   

15.
地震是造成我国巨大人员伤亡的主要灾害之一,震后人员伤亡的快速评估对于应急抗震救援工作具有重要指导意义。通过分析影响地震灾害人员伤亡的主要因素,调查统计不同使用功能建筑物中人员密度、不同时间段人员在室率及不同结构破坏状态下的伤亡率,建立地震人员伤亡计算模型。基于实验数据所得的地震易损性曲线数据库对建筑物进行结构易损性分析,用研发的中国地震灾害损失评估系统软件(CEDLAS),对西安市灞桥区进行震后人员伤亡评估,并与汶川地震实际震害数据和其他经验模型对比,验证了该理论方法的可行性及合理性,为震后政府启动地震应急预案和组织开展抗震救灾工作提供参考。  相似文献   

16.
Severe damage to suspended ceilings of metal grids and lay-in panels was observed in public buildings during the 2013 Ms7.0 Lushan earthquake in China. Over the past several years, suspended ceilings have been widely used practice in public buildings throughout China, including government offices, schools and hospitals. To investigate the damage mechanism of suspended ceilings, a series of three-dimensional shake table tests was conducted to reproduce the observed damage. A full-scale reinforced concrete frame was constructed as the testing frame for the ceiling, which was single-story and infilled with brick masonry walls to represent the local construction of low-rise buildings. In general, the ceiling in the tests exhibited similar damage phenomena as the field observations, such as higher vulnerability of perimeter elements and extensive damage to the cross runners. However, it exhibited lower fragility in terms of peak ground/roof accelerations at the initiation of damage. Further investigations are needed to clarify the reasons for this behavior.  相似文献   

17.
城市抗震防灾规划中建筑物易损性评价方法的研究   总被引:7,自引:0,他引:7  
基于功能和后果的抗震设防理念,提出了城市建筑物的分类方法并根据不同类别采取不同抗震易损性评价方法,其中包括应用能力谱的理论易损性分析方法和快速群体震害预测方法等。根据这些方法和泉州市规划区内的房屋调查资料,对泉州市的房屋进行了震害预测,并通过泉州市建筑物地震易损性分析的结果,提出了针对性的抗震减灾策略。所发展的易损性评价方法和对策措施对其他城市编制抗震防灾规划也具有一定参考价值。  相似文献   

18.
The degree and distribution of damage to buildings subjected to earthquakes is a concern of the Chinese Government and the public. Seismic damage data indicates that seismic capacities of different types of building structures in various regions throughout mainland China are different. Furthermore, the seismic capacities of the same type of structure in different regions may vary. The contributions of this research are summarized as follows: 1) Vulnerability matrices and earthquake damage matrices of masonry structures in mainland China were chosen as research samples. The aim was to analyze the differences in seismic capacities of sample matrices and to present general rules for categorizing seismic resistance. 2) Curves relating the percentage of damaged masonry structures with different seismic resistances subjected to seismic demand in different regions of seismic intensity (VI to X) have been developed. 3) A method has been proposed to build vulnerability matrices of masonry structures. The damage ratio for masonry structures under high-intensity events such as the Ms 6.1 Panzhihua earthquake in Sichuan province on 30 August 2008, was calculated to verify the applicability of this method. This research offers a significant theoretical basis for predicting seismic damage and direct loss assessment of groups of buildings, as well as for earthquake disaster insurance.  相似文献   

19.
Seismic behavior of damaged buildings may be expressed as a function of their REsidual Capacity (REC), which is a measure of seismic capacity, reduced by damage. REC can be interpreted as the median value of collapse vulnerability curves. Its variation owing to damage is a useful indication of increased building vulnerability. REC reduction, indicating the lowering of seismic safety after an earthquake (performance loss, PL), represents an effective index for assessing the need of seismic repair/strengthening after earthquakes. The study investigates the applicability of a pushover‐based method in the analysis of damaged structures for the case of existing under‐designed RC buildings. The paper presents a systematization of the procedure in an assessment framework that applies the capacity spectrum method based on inelastic demand spectra; furthermore, the vulnerability variation of a real building is investigated with a detailed case study. The behavior of damaged buildings is simulated with pushover analysis through suitable modification of plastic hinges (in terms of stiffness, strength and residual drift) for damaged elements. The modification of plastic hinges has been calibrated in tests on nonconforming columns. The case study analysis evidenced that, for minor or moderate damages, the original structural displacement capacity was only slightly influenced, but the ductility capacity was significantly reduced (up to 40%) because of the increased structure deformability. This implied performance loss in the range 10%–20%. For severe damages the PL ranged between 41% and 56%. Local mechanism types exhibit PL nearly double with respect to global mechanism types. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
On March 4, 1977, an earthquake with a moment magnitude M w 7.4 at a hypocentral depth of 94 km hit the Vrancea region (Romania). In Bucharest alone, the earthquake caused severe damage to 33,000 buildings while 1,424 people were killed. Under the umbrella of the SAFER project, the city of Bucharest, being one of the larger European cities at risk, was chosen as a test bed for the estimation of damage and connected losses in case of a future large magnitude earthquake in the Vrancea area. For the conduct of these purely deterministic damage and loss computations, the open-source software SELENA is applied. In order to represent a large event in the Vrancea region, a set of deterministic scenarios were defined by combining ranges of focal parameters, i.e., magnitude, focal depth, and epicentral location. Ground motion values are computed by consideration of different ground motion prediction equations that are believed to represent earthquake attenuation effects in the region. Variations in damage and loss estimates are investigated through considering different sets of building vulnerability curves (provided by HAZUS-MH and various European authors) to characterize the damaging behavior of prevalent building typologies in the city of Bucharest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号