首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glaucophane‐bearing ultrahigh pressure (UHP) eclogites from the western Dabieshan terrane consist of garnet, omphacite, glaucophane, kyanite, epidote, phengite, quartz/coesite and rutile with or without talc and paragonite. Some garnet porphyroblasts exhibit a core–mantle zoning profile with slight increase in pyrope content and minor or slight decrease in grossular and a mantle–rim zoning profile characterized by a pronounced increase in pyrope and rapid decrease in grossular. Omphacite is usually zoned with a core–rim decrease in j(o) [=Na/(Ca + Na)]. Glaucophane occurs as porphyroblasts in some samples and contains inclusions of garnet, omphacite and epidote. Pseudosections calculated in the NCKMnFMASHO system for five representative samples, combined with petrographic observations suggest that the UHP eclogites record four stages of metamorphism. (i) The prograde stage, on the basis of modelling of garnet zoning and inclusions in garnet, involves PT vectors dominated by heating with a slight increase in pressure, suggesting an early slow subduction process, and PT vectors dominated by a pronounced increase in pressure and slight heating, pointing to a late fast subduction process. The prograde metamorphism is predominated by dehydration of glaucophane and, to a lesser extent, chlorite, epidote and paragonite, releasing ~27 wt% water that was bound in the hydrous minerals. (ii) The peak stage is represented by garnet rim compositions with maximum pyrope and minimum grossular contents, and PT conditions of 28.2–31.8 kbar and 605–613 °C, with the modelled peak‐stage mineral assemblage mostly involving garnet + omphacite + lawsonite + talc + phengite + coesite ± glaucophane ± kyanite. (iii) The early decompression stage is characterized by dehydration of lawsonite, releasing ~70–90 wt% water bound in the peak mineral assemblages, which results in the growth of glaucophane, j(o) decrease in omphacite and formation of epidote. And, (iv) The late retrograde stage is characterized by the mineral assemblage of hornblendic amphibole + epidote + albite/oligoclase + quartz developed in the margins or strongly foliated domains of eclogite blocks due to fluid infiltration at P–T conditions of 5–10 kbar and 500–580 °C. The proposed metamorphic stages for the UHP eclogites are consistent with the petrological observations, but considerably different from those presented in the previous studies.  相似文献   

2.
The (ultra‐) high pressure eclogites from Sumdo area, recorded the subduction and exhumation process of the Paleo‐Tethys oceanic crust. Previous studies showed that there are significant differences in temperature and pressure conditions of the eclogites in four regions, e.g. Sumdo, Xindaduo, Bailang and Jilang. The cause of this differences remains unclear. Studying the peak metamorphic conditions and P‐T path of Sumdo eclogite is of great significance to reveal the subduction and exhumation mechanism of Paleo‐Tethys ocean. In this paper, we choose the Jilang eclogite as an example, which has a mineral assemblage of garnet, omphacite, phengite, hornblende, rutile, epidote, quartz and symplectit (diopside + amphibole + plagioclase), and minor biotite. Garnet has a “dirty” core with abundant mineral inclusions and a “clear” rim with less mineral inclusions, showing typical growth zoning. From the core to the rim, Prp content in garnet increasing while Grs content decreasing. P‐T pseudosection calculated with Domino constrained peak P‐T conditions of Jilang eclogite as 563°C, 2.4 GPa. Combined with petrographical observation, four stages of metamorphism have been recognized: (1) early stage prograde metamorphism represent by the core of garnet and mineral inclusions therein; (2) peak metamorphism represent by the rim of garnet, omphacite, phengite, glaucophane, rutile and quartz; (3) first stage of retrograde metamorphism characterized by decomposition of lawsonite to zoisite; (4) second stage of retrograde metamorphism characterized by symplectites surrounding omphacite and cornona rimmed garnet. Jilang eclogite shows a clockwise P‐T path, and near isothermal decompression during exhumation. It differs from eclogites in other area, which are hosted by garnet‐bearing mica schists or serpentinites. Jilang eclogites are enclosed in metamorphic quartzites, with relatively low P‐T conditions. We infer that the Jilang eclogite was derived from the shallow part of the subduction zone, and was exhumated by low density materials in the subduction channel.  相似文献   

3.
Sixty-nine analyses are given for NH4 in minerals of metamorphic and granitic rocks mostly from the Ryoke belt, Japan. The distribution of NH4 in coexisting minerals is quite systematic, suggesting that NH4 is one of the stable geochemical components in high temperature processes.Biotite has the highest content of NH4, followed by muscovite, K-feldspar and plagioclase. Pure quartz is almost free from NH4. Calcic plagioclase contains less NH4 than does sodic plagioclase. The partition coefficients DPlBi, DKfBi and DKfBi are, on the average, 0.11, 0.38 and 0.43 respectively. The fractionation of NH4 in these minerals is quite similar to that of Rb but much smaller than that of Cs.Distribution of NH4 as well as those of Rb and Cs appears to be explained by its ionic radius and the shortest cation-O distances in alkali positions of minerals.  相似文献   

4.
The isotopic composition of Sr has been measured in brine samples from the Upper Jurassic Smackover Formation in southern Arkansas; 87Sr86Sr ratios range from 0.7071 to 0.7101. With one exception, the 32 Smackover brines contain Sr which is significantly more radiogenic than the Sr in Late Jurassic sea water, indicating sizable Sr contributions from detrital sources. Isotopic analyses of core samples from rock units associated with the brines and regional stratigraphic relationships suggest that the radiogenic Sr was released from detrital minerals in Bossier shale to interstitial fluids expelled from the underlying Louann Salt in the North Louisiana salt basin. These fluids migrated through the Bossier Formation updip to the South Arkansas shelf, where they entered the upper Smackover carbonate grainstone. The radiogenic fluids mixed with Sr-rich interstitial marine waters that had the isotopic composition of Late Jurassic sea water; mixing in variable proportions resulted in the random distribution pattern of variable 87Sr86Sr ratios that is observed in Smackover brines within the 5000 km2 study area. Isotopic analyses of nonskeletal carbonate grains and coexisting coarse calcspar cement from the upper Smackover grainstone imply that the grains were diagenetically stabilized in the presence of interstitial marine waters, whereas the calcspar cement is a relatively late diagenetic phase precipitated after the arrival of radiogenic fluids.  相似文献   

5.
Evaluation of thermobarometers for garnet peridotites   总被引:1,自引:0,他引:1  
The accuracy and precision of a large number of combinations of geothermometers and geo-barometers for garnet lherzolites have been evaluated with a suite of well-equilibrated xenoliths from kimberlites of northern Lesotho. Accuracy was tested by comparison of P-T estimates for a diamond-bearing and a graphite-bearing xenolith with the experimentally determined diamond-graphite univariant curve and by comparison of P-T estimates for phlogopite-bearing xenoliths to the high-temperature stability limit of phlogopite (Eggler and Wendlandt, 1979). Precision was evaluated by measuring the scatter of P-T estimates for each of four xenoliths from a wide range of P and T when many point analyses of the constituent minerals are used for P-T estimation. A thermobarometer composed of the uncorrected diopside-enstatite miscibility gap of Lindsley and Dixon (1976), combined with the uncorrected isopleths for aluminum in enstatite coexisting with pyrope of MacGregor (1974), is most satisfactory. Correction schemes such as those of Wells (1977) and Wood (1974) will ultimately provide a better means of P-T estimation, but at the present stage of development they serve to decrease precision without a demonstrable increase in accuracy. Thermometers based on Fe2+Mg exchange reactions are imprecise because of variable and unknown Fe2+Fe3+ in minerals and xenoliths. The inflection observed in the northern Lesotho paleogeotherm cannot be an artifact of the method of temperature estimation.  相似文献   

6.
We have analyzed samples from the Adirondack Marcy massif for Rb-Sr and Sm-Nd isotopes in an attempt to determine directly the primary crystallization age of a Proterozoic massif-type anorthosite rock suite. The oldest age obtained (1288 ± 36Ma) is from a 4 point Sm-Nd isochron defined by igneous-textured whole-rock and mineral separate data from a local layered sequence gradational from oxiderich pyroxenite to leuconorite. This age is older than Silver's (1969) 1113 Ma zircon age of associated charnockites, but is within the window of permissible anorthosite ages based on previous geochronology and field relationships. As such, 1288 Ma may represent the time of crystallization of the massif. For the most part, however, both Sm-Nd and Rb-Sr isotopic systems did not survive granulite facies metamorphism. Internal isochrons based on whole rocks and minerals yield ages between 995 and 919 Ma. These isotopic data suggest that the granulite fades metamorphism experienced by the massif was a prograde event that occurred a minimum of 100 Ma and as much as 350 Ma after crystallization of the massif. The relatively large range in Rb abundance, and in calculated initial 87Sr86Sr (0.7039–0.7050) and 143Nd144Nd ratios among anorthosite suite rocks, particularly those at or near the contacts of the Marcy massif is explicable by variable contamination with “crustal” materials and/or fluids, derived from surrounding acidic metaplutonic rocks, paragneisses, and marbles. Despite uncertainies caused by crustal contamination and metamorphic resetting of primary ages, Marcy samples have epsilon Nd values between +0.44 and +5.08, implying a source for the massif with long-term depletion in light rare earth elements. A probable source material would be depleted mantle.  相似文献   

7.
Morphological, mineralogical, chemical and RbSr isotopic studies have been made on Fesmectites (nontronites) from southern Pacific red clays cored near the Marquisas Islands. These minerals have at the top of the core, an 87Sr86Sr ratio of 0.70917 ± 0.00007, which indicates an authigenic origin in isotopic equilibrium with seawater. Weak leaching experiments with 1N HCl show that the nontronites also contain a volcanic component with a lower 87Sr86Sr ratio which, combined with the morphology of the particles, suggests a transportation by bottom currents of clay formed elsewhere.During burial, the nontronites experience diagenetic modifications resulting in an increase in Fe, K and Rb contents, a concomitant decrease of Mg, Ca, Ti, Na and Sr, and a preferential migration of radiogenic 87Sr from the clays into the surrounding pore waters.The 87Sr86Sr ratio of the Sr adsorbed on the outermost surfaces of the nontronites does not change with depth in the core, and is, therefore, independent of diagenetic influence, which is rather characterized by the 87Sr86Sr ratios of the interstitial waters. The isotopic composition of both the adsorbed Sr and that of the pore fluids may yield useful information on the crystallization environment and subsequent history of deep sea red clays.  相似文献   

8.
Zaw Win Ko  M. Enami  M. Aoya   《Lithos》2005,81(1-4):79-100
The Sanbagawa metamorphic rocks in the Besshi district, central Shikoku, are grouped into eclogite and noneclogite units. Chloritoid and barroisite-bearing pelitic schists occur as interlayers within basic schist in an eclogite unit of the Seba area in the Sanbagawa metamorphic belt, central Shikoku, Japan. Major matrix phases of the schists are garnet, chlorite, barroisite, paragonite, phengite, and quartz. Eclogite facies phases including chloritoid and talc are preserved only as inclusions in garnet. PT conditions for the eclogite facies stage estimated using equilibria among chloritoid, barroisite, chlorite, interlayered chlorite–talc, paragonite, and garnet are 1.8 GPa/520–550 °C. Zonal structures of garnet and matrix amphibole show discontinuous growth of minerals between their core and mantle parts, implying the following metamorphic stages: prograde eclogite facies stage→hydration reaction stage→prograde epidote–amphibolite stage. This metamorphic history suggests that the Seba eclogite lithologies were (1) juxtaposed with subducting noneclogite lithologies during exhumation and then (2) progressively recrystallized under the epidote–amphibolite facies together with the surrounding noneclogite lithologies.

The pelitic schists in the Seba eclogite unit contain paragonite of two generations: prograde phase of the eclogite facies included in garnet and matrix phase produced by local reequilibration of sodic pyroxene-bearing eclogite facies assemblages during exhumation. Paragonite is absent in the common Sanbagawa basic and pelitic schists, and is, however, reported from restricted schists from several localities near the proposed eclogite unit in the Besshi district. These paragonite-bearing schists could be lower-pressure equivalents of the former eclogite facies rocks and are also members of the eclogite unit. This idea implies that the eclogite unit is more widely distributed in the Besshi district than previously thought.  相似文献   


9.
The eclogites of the Tso Morari Complex, Ladakh, NW Himalayas preserve both garnets with spectacular atoll textures, as well as whole porphyroblastic garnets. Whole garnets are euhedral, idiomorphic and enclose inclusions of amphibole, phengite and zoisite within the cores, and omphacite and quartz/coesite towards the rims. Detailed electron microprobe analyses and back-scattered electron images show well-preserved prograde zoning in the whole garnets with an increase in Mg and decrease in Ca and Mn contents from the core to the rim. The atoll garnets commonly consist of euhedral ring over island/peninsular core containing inclusions of phengite, omphacite and rarely amphibole between the core and ring. Compositional profiles across the studied atoll grains show elemental variations with higher concentrations of Ca and Mn with low Mg at the peninsula/island cores; contrary to this low Ca, Mn and high Mg is observed at the outer rings. Temperature estimates yield higher values at the Mg-rich atoll garnet outer rings compared to the atoll cores. Atoll garnet formation was favoured by infiltration of fluid formed due to breakdown of hydrous phases, and/or the release of structurally bounded OH from nominally anhydrous minerals at the onset of exhumation. Infiltration of fluids along pre-existing fracture pathways and along mineral inclusion boundaries triggered breakdown of the original garnet cores and released elements which were subsequently incorporated into the newly-grown garnet rings. This breakdown of garnet cores and inward re-growth at the outer ring produced the atoll structure. Calibrated geo-thermobarometers and mineral equilibria reflect that the Tso Morari eclogites attain peak pressures prior to peak temperatures representing a clockwise path of evolution.  相似文献   

10.
40Ar39Ar incremental-release ages have been determined for 15 hornblende and 20 biotite concentrates separated from rocks collected across the garnet and kyanite zones of Grenvillian metamorphism in southwestern Labrador. Most hornblende spectra from the kyanite zone are slightly discordant, with low-temperature increments yielding ages older than the ca 1000 Ma date suggested for culmination of Grenvillian metamorphism in the area. However, all the hornblende concentrates record well-defined plateau ages. These range from 968 to 905 Ma across the kyanite zone and date times of diachronous post-metamorphic cooling. The discordant spectra are interpreted to result from low-temperature liberation of excess 40Ar components from grain margins. Two hornblende concentrates from the garnet zone display very discordant spectra (total-gas ages of 2100 and 3017 Ma) in which incremental dates systematically decrease during analysis. This pattern of discordance suggests that excess argon components are inhomogeneously distributed throughout these hornblende grains.Most biotites from the garnet and kyanite zones record total-gas or plateau ages in excess of 1000 Ma (2066-857 Ma), reflecting the widespread presence of excess argon components. Because most of the 40Ar39Ar age spectra are internally concordant, the ratios of excess 40Ar relative to radiogenic 40Ar must have been uniform in the various gas fractions liberated from each sample. This is also reflected in the inability of isotope correlation diagrams to differentiate between excess, radiogenic, and atmospheric argon components. The biotite total-gas or plateau dates show marked local variation. This is interpreted to indicate that the biotite grains were in contact with a post-metamorphic intergranular vapor phase that was characterized by large and variable 40Ar36Ar ratios. Such ratios most likely resulted from widespread diffusion of the argon liberated from adjacent Archean basement gneisses during the Grenvillian metamorphic overprint.  相似文献   

11.
The extent of oxygen isotopic exchange between detrital clay minerals and sea water was investigated by analyzing O18O16 ratios of separated fine-grained size fractions of deep-sea sediments from three North Pacific ocean cores. Isotopic results were interpreted according to models based on the assumption that the extent of isotopic exchange should increase with decreasing particle size and increasing time of exchange between the sediment and sea water. The data indicate that information concerning the provenance and mode of formation of detrital clay minerals can be obtained from the O18O16 ratios of the coarser-than-0.1 μm fraction of deep-sea sediments younger than several million years and the finer-than-0.1 μm fraction of deep-sea sediments younger than several tens of thousands of years. Furthermore, if the extent of chemical reaction between detrital clays and sea water is similar to the extent of oxygen isotopic exchange, such reaction may be important in regulating the chemistry of sea water.  相似文献   

12.
HD Fractionation factors between epidote minerals and water, and between the AlO(OH) dimorphs boehmite and diaspore and water, have been determined between 150 and 650°C. Small water mineral ratios were used to minimise the effect of incongruent dissolution of epidote minerals. Waters were extracted and analysed directly by puncturing capsules under vacuum. Hydrogen diffusion effects were eliminated by using thick-walled capsules.HD Exchange rates are very fast between epidote and water (and between boehmite and water), complete exchange taking only minutes above 450°C but several months at 250°C. Exchange between zoisite and water (and between diaspore and water) is very much slower, and an interpolation method was necessary to determine fractionation factors at 450 and below.For the temperature range 300–650°C, the HD equilibrium fractionation factor (αe) between epidote and water is independent of temperature and Fe content of the epidote, and is given by 1000 In αepidote-H2Oe = ?35.9 ± 2.5, while below 300°C 1000 In αepidote-H2Oe = 29.2(106T2) ? 138.8, with a ‘cross-over’ estimated to occur at around 185°C. By contrast, zoisite-water fractionations fit the relationship 1000 In αzoisite-H2Oe = ? 15.07 (106T2) ? 27.73.All studied minerals have hydrogen bonding. Fractionations are consistent with the general relationship: the shorter the O-H -- O bridge, the more depleted is the mineral in D.On account of rapid exchange rates, natural epidotes probably acquired their H-isotope compositions at or below 200°C, where fractionations are near or above 0%.; this is in accord with the observation that natural epidotes tend to concentrate D relative to other coexisting hydrous minerals.  相似文献   

13.
The isotopic composition of strontium of pore water and of authigenic minerals leached from the sediment of core 119K with hot aqua regia is similar to that of the brine in the Discovery deep and differs from that of normal seawater. The average 87Sr86Sr ratio of strontium removed by acid leaching is 0.7077 ± 0.0007 (1σ) compared to a value of 0.70904 for the Red Sea. The detrital silicate fraction exhibits an approximate inverse correlation between 87Sr86Sr ratios and strontium concentrations which provides tentative support for a model in which the detrital silicate fraction of deep-sea sediment is considered to be a mixture of terrigenous dust of sialic composition enriched in radiogenic 87Sr and of volcanogenic material of basaltic composition and low 87Sr abundance. The 87Sr86Sr ratios of the shells of foraminifers and pteropods, expressed as δ 87Sr‰ relative to 0.70904 for seawater, decrease from ?0.23 ± 0.17‰ at 90 cm to ?0.82 ± 0.17‰ at 273 cm and remain constant at this value to a depth of 450 cm. The lowering of the δ 87Sr values is attributed both to the presence of aragonite overgrowths on pteropod shells and to possible isotope exchange with strontium in the connate fluid.  相似文献   

14.
Partition coefficients of Ce, Sm and Tm involving garnet peridotite minerals, amphibole and hydrous silicate melt have been determined experimentally in the temperature and pressure ranges 950–1075°C and 10–25 kbar.Only several parts per million to several tens of parts per million of rare earth element (REE) can dissolve in the minerals before the crystal-liquid partition coefficients begin to vary as a function of REE content. The concentration ranges of constant partition coefficient increase with increasing temperature and are also positively correlated with the magnitude of the crystal-liquid partition coefficients. The upper concentration limits of constant partition coefficient and the value of the crystal-liquid partition coefficient for REE decrease in the order garnet > clinopyroxene > amphibole > orthopyroxene > olivine.Partition coefficients may vary by at least an order of magnitude as a function of bulk composition of the liquid phase (e.g. changing from basaltic to andesitic). The approximate ranges of the values of the partition coefficients as a function of bulk liquid composition are as follows:
CeSmTmKga-liq0.01–0.10.3–3.41–10Kcpx-liq0.05–0.40.09–0.70.04–0.4Kamph-liq0.04–0.40.08–0.80.07–0.7Kopx-liq0.04–0.10.05–0.10.08–0.1Kol-liq0.01–0.020.01–0.020.01–0.02
where the values increase with increasing acidity of the melt.  相似文献   

15.
The effect of presure on the solubility of minerals in water and seawater can be estimated from In
(KPspK0sp) + (?ΔVP + 0.5ΔKP2)RT
where the volume (ΔV) and compressibility (ΔK) changes at atmospheric pressure (P = 0) are given by
ΔV = V?(M+, X?) ? V?[MX(s)]ΔK = K?(M+, X?) ? K?[MX(s)]
Values of the partial molal volume (V?) and compressibilty (K?) in water and seawater have been tabulated for some ions from 0 to 50°C. The compressibility change is quite large (~10 × 10?3 cm3 bar?1 mol?1) for the solubility of most minerals. This large compressibility change accounts for the large differences observed between values of ΔV obtained from linear plots of In Ksp versus P and molal volume data (Macdonald and North, 1974; North, 1974). Calculated values of KPspKosp for the solubility of CaCO3, SrSO4 and CaF2 in water were found to be in good agreement with direct measurements (Macdonald and North, 1974). Similar calculations for the solubility of minerals in seawater are also in good agreement with direct measurements (Ingle, 1975) providing that the surface of the solid phase is not appreciably altered.  相似文献   

16.
17.
New analyses of K, Rb, Sr and Ba contents and the 87Sr86Sr ratios of eight amphiboles, one phlogopite, two diopsides and one host alkalic basalt for an amphibole are reported: The samples are mostly inclusions in alkalic basalts and occur in association with peridotite inclusions. Two of the samples are from alpine-type peridotite bodies — one from the Etang de Lhers massif in the French Pyrenees and the other from the Finero massif in the Ivrea zone in northern Italy. The kaersutites come from the following localities: Hoover Dam, Arizona; Deadman Lake, California; Massif Central, France; Queensland; Spring Mountain, New South Wales.The data indicate that kaersutitic amphiboles are genetically unrelated to their host basalts. The isotopic and trace element data of these amphiboles further strengthens the suggestion of BASU and MURTHY (1977) that kaersutites play a significant role in ocean ridge basalt genesis. In addition, pargasitic amphibole with higher 87Sr86Sr ratios, if present, may be important in the source regions of alkalic basalts.The bulk amphibole lherzolite from Lherz has the KRbratio and 87Sr86Sr ratio appropriate for source material of ridge tholeiites. If the diopside and the amphibole in this rock had isotopically equilibrated under upper mantle conditions, the data show the time of last equilibration to be approximately 735 m.y., in contrast to the young emplacement age of the ultramafic massif.The coexisting phlogopite and diopside in the spinel lherzolite inclusion from Kilbourne Hole, New Mexico, show, surprisingly, isotopic equilibration under upper mantle conditions despite their drastically different RbSr ratios. The data show that the phlogopite must have formed very recently in the upper mantle. This phlogopite also has a high KRb ratio (1133), contrary to the commonly held view that mantle phlogopites have low KRb ratios. The coexisting diopside shows high K content (778 ppm) and a lower KRb ratio than the phlogopite. This phlogopite lherzolite has trace elemental and isotopic characteristics that may be adequate for the origin of alkalic basalts upon partial melting.  相似文献   

18.
The 176Lu-176Hf isotope method and its applications in earth sciences are discussed. Greater fractionation of Lu/Hf than Sm/Nd in planetary magmatic processes makes 176Hf177Hf a powerful geochemical tracer. In general, proportional variations of 176Hf177Hf exceed those of 143Ndl44Nd by factors of 1.5–3 in terrestrial and lunar materials. Lu-Hf studies therefore have a major contribution to make in understanding of terrestrial and other planetary evolution through time, and this is the principal importance of Lu-Hf. New data on basalts from oceanic islands show unequivocally that whereas considerable divergences occur in 176Hf177Hf-87Sr86Sr and 143Ndl44Nd-87Sr86Sr diagrams, 176Hf177Hf and 143Nd144Nd display a single, linear isotopic variation in the suboceanic mantle. These discordant 87Sr86Sr relationships may allow, with the acquisition of further Hf-Nd-Sr isotopic data, a distinction between processes such as mantle metasomatism, influence of seawater-altered material in the magma source, or recycling of sediments into the mantle. In order to evaluate the Hf-Nd isotopic correlation in terms of mantle fractionation history, there is a need for measurements of Hf distribution coefficients between silicate minerals and liquids, and specifically for a knowledge of Hf behavior in relation to rareearth elements. For studying ancient terrestrial Hf isotopic variations, the best quality Hf isotope data are obtained from granitoid rocks or zircons. New data show that very U-Pb discordant zircons may have upwardly-biased 176Hf177Hf, but that at least concordant to slightly discordant zircons appear to be reliable carriers of initial 176Hf177Hf. Until the controls on addition of radiogenic Hf to zircon are understood, combined zircon-whole rock studies are recommended. Lu-Hf has been demonstrated as a viable tool for dating of ancient terrestrial and extraterrestrial samples, but because it offers little advantage over existing methods, is unlikely to find wide application in pure chronological studies.  相似文献   

19.
DH, 18O16O and 13C12C analyses were made of 14 whole rock and 28 mineral samples of rodingites associated dominantly with lizardite-chrysotile serpentinites from the West Coast of the U.S.A., New Zealand, and the Northern Appalachian Mtns. The δD values of the rodingite minerals are in three groupings: 5 monomineralic veins of pectolite, ?281 to ?429; 8 monomineralic veins of xonotlite, ?112 to ?135; all other minerals, including hydrogarnet, idocrase, prehnite, actinolite, nephrite, and chlorite, ?34 to ?80. Most calcites in rodingites have δ18O (+9.3 to +14.4) and (δ13C (?6.7 to +0.9) values similar to calcites in other Franciscan rocks, but distinct from the very low temperature calcite veins in serpentinites. The DH data, combined with δ18O values of xonotlite (+5.7 to +10.9) and pectolite (+8.9 to +12.4) suggest formation from meteoric-type waters at low temperatures; the DH depletion of pectolite, however, is anomalous. Rodingite whole rock values range from δ18O = +4.1 to +11.5 and δD = ?50 to ?86; one sample containing minor amounts of lizardite-chrysotile serpentinite has δD = ?92, outside this range. However, most rodingites of basaltic or gabbroic parentage are more restricted in δ18O (+4.1 to +8.6). Such a wide range in δ18O is consistent with the idea that most rodingites form over a relatively broad range of hydrothermal temperatures. Hydrogen isotopic data for most rodingite minerals (except xonotlite and pectolite) and for whole rocks are suggestive of non-meteoric waters. These DH data overlap those observed for veins of hydrous minerals found in Franciscan igneous rocks studied by Margaritz and Taylor (1976, Geochim. Cosmochim. Acta40, 215–234), possibly suggesting evolved D-enriched, connate type metamorphic waters generated during high P, low T Franciscan-type metamorphism at temperatures (250–500°C) comparable to estimates based on mineral stabilities. Such an interpretation is supported by the 18O16O and 13C12C data for calcite in rodingites.The isotope data appear to contradict some of the conclusions derived from geologic and petrologic studies that indicate concomitant metasomatism and serpentinization of their presently observed host rock. These data appear most consistent with the interpretation that most rodingite minerals, with the exception of late-stage veins of xonotlite and possibly pectolite, may involve metasomatism in association with antigorite serpentinization of ultramafic rock. Subsequent upward tectonic transport in many instances may result in incorporation of the rodingites into their presently observed lizarditechrysotile host rock during or subsequent to pervasive shallow level serpentinization by meteoric waters.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号