首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For a low-frequency active sonar (LFAS) with a triplet receiver array, it is not clear in advance which signal processing techniques optimize its performance. Here, several advanced beamformers are analyzed theoretically, and the results are compared to experimental data obtained in sea trials. Triplet arrays are single line arrays with three hydrophones on a circular section of the array. The triplet structure provides the ability to solve the notorious port-starboard (PS) ambiguity problem of ordinary single-array receivers. More importantly, the PS rejection can be so strong that it allows to unmask targets in the presence of strong coastal reverberation or traffic noise. The theoretical and experimental performance of triplet array beamformers is determined in terms of two performance indicators: array gain and PS rejection. Results are obtained under several typical acoustic environments: sea noise, flow noise, coastal reverberation, and mixtures of these. A new algorithm for (beam space) adaptive triplet beamforming is implemented and tuned. Its results are compared to those of other triplet beamforming techniques (optimum and cardioid beamforming). These beamformers optimize for only one performance indicator, whereas in theory, the adaptive beamformer gives the best overall performance (in any given environment). The different beamformers are applied to data obtained with an LFAS at sea. Analysis shows that adaptive triplet beamforming outperforms conventional beamforming algorithms. Adaptive triplet beamforming provides strong PS rejection, allowing the unmasking of targets in the presence of strong directional reverberation (e.g., from a coast) and at the same time provides positive array gain in most environments.  相似文献   

2.
This paper reports the development and experimental evaluation of two in situ least squares techniques for estimating the alignment matrix of Doppler sonars commonly used for precision navigation of oceanographic submersibles. Most previously reported methods addressed the problem of single degree-of-freedom heading alignment using bottom-lock Doppler sonar data and global positioning system (GPS) navigation data. This paper reports and evaluates two techniques for three degree-of-freedom calibration of attitude and Doppler sonar sensors using sensor data available to vehicles at full ocean depth. The first technique provides a general linear least squares estimate of the alignment matrix. The second technique results in a least squares alignment matrix estimate constrained to the group of rotation matrices. The performance of these estimates is evaluated with a laboratory remotely operated vehicle (ROV) and a field-deployed autonomous underwater vehicle (AUV). Experimental results are reported which demonstrate that Doppler navigation employing the reported alignment calibration techniques significantly improves navigation precision. The experiments show that the latter technique provides calibration estimates that improve Doppler navigation precision not only on the calibration data set itself, but also provide improved precision over a wide variety of vehicle trajectories other than the calibration data set.  相似文献   

3.
基于四阶累积量的被动测向声纳高分辨力算法研究   总被引:1,自引:0,他引:1  
利用高阶累积量的阵列扩展和抑制高斯噪声特性,提出1种基于四阶累积量的逆波束形成算法,并通过滑动平均进一步改善了算法。仿真结果和实验数据表明:逆波束形成算法较常规波束形成方法在空间方位分辨力和噪声抑制能力上明显提高,可以更有效地应用于被动测向声纳中。  相似文献   

4.
The present study demonstrates the use of ambient noise for estimating the ocean depth in shallow waters of the Indian continental shelf. Ocean depth is estimated using a technique known as passive fathometer processing, which involves the correlation of surface-generated ambient noise with its reflection from the seabed. Ambient noise data collected using a vertical array from four locations (off Cochin, off Cuddalore, off Kakinada, and off Goa) along the Indian continental shelf were used for the study. The noise data recorded during windy conditions within the frequency band of 200–5000 Hz were used for analysis. Both conventional and adaptive beamforming techniques were applied for the passive estimation of the ocean depth. The estimated water column depth using the ambient noise measurement shows good agreement with the known depth from all the four locations. The advantages and limitations of the adaptive processing technique have also been discussed. The study clearly demonstrates the application of the surface-generated ambient noise in seabed image processing.  相似文献   

5.
Passive sonar systems that localize broadband sources of acoustic energy estimate the difference in arrival times (or time delays) of an acoustic wavefront at spatially separated hydrophones, The output amplitudes from a given pair of hydrophones are cross-correlated, and an estimate of the time delay is given by the time lag that maximizes the cross correlation function. Often the time-delay estimates are corrupted by the presence of noise. By replacing each of the omnidirectional hydrophones with an array of hydrophones, and then cross-correlating the beamformed outputs of the arrays, the author shows that the effect of noise on the time-delay estimation process is reduced greatly. Both conventional and adaptive beamforming methods are implemented in the frequency domain and the advantages of array beamforming (prior to cross-correlation) are highlighted using both simulated and real noise-field data. Further improvement in the performance of the broadband cross-correlation processor occurs when various prefiltering algorithms are invoked  相似文献   

6.
Seafloor massive sulphides are deep sea mineral deposits currently being examined as a potential mining resource. Conventional sonar bathymetry products gathered by sea surface platforms do not achieve adequate spatial resolution to detect these resources. High-resolution beamforming methods (such as multiple signal classification and estimation of signal parameters via rotational invariance techniques) improve the resolution of sonar bathymetry. We perform a quantitative review of these high-resolution methods using a novel simulator, showing results in the absence of platform motion for a single ping cycle. It was found that high-resolution methods achieved greater bathymetric accuracy and higher resolution than conventional beamforming and that these methods may be adequate for this style of marine exploration. These methods were also robust in the presence of unwanted persistent signals and low signal to noise ratios.  相似文献   

7.
In this study an attempt has been made to extract sediment geoacoustic properties using ambient noise measured from a vertical hydrophone array. Time series noise data recorded from three shallow water sites (Chennai, Cuddalore and Cochin) along the Indian continental shelf were used for the analysis. The compressional sound speed of sediment for all the sites was estimated from the vertical directionality of ambient noise. Using the value of the compressional sound speed remaining wave properties and material properties were deduced from the Grain-Shearing (G-S) theory of wave propagation in saturated granular media. The type of sediment extracted from the G-S theory correlates well with the results obtained from sieve and particle size analysis of grab samples, collected from all the sites. The study clearly shows the application of ambient noise in extracting environmental information in shallow water, and further applying it to improve sonar performance modeling.  相似文献   

8.
The problem of recovering signals masked by reverberation is considered. Reverberation data from a shallow-water active sonar experiment in conjunction with simulated echoes are used to examine the potential for signal recovery offered by adaptive filtering and prediction. The deterministic least squares lattice filter is the central adaptive estimator of choice. The prediction error lattice is used to selectively "whiten" the composite process by controlling the algorithm adaptation speed. This is shown to result in significant signal enhancement for low-Doppler echoes masked by reverberation. Adaptive noise canceling with multiple reference beams is shown to be successful in extracting even zero-Doppler echoes from the reverberation background.  相似文献   

9.
During maneuvering, towed array beamforming degrades if a straight array is assumed. This is especially true for high-resolution adaptive beamforming. It is experimentally demonstrated that adaptive beamforming is feasible on a turning array, provided that array shape is estimated. The array shape can be inferred solely from the coordinates of the tow vessel's Global Positioning System (GPS) without any instrumentation in the array. Based on estimated array shape from the GPS, both the conventional beamformer and the white noise constrained (WNC) adaptive beamformer are shown to track the source well during a turn. When calculating the weight vector in the WNC approach, a matrix inversion of the cross-spectral density matrix is involved. This matrix inversion can be stabilized by averaging the cross-spectral density matrix over neighboring frequencies. The proposed algorithms have been tested on real data with the tow-vessel making 45/spl deg/ turns with a 500-m curvature radius. While turning, the improvement in performance over the assumption of a straight array geometry was up to 5 dB for the conventional beamformer and considerably larger for the WNC adaptive beamformer.  相似文献   

10.
TOBI (Towed Ocean Bottom Instrument) is a deep-tow sidescan sonar vehicle from which sidescan sonar data are now routinely collected and archived. This paper describes the algorithms developed for detailed processing of TOBI data. Sonar imagery has a characteristic set of processing challenges and these are addressed. TOBI provides a very large sonar dataset, and to limit the difficulties of handling and processing these data, the raw data are subjected to a data reduction technique prior to further processing. Slant-range correction is improved by editing vehicle altitude data using a median filter. Noise on TOBI imagery can appear in two main forms; speckle noise and line dropouts. Speckle noise is removed by a small median difference kernel and line dropouts are removed using a ratio of two box-car filters, each with appropriate thresholding techniques. Precise geocoding of the imagery requires an accurate estimate of vehicle location, and a method of calculation is presented. Two optional processing algorithms are also; presented; deblurring of imagery to improve along-track resolution at far range, and the suppression of a surface reflection return which may occur when TOBI is operated in relatively shallow water. Several of the techniques presented can be transcribed and modified to suit other datasets  相似文献   

11.
A numerical optimization technique that uses sonar array noise measurements is used to determine conventional shading weights that maximize the broadband deflection coefficient at the output of the optimal square-law detector, across a frequency band of interest. This process maintains the structure of the conventional processor while providing performance improvement typical of adaptive techniques. The performance of the optimized time domain delay-and-sum beamformer is compared with that of the traditional beamformer that uses conventionally chosen shading weights. Application of this method to conformal velocity sonar array data is shown to provide large improvements in performance over heuristic designs.  相似文献   

12.
Increasing the number of hydrophones in an array should increase beamformer performance. However, when the number of hydrophones is large, integration times must be long enough to give accurate cross-spectral matrix (CSM) estimates, but short enough so that the dynamic behavior of the noise described by the CSM is captured. The dominant mode rejection (DMR) beamformer calculates adaptive weights based on a reduced rank CSM estimate, where the CSM estimate is formed with a subset of the largest eigenvalues and their eigenvectors. Since the largest eigenvalue/eigenvector pairs are estimated rapidly, the integration time required is reduced. The purpose of this study was to examine the DMR beamformer performance using a bottom-mounted horizontal line array in a shallow-water environment. The data were processed with a fully adaptive beamformer and the DMR beamformer. The DMR beamformer showed better performance than the fully adaptive beamformer when using arrays with larger numbers of hydrophones. Thus, in highly dynamic noise environments, the DMR beamformer may be a more appropriate implementation to use for passive sonar detection systems  相似文献   

13.
为提高我国水下地形地貌探测技术水平,促进对海洋的科学认知和高效开发利用,文章综述高精度和高分辨率水下地形地貌探测技术研发进展,并分析关键技术发展方向。研究结果表明:采用机载激光、多波束、侧扫声呐、浅地层剖面、双频识别声呐、合成孔径声呐和水下三维扫描声呐等探测技术以及无人船、水下机器人和海底观测网等探测平台,可获取高精度和高分辨率水下地形地貌信息;应在提高设备性能、减小探测误差和完善数据算法等方面加大研究力度,重点发展综合探测技术,从而全面和清晰地反映水下地形地貌。  相似文献   

14.
Spatial processing, including beamforming and diversity combining, is widely used in communications to mitigate intersymbol interference (ISI) and signal fading caused by multipath propagation. Beamforming suppresses ISI (and noise) by eliminating multipath (and noise) arrivals outside the signal beam. Beamforming requires the signals to be highly coherent between the receivers. Diversity combining combats ISI as well as signal fading by taking advantage of the independent information in the signal. Classical (spatial) diversity requires that signals are independently fading, hence are (spatially) uncorrelated with each other. In the real world, the received signals are neither totally coherent nor totally uncorrelated. The available diversity is complex and not well understood. In this paper, we study the spatial processing gain (SPG) as a function of the number of receivers used, receiver separation, and array aperture based on experimental data, using beamforming and multichannel combining algorithms. We find that the output symbol signal-to-noise ratio (SNR) for a multichannel equalizer is predominantly determined by the array aperture divided by the signal coherence length, with a negligible dependence on the number of receivers used. For a given number of receivers, an optimal output symbol SNR (OSNR) is achieved by spacing the receivers equal to or greater than the signal coherence length. We model the SPG in decibels as the sum of the noise suppression gain (NSG, equivalent to signal-to-noise enhancement) and the ISI suppression gain (ISG, equivalent to signal-to-ISI enhancement) both expressed in decibels; the latter exploits the spatial diversity and forms the basis for the diversity gain. Data are interpreted using the modeled result as a guide. We discuss a beam-domain processor for sonar arrays, which yields an improved performance at low-input SNR compared to the element-domain processor because of the SNR enhancement from beamforming many sensors.  相似文献   

15.
Achieving reliable underwater communication in shallow water is a difficult task because of the random time-varying nature of multipath propagation. When the product of Doppler-related signal bandwidth spread and multipath-related time spread of the channel is larger than one, some types of adaptive signal processing may not work very well. In this paper, various methods of coherent space-time processing are compared for a condition of a marginally overspread channel operating at 50 kHz. Various combinations of suboptimal spatially adaptive and time adaptive methods are considered. The coherent path beamformer (CPB) and recursive least squares (RLS) adaptive beamformer, both in combination with RLS time filtering, are analyzed. Also considered in the analysis is the combined RLS space-time optimal adaptive processor. Many experiments using broad-band phase-shift-keyed transmissions in shallow water have been conducted to provide data for testing these various processing methods. Because of the rapid time variation of the multipath, the product of bandwidth spread and time spread at this test site approached unity. In this environment, a suboptimal approach consisting of the adaptive beamformer followed by RLS equalization reduced reverberation and transmission errors  相似文献   

16.
利用MVDR算法削弱多波束测深声纳的隧道效应   总被引:1,自引:0,他引:1  
分析了海底多波束测深声纳中存在的隧道效应及其产生机理,指出旁瓣干扰是引起隧道效应的重要因素,隧道效应的出现导致多波束测深声纳把相对平坦的海底误测成凹面向上的水平半圆柱面海底地形。研究了基于GSC结构的自适应波束形成算法,推导提出了MVDR算法的连续自适应实现方案,并利用该算法对多波束测深声纳湖试数据中存在的隧道效应进行处理,结果表明该算法能够有效削弱多波束测深数据边缘波束中存在的旁瓣干扰。  相似文献   

17.
海洋水声环境时空变化显著,评估其对主动声纳探测效能的影响具有重要的理论意义和应用价值。提出HMG方法用以评估水声环境效应对主动声纳探测的影响。采用UMPE(The university of miami parabolic equation)、CANARY、JACKSON模型模拟特定海洋环境下的传播损失、环境噪声、混响分布,将模拟结果融入主动声纳检测概率模型,计算检测概率。评估结果发现近场检测概率较高,远场可检测的区域与声能汇聚区一致。  相似文献   

18.
西沙北部海域海洋环境噪声频谱特性   总被引:2,自引:1,他引:1  
Ambient noise is very important in the prediction system of a sonar performance, because it determines the detection ranges always in a passive sonar and usually in an active sonar. In the uncertainty issue for the so-nar performance, it is necessary to know this factor's statistical characteristics that are only obtained by data processing from the underwater ambient noise measurements. Broad-band ambient noise signals from 16 hydrophones were amplified and recorded for 2 min every 1 h. The results show that the ambient noise is essentially depth independent. The cross correlation of the ambient noise levels (1, 6 and 12 h average) with a wind speed is presented. It was found that the correlation is excellent on the upper frequency band and the noise levels correlate better with high wind speed than with low wind speed.  相似文献   

19.
孙芳  王川  陈阳 《海洋测绘》2014,(1):37-39
提出了基于二阶锥规划的空域维纳滤波。基于噪声与阵列流型不相关的特性,将阵列的方向向量作为期望通过二阶锥规划方法对阵列快拍进行维纳滤波。利用维纳滤波抑制噪声的能力,提高阵列的信号检测和方位估计性能。通过仿真研究,验证了单目标时,其低信噪比下的信号检测性能优于Bartlett波束形成,其方位估计的信噪比门限要低于Bartlett波束形成和MUSIC算法,因而是一种优良的波束形成器。该波束形成器用于多波束测深仪和侧扫声纳等海洋测绘设备的阵列,可以有效的提高设备的作用距离和测量精度。  相似文献   

20.
重物在落水和着底过程中都会产生瞬态声信号,这类信号可被运用于浅水区域水下目标定位。 针对浅水区域目标定位的问题,提出了一种基于小型立体五元基阵的瞬态声源快速被动定位算法。 在分析重物落水信号特征的基础上,选取合适的广义互相关加权函数求得传声器之间的声程差,运用快速最小二乘搜索算法进行声源定位。 结果表明:运用 5 传声器阵列可以同时兼顾定位精度和鲁棒性,且满足实时性要求,该方法可运用于浅水区域瞬态声源定位等领域。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号