首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated systematically the micromechanics of compaction in two carbonates of porosity above 30%, Majella grainstone and Saint Maximin limestone. The composition, grain size and pore surface area of these rocks were determined. Hydrostatic compression experiments were performed under dry and wet conditions beyond the onset of grain crushing. A significant water weakening effect was observed in both rocks. A set of conventional triaxial experiments was also performed on both rocks under dry conditions at confining pressures ranging from 3 to 31 MPa. Microstructural observations were carried out on the deformed samples. The mechanical behavior of these high porosity carbonates is dominated by shear-enhanced compaction associated in most cases with strain hardening. Stress-induced cracking and grain crushing are the dominant micromechanisms of deformation in both rocks. In Majella grainstone, compactive shear bands appeared at low confinement, in qualitative agreement with the deformation bands observed in the field. At higher confining pressures, compaction localization was inhibited and homogeneous cataclastic flow developed. In Saint Maximin limestone, compaction localization was observed at all confining pressures. An increasing number of compactive shear bands at various orientations appeared with increasing strain. These new data suggest that compaction localization is important in the mechanical compaction of high porosity carbonates.  相似文献   

2.
Adopting the method of forced oscillation, attenuation was studied in Fontainebleau sandstone (porosity 10%, permeability 10 mD) at seismic frequencies (1–100 Hz). Confining pressures of 5, 10, and 15 MPa were chosen to simulate reservoir conditions. First, the strain effect on attenuation was investigated in the dry sample for 11 different strains across the range 1 × 10?6–8 × 10?6, at the confining pressure of 5 MPa. The comparison showed that a strain of at least 5 × 10?6 is necessary to obtain a good signal to noise ratio. These results also indicate that nonlinear effects are absent for strains up to 8 × 10?6. For all the confining pressures, attenuation in the dry rock was low, while partial (90%) and full (100%) saturation with water yielded a higher magnitude and frequency dependence of attenuation. The observed high and frequency dependent attenuation was interpreted as being caused by squirt flow.  相似文献   

3.
Cracks play a very important role in many geotechnical issues and in a number of processes in the Earth’s crust. Elastic waves can be used as a remote sensing tool for determining crack density. The effect of varying crack density in crystalline rock on the P- and S-wave velocity and dynamic elastic properties under confining pressure has been quantified. The evolution of P- and S-wave velocity were monitored as a suite of dry Westerly granite samples were taken to 60, 70, 80 and 90 % of the unconfined uniaxial strength of the sample. The damaged samples were then subjected to hydrostatic confining pressure from 2 MPa to 200 MPa to quantify the effect of varying crack density on the P- and S-wave velocity and elastic properties under confining pressure. The opening and propagation of microcracks predominantly parallel to the loading direction during uniaxial loading caused a 0.5 and 6.3 % decrease in the P- and S-wave velocity, respectively. During hydrostatic loading, microcracks are closed at 130 MPa confining pressure. At lower pressures the amount of crack damage in the samples has a small but measureable effect. We observed a systematic 6 and 4 % reduction in P- and S-wave velocity, respectively, due to an increase in the fracture density at 2 MPa confining pressure. The overall reduction in the P- and S-wave velocity decreased to 2 and 1 %, respectively, at 50 MPa. The elastic wave velocities of samples that have a greater amount of microcrack damage are more sensitive to pressure. Effective medium modelling was used to invert elastic wave velocities and infer crack density evolution. Comparing the crack density results with experimental data on Westerly granite samples shows that the effective medium modelling used gave interpretable and reasonable results. Changes in crack density can be interpreted as closure or opening of cracks and crack growth.  相似文献   

4.
In this work we propose a new methodology to calculate pore connectivity in granular rocks. This method is useful to characterize the pore networks of natural and laboratory compaction bands (CBs), and compare them with the host rock pore network.Data were collected using the synchrotron X-ray microtomography technique and quantitative analyses were carried out using the Pore3D software library. The porosity was calculated from segmented tridimensional images of deformed and pristine rocks. A process of skeletonization of the pore space was used to obtain the number of connected pores within the rock volume. By analyzing the skeletons the differences between natural and laboratory CBs were highlighted. The natural CB has a lower porosity than to the laboratory one. In natural CBs, the grain contacts appear welded, whereas laboratory CBs show irregular pore shape. Moreover, we assessed for the first time how pore connectivity evolves as a function of deformation, documenting the mechanism responsible for pore connectivity drop within the CBs.  相似文献   

5.
This study present the result of conventional triaxial tests conducted on samples of Rothbach sandstone cored parallel, oblique (at 45 degrees) and perpendicular to the bedding at effective pressures ranging from 5 to 250 MPa. Mechanical and microstructural data were used to determine the role of the bedding on mechanical strength and failure mode. We find that samples cored at 45 degrees to the bedding yield at intermediate level of differential stress between the ones for parallel and perpendicular samples at all effective pressures. Strain localization at high confining pressure (i.e., in the compactive domain) is observed in samples perpendicular and oblique to the bedding but not in samples cored parallel to the bedding. However, porosity reduction is comparable whether compactive shear bands, compaction bands or homogeneous cataclastic flow develop. Microstructural data suggest that (1) mechanical anisotropy is controlled by a preferred intergranular contact alignment parallel to the bedding and that (2) localization of compaction is controlled by bedding laminations and grain scale heterogeneity, which both prevent the development of well localized compaction features.  相似文献   

6.
Deformation mechanisms in experimentally and naturally deformed amphiboles   总被引:1,自引:0,他引:1  
Experimental deformation of an igneous hornblendite at 600–750°C, 10 kbars confining pressure and a strain rate of 10 ?5 sec?1 results in kink bands whose normals cluster about [001] and axes of external rotation subparallel to [010]. This is consistent with glide on the system T = (100), t = [001]. At temperatures of 800°C to the breakdown temperature of the hornblende, external rotation axes spread along the (100) plane although kink band boundary poles remain subparallel to [001]. This indicates glide on the (100) plane in variable directions. Analysis of bend zones in a naturally deformed actinolite indicates glide on the (100), [001] system. Mechanical (101) twinning was not observed in any of the samples, and we suggest that in these amphiboles the critical resolved shear stress for glide is lower than that for twinning.  相似文献   

7.
— To elucidate the spatial complexity of damage and evolution of localized failure in the transitional regime from brittle faulting to cataclastic ductile flow in a porous sandstone, we performed a series of triaxial compression experiments on Rothbach sandstone (20% porosity). Quantitative microstructural analysis and X-ray computed tomography (CT) imaging were conducted on deformed samples. Localized failure was observed in samples at effective pressures ranging from 5 MPa to 130 MPa. In the brittle faulting regime, dilating shear bands were observed. The CT images and stereological measurements reveal the geometric complexity and spatial heterogeneity of damage in the failed samples. In the transitional regime (at effective pressures between 45 MPa and 130 MPa), compacting shear bands at high angles and compaction bands perpendicular to the maximum compression direction were observed. The laboratory results suggest that these complex localized features can be pervasive in sandstone formations, not just limited to the very porous aeolian sandstone in which they were first documented. The microstructural observations are in qualitative agreement with theoretical predictions of bifurcation analyses, except for the occurrence of compaction bands in the sample deformed at effective pressure of 130 MPa. The bifurcation analysis with the constitutive model used in this paper is nonadequate to predict compaction band formation, may be due to the neglect of bedding anisotropy of the rock and multiple yield mechanisms in the constitutive model.  相似文献   

8.
A laboratory study was carried out to investigate the influence of confining stress on compressional- and shear-wave velocities for a set of rock samples from gas-producing sandstone reservoirs in the Cooper Basin, South Australia. The suite of samples consists of 22 consolidated sublitharenites with helium porosity ranging from 2.6% to 16.6%. We used a pulse-echo technique to measure compressional- and shear-wave velocities on dry samples (cylindrical 4.6 × 2 cm) at room temperature and at elevated confining stress (≤ 60 MPa). Compressional- and shear-wave velocities in samples increase non-linearly with confining stress. A regression equation of the form V = A ? Be?DP gives a good fit to the measured velocities with improved prediction of velocities at high confining stresses compared with equations suggested by other studies. The predicted microcrack-closure stresses of the samples show values ranging from 70 MPa to 95 MPa and insignificant correlation with porosity, permeability or clay content. There is a positive correlation between change in velocity with core porosity and permeability, but this association is weak and diminishes with increasing confining stress. Experimental results show that pore geometry, grain-contact type, and distribution and location of clay particles may be more significant than total porosity and clay content in describing the stress sensitivity of sandstones at in situ reservoir effective stress. The stress dependence of Cooper Basin sandstones is very large compared with data from other studies. The implication of our study for hydrocarbon exploration is that where the in situ reservoir effective stress is much less than the microcrack-closure stress of the reservoir rocks, the variation of reservoir effective stress could cause significant changes in velocity of the reservoir rocks. The velocity changes induced by effective stress in highly stress-sensitive rocks can be detected at sonic-log and probably surface-seismic frequencies.  相似文献   

9.
We report an experimental and microstructural study of the frictional properties of simulated fault gouges prepared from natural limestone (96 % CaCO3) and pure calcite. Our experiments consisted of direct shear tests performed, under dry and wet conditions, at an effective normal stress of 50 MPa, at 18–150 °C and sliding velocities of 0.1–10 μm/s. Wet experiments used a pore water pressure of 10 MPa. Wet gouges typically showed a lower steady-state frictional strength (μ = 0.6) than dry gouges (μ = 0.7–0.8), particularly in the case of the pure calcite samples. All runs showed a transition from stable velocity strengthening to (potentially) unstable velocity weakening slip above 80–100 °C. All recovered samples showed patchy, mirror-like surfaces marking boundary shear planes. Optical study of sections cut normal to the shear plane and parallel to the shear direction showed both boundary and inclined shear bands, characterized by extreme grain comminution and a crystallographic preferred orientation. Cross-sections of boundary shears, cut normal to the shear direction using focused ion beam—SEM, from pure calcite gouges sheared at 18 and 150 °C, revealed dense arrays of rounded, ~0.3 μm-sized particles in the shear band core. Transmission electron microscopy showed that these particles consist of 5–20 nm sized calcite nanocrystals. All samples showed evidence for cataclasis and crystal plasticity. Comparing our results with previous models for gouge friction, we suggest that frictional behaviour was controlled by competition between crystal plastic and granular flow processes active in the shear bands, with water facilitating pressure solution, subcritical cracking and intergranular lubrication. Our data have important implications for the depth of the seismogenic zone in tectonically active limestone terrains. Contrary to recent claims, our data also demonstrate that nanocrystalline mirror-like slip surfaces in calcite(-rich) faults are not necessarily indicative of seismic slip rates.  相似文献   

10.
Laboratory estimates of normal and shear fracture compliance   总被引:2,自引:0,他引:2  
Laboratory estimates of the normal (Bn) and shear (Bt) compliance of artificial fractures in samples of Jurassic and Carboniferous limestone under wet and dry conditions are presented. The experiments were performed over a range of confining pressures (from 5 MPa up to 60 MPa), at ultrasonic frequencies in a Triaxial Hoek cell, using the pulse‐echo reflection technique. The results of this study confirm that the Bn/Bt ratio of a fracture is dependent on the fluid fill. A value of Bn/ Bt of less than 0.05 was obtained for our wet (honey saturated) sample which is consistent with the prediction that this ratio should be close to zero for fluid saturated fractures. Values of Bn/Bt for the dry sample are significantly higher and increase with confining pressure from 0.2 to 0.5. It is suggested that a Bn/Bt ratio of 0.5 is probably a more representative value to use in modelling studies of gas filled fractures than the common assumption that Bn ≈ Bt.  相似文献   

11.
We present a comprehensive characterisation of the physical, mineralogical, geomechanical, geophysical, and hydrodynamic properties of Corvio sandstone. This information, together with a detailed assessment of anisotropy, is needed to establish Corvio sandstone as a useful laboratory rock‐testing standard for well‐constrained studies of thermo–hydro–mechanical–chemical coupled phenomena associated with CO2 storage practices and for geological reservoir studies in general. More than 200 core plugs of Corvio sandstone (38.1 and 50 mm diameters, 2:1 length‐to‐diameter ratio) were used in this characterisation study, with a rock porosity of 21.7 ± 1.2%, dry density 2036 ± 32 kg m?3, and unconfined compressive and tensile strengths of 41 ± 3.28 and 2.3 ± 0.14 MPa, respectively. Geomechanical tests show that the rock behaves elastically between ~10 and ~18 MPa under unconfined conditions with associated Young's modulus and Poisson's ratio of 11.8 ± 2.8 GPa and 0.34 ± 0.01 GPa, respectively. Permeability abruptly decreases with confining pressure up to ~10 MPa and then stabilises at ~1 mD. Ultrasonic P‐ and S‐wave velocities vary from about 2.8–3.8 km s?1 and 1.5–2.4 km s?1, respectively, over confining and differential pressures between 0.1 and 35 MPa, allowing derivation of associated dynamic elastic moduli. Anisotropy was investigated using oriented core plugs for electrical resistivity, elastic wave velocity and attenuation, permeability, and tracer injection tests. Corvio sandstone shows weak transverse isotropy (symmetry axis normal to bedding) of <10% for velocity and <20% for attenuation.  相似文献   

12.
刘斌 《地球物理学报》1998,41(4):537-546
选择具有不同孔隙度的三种岩石样品,在最高达600MPa (干燥样品)或300MPa (水饱和样品)的不同围压条件下,同时测量了在其中传播的纵、横波的速度及衰减。对于低孔隙度的花岗岩,干燥和水饱和样品的 Q 值几乎没有差别,但与干燥样品相比,水饱和样品中的纵波速度较高而横波速度稍低。对于中等孔隙度的杂砂岩,干燥样品和水饱和样品的波速和 Q 值及其随围压的变化有明显的不同。在高孔隙度的砂岩中这种不同更加显著。综合分析同时测得的纵、横波速度和 Q 值可以发现,当围压增加时,低孔隙度的花岗岩中同体应变相关的能量损失与同剪切应变相关的能量损失之比减小,但在中等孔隙度的杂砂岩和高孔隙度的砂岩中这一比值增大;同时,水饱和样品中的这一比值要比干燥样品中的大,而且它们之间的差别同样品的孔隙度正相关。  相似文献   

13.
We performed deformation experiments using Carrara marble in dry and wet conditions under temperature of 400~700℃ and confining pressure 300MPa with two different strain rates. Water contents of deformed samples were measured using FTIR spectroscopy. The microstructure and deformation mechanisms of samples were observed under optical microscopy, scanning electron microscopy and energy spectroscopy analysis. The mechanical data show that samples display strain hardening at 400℃, and transition to steady creep at temperature from 500~700℃. The strength of marble reduced gradually with elevated temperatures or decreased strain rate. However, water effect to the strength of the marble is significantly weak. Microstructures observed show that the deformation is cataclastic flow in dry samples, fracture and pressure solution in wet samples at 400℃. Samples underwent brittle-plastic transition at 500℃. Dislocation glide is major deformation mechanism for dry samples at 600℃. Dislocation climb and dynamic recrystallization are major deformation mechanism for wet samples at 600℃ and for all wet samples and dry samples at 700℃. Lower strain rate and higher water content could promote the process of pressure solution and diffusion as well as dynamic recrystallization.  相似文献   

14.
The present paper presents a diagnostic study of two recent monsoon years, of which one is dry monsoon year (2009) and the other is wet monsoon year (2010). The study utilized the IMD gridded rainfall data set in addition to the Reynolds SST, NCEP-NCAR reanalysis wind and temperature products, and NOAA OLR. The study revealed that the months July and August are the most crucial months to decide whether the ISMR is wet or dry. However, during July 2009, most of the Indian subcontinent received more than 60 % in the central and western coastal regions. In a wet monsoon year, about 35–45 % of rainfall is contributed during June and July in most parts of India. During these years, the influence of features in the Pacific Ocean played vital role on the Indian summer monsoon rainfall. During 2009, Pacific SST was above normal in nino regions, characteristic of the El Nino structure; however, during 2010, the nino regions were clearly below normal temperature, indicating the La Nina pattern. The associated atmospheric general circulation through equatorial Walker and regional Hadley circulation modulates the tropospheric temperature, and hence the organized convective cloud bands. These cloud bands show different characteristics in northward propagation during dry and wet years of ISMR. During a dry year, the propagation speed and magnitudes are considerably higher than during a wet monsoon year.  相似文献   

15.
ABSTRACT

Over the last decade, monoculture plantations have rapidly developed in Jambi Province on Sumatra, Indonesia. Meanwhile, there has been intensification of discharge fluctuation in the study area. We examined the relative contribution of changes in evapotranspiration and soil compaction to the catchment discharge by using the Soil Water Assessment Tool model. Evapotranspiration values based on the catchment water balance analysis in intensively cultivated oil palm plantations, smallholder oil palm plantations, rubber plantations, and the secondary forest are 5.03 ± 0.30, 4.11 ± 0.38, 3.36 ± 0.32, and 4.50 ± 0.18 mm d?1, respectively. Infiltration rate in active interrows of oil palm, rubber plantations, agroforest, oil palm frond pile is 2.6 ± 1.7, 16.3 ± 6.8, 28.0 ± 3.9, 58.2 ± 21.8 cm h?1, respectively. We found that increased evapotranspiration and soil compaction increased the frequency of low discharge by 30%, with increased evapotranspiration contributing 10% and increased soil compaction contributing 20%.  相似文献   

16.
— The influence of differential stress on the permeability of a Lower Permian sandstone was investigated. Rock cylinders of 50 mm in diameter and 100 mm length of a fine-grained (mean grain size 0.2 mm), low-porosity (6–9%) sandstone were used to study the relation between differential stress, rock deformation, rock failure and hydraulic properties, with a focus on the changes of hydraulic properties in the pre-failure and failure region of triaxial rock deformation. The experiments were conducted at confining pressures up to 20 MPa, and axial force was controlled by lateral strain with a rate ranging from 10?6 to 10?7 sec?1. While deforming the samples, permeability was determined by steady-state technique with a pressure gradient of 1 MPa over the specimen length and a fluid pressure level between 40 and 90% of the confining pressure. The results show that permeability of low-porosity sandstones under increasing triaxial stress firstly decreases due to compaction and starts to increase after the onset of dilatancy. This kind of permeability evolution is similar to that of crystalline rocks. A significant dependence of permeability evolution on strain rate was found. Comparison of permeability to volumetric strain demonstrates that the permeability increase after the onset of dilatancy is not sufficient to regain the initial permeability up to failure of the specimen. The initial permeability, which was determined in advance of the experiments, usually was regained in the post-failure region. After the onset of dilatancy, the permeability increase displays a linear dependence on volumetric strain.  相似文献   

17.
The experimental studies done at high temperature and high pressure find that increased temperature can lead to dramatic velocity and strength reductions of most of rocks at high confining pressure[1,2]. What causes this phenomenon? Is it due to dehydrati…  相似文献   

18.
The evolution of the deep salinity-maximum associated with the Lower Circumpolar Deep Water (LCDW) is assessed using a set of 37 hydrographic sections collected over a 20-year period in the Southern Ocean as part of the WOCE/CLIVAR programme. A circumpolar decrease in the value of the salinity-maximum is observed eastwards from the North Atlantic Deep Water (NADW) in the Atlantic sector of the Southern Ocean through the Indian and Pacific sectors to Drake Passage. Isopycnal mixing processes are limited by circumpolar fronts, and in the Atlantic sector, this acts to limit the direct poleward propagation of the salinity signal. Limited entrainment occurs into the Weddell Gyre, with LCDW entering primarily through the eddy-dominated eastern limb. A vertical mixing coefficient, κV of (2.86 ± 1.06) × 10?4 m2 s?1 and an isopycnal mixing coefficient, κI of (8.97 ± 1.67) × 102 m2 s?1 are calculated for the eastern Indian and Pacific sectors of the Antarctic Circumpolar Current (ACC). A κV of (2.39 ± 2.83) × 10?5 m2 s?1, an order of magnitude smaller, and a κI of (2.47 ± 0.63) × 102 m2 s?1, three times smaller, are calculated for the southern and eastern Weddell Gyre reflecting a more turbulent regime in the ACC and a less turbulent regime in the Weddell Gyre. In agreement with other studies, we conclude that the ACC acts as a barrier to direct meridional transport and mixing in the Atlantic sector evidenced by the eastward propagation of the deep salinity-maximum signal, insulating the Weddell Gyre from short-term changes in NADW characteristics.  相似文献   

19.
We quantified how rates of stream channel migration in a montane meadow vary as a function of the riparian vegetation community. The South Fork of the Kern River at Monache Meadow, located in California's southern Sierra Nevada range, supports two distinct types of vegetation: a dry meadow community dominated by sagebrush and non‐native grasses (xeric scrub and meadow), and a wet meadow community dominated by rushes and sedges (hydric graminoids). We measured rates of lateral stream migration for dry versus wet meadow reaches from aerial photographs spanning a 40‐year period (1955–1995). While stream migration rates averaged only 0·24 ± 0·02 m a?1 in the wet meadow, the dry meadow channel migrated an average of 1·4 ± 0·3 m a?1. We used a linear model of meander migration to calculate coefficients that characterize bank migration potential, or bank erodibility, independent of channel curvature. These calculations demonstrate that, at Monache Meadow, banks without wet meadow vegetation are roughly ten times more susceptible to erosion than banks with wet meadow vegetation. Where stream bank heights consistently exceed 1 m, low water availability creates riparian habitats dominated by dry meadow vegetation. Thus, channel incision may reduce bank stability not only by increasing bank height, but also by converting banks from wet meadow to dry meadow vegetation. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

20.
In Taiwan an international project to drill into the Chelungpu fault (TCDP) was initiated after the M w 7.6 Chi-Chi earthquake in 1999. At Takeng, two vertical holes (A and B) to depths of about 2 km have been drilled through the northern portion of the Chelungpu fault system. In this study, we conducted systematic hydromechanical tests on TCDP drillcores collected from Hole-A at various depths above and below the major slip zone of the Chelungpu fault. We focus on the measurements of permeability as function of pressure and the brittle failure behavior. Evolution of permeability as a function of pressure and porosity was measured using either steady-state flow or a pulse transient technique. When subjected to an effective pressure reaching 100 MPa, permeability values of shaly siltstone samples range from 10?16 to 10?19 m2. In comparison, permeability values of porous sandstones are at least an order of magnitude higher, ranging from 10?14 to 10?18 m2. To characterize permeability anisotropy associated with the bedding structure of the rocks of the Chelungpu fault, cylindrical samples were taken from the TCDP drillcores along three orthogonal directions, denoted X, Y and Z respectively. Direction Z is parallel to the TCDP core axis, and the other two directions are perpendicular to the core axis, with X (N105°E) perpendicular and Y (N15°E) parallel to the strike of the bedding. In shaly siltstones, permeability values of samples cored along the strike of bedding (direction Y) can be up to 1 order of magnitude higher than those cored perpendicular to the strike of bedding (direction X). These observations indicate that permeability anisotropy is controlled by the spatial distribution of bedding in Chelungpu fault host rocks. Permeability evolution of fault rocks plays an important role in dynamic weakening processes, which are particularly pertinent to large earthquakes such as the Chi-Chi earthquake. Our experimental data on permeability and its anisotropy of TCDP core samples provide necessary constraints on fault models and proposed weakening mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号