首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
—We have developed a least-squares minimization approach to determine the shape (shape-factor) of a buried polarized body from a residual self-potential anomaly profile. By defining the zero anomaly distance and the anomaly value at the origin on the profile, the problem of the shape-factor determination is transformed into the problem of finding a solution of a nonlinear equation of the form f(q) = 0. Procedures are also formulated to estimate the depth of polarization angle, and the electric dipole moment. The method is applied to synthetic data with and without random noise. The obtained shape-factor agrees very well with the model shape-factor when using synthetic data. After adding ± 2 percent random error in the synthetic data, the shape factor obtained is within ± 4 percent. Finally the validity of the method is tested on a field example from the Ergani copper district, Turkey.  相似文献   

2.
v--vUsing Frank and Wolfe's algorithm, a new interesting nonlinear programming technique has been developed in an attempt to estimate the geometric shape factor of a buried polarized body from a residual self-potential anomaly. Furthermore, the depth, the polarization angle and the electrical dipole moment have also been derived. This algorithm is noted to be robust and its application to SP data converges rapidly towards the optimal solution. The developed technique is tested through studying synthetic data with and without random noise. As a result, the near agreement between the model geometric shape factor and the evaluated one is well recognized. The validity of this proposed technique is tested on a field example from the Ergani Copper district, Turkey. The superiority of the nonlinear programming technique over other recently published methods is shown.  相似文献   

3.
A quantitative interpretation method of self-potential field anomalies has been proposed. The method is designed and implemented for the estimation of center depth, electric dipole moment or magnitude of polarization, polarization angle, and geometric shape factor of a buried body from SP field data, related to simple geometric structures such as cylinders, spheres and sheet-like bodies. The proposed method is based on Fair function minimization and also on stochastic optimization modeling. This new technique was first tested on theoretical synthetic data randomly generated by a chosen statistical distribution from a known model with different random noise components. Such mathematical simulation shows a very close agreement between assumed and estimated model parameters. Being theoretically proven, it has been applied and tested on self-potential field data taken from the United States, Germany, India and Turkey. The agreement between results obtained by the suggested method and those obtained by other previous methods is good and comparable. Moreover, the depth obtained by this method is found to be in high accordance with that obtained from drilling information.  相似文献   

4.
This paper presents a simple method for shape and depth determination of a buried structure from residual gravity anomalies along profile. The method utilizes the anomaly values of the origin and characteristic points of the profile to construct a relationship between the shape factor and depth of the causative source. For fixed points, the depth is determined for each shape factor. The computed depths are then plotted against the shape factor representing a continuous monotonically increasing curve. The solution for the shape and depth of the buried structure is then read at the common intersection point of the depth curves. This method is applied to synthetic data with and without random errors. Finally, the validity of the method is tested on two field examples from the USA.  相似文献   

5.
We have developed a least-squares minimization approach to depth determination of a buried ore deposit from numerical horizontal gradients obtained from self-potential (SP) data using filters of successive window lengths (graticule spacings). The problem of depth determination from SP gradients has been transformed into the problem of finding a solution to a nonlinear equation of the form f(z)=0. Formulas have been derived for vertical and horizontal cylinders and spheres. Procedures are also formulated to estimate the electrical dipole moment and the polarization angle. The method is applied to synthetic data with and without random noise. Finally, the validity of the method is tested on two field examples. In both cases, the depth obtained is found to be in a very good agreement with that obtained from drilling information.  相似文献   

6.
We have developed a least‐squares minimization approach to depth determination using numerical second horizontal derivative anomalies obtained from magnetic data with filters of successive window lengths (graticule spacings). The problem of depth determination from second‐derivative magnetic anomalies has been transformed into finding a solution to a non‐linear equation of the form, f(z) = 0. Formulae have been derived for a sphere, a horizontal cylinder, a dike and a geological contact. Procedures are also formulated to estimate the magnetic angle and the amplitude coefficient. We have also developed a simple method to define simultaneously the shape (shape factor) and the depth of a buried structure from magnetic data. The method is based on computing the variance of depths determined from all second‐derivative anomaly profiles using the above method. The variance is considered a criterion for determining the correct shape and depth of the buried structure. When the correct shape factor is used, the variance of depths is less than the variances computed using incorrect shape factors. The method is applied to synthetic data with and without random errors, complicated regionals, and interference from neighbouring magnetic rocks. Finally, the method is tested on a field example from India. In all the cases examined, the depth and the shape parameters are found to be in good agreement with the actual parameters.  相似文献   

7.
A new approach is proposed in order to interpret field self-potential (SP) anomalies related to simple geometric-shaped models such as sphere, horizontal cylinder, and vertical cylinder. This approach is mainly based on solving a set of algebraic linear equations, and directed towards the best estimate of the three model parameters, e.g., electric dipole moment, depth, and polarization angle. Its utility and validity are demonstrated through studying and analyzing synthetic self-potential anomalies obtained by using simulated data generated from a known model and a statistical distribution with different random errors components. Being theoretically tested and proven, this approach has been consequently applied on two real field self-potential anomalies taken from Colorado and Turkey. A comparable and acceptable agreement is obtained between the results derived by the new proposed method and those deduced by other interpretation methods. Moreover, the depth obtained by such an approach is found to be very close to that obtained by drilling information.  相似文献   

8.
We have developed an automatic method to determine the depth of a buried sphere from numerical second horizontal derivative anomalies obtained from total field magnetic data. The method is based on using a relationship between the depth and a combination of observations at symmetric points with respect to the coordinate of the projection of the center of the source in the plane of the measurement points with a free parameter (graticule spacing). The problem of depth determination has been transformed into the problem of finding a solution of a nonlinear equation of f(z) = 0. Procedures are also formulated to determine the magnetic moment and the effective angle of magnetization. The method is applied to synthetic examples with and without random errors and tested on a field example from Senegal. In all cases, the depth solutions are in good agreement with the actual ones.  相似文献   

9.
We have developed a least‐squares minimization approach to determine simultaneously the shape (shape factor) and the depth of a buried structure from self‐potential (SP) data. The method is based on computing the standard deviation of the depths determined from all moving‐average residual anomalies obtained from SP data, using filters of successive window lengths for each shape factor. The standard deviation may generally be considered a criterion for determining the correct depth and shape factor of the buried structure. When the correct shape factor is used, the standard deviation of the depths is less than the standard deviations computed using incorrect shape factors. This method is applied to synthetic data with and without random errors, complicated regionals and interference from neighbouring sources, and is tested on a known field example from Turkey. In all cases, the shape and depth solutions obtained are in a good agreement with the actual values.  相似文献   

10.
—The residual anomaly expression due to two simple geologic structures can be represented by the sum of fields produced by two known source bodies whose depths are to be determined. For a few fixed characteristic points and distances along the residual anomaly profile, the depth to the upper structure is determined iteratively using a simple formula for each depth of the lower structure. The computed depths to the lower structure are plotted against the depths to the upper structure representing a depth curve. The solution for the depths to both structures is read at the common intersection of the depth curves. Procedures are also formulated to estimate the radii of the two buried structures. The method is a powerful technique for separating the composite residual anomaly into two residual components due to two structures. The method is applied to theoretical data with and without random errors and tested on a field example from U.S.A.  相似文献   

11.
A new interpretative approach is proposed to interpret residual gravity anomaly profiles in order to determine the depth, the amplitude coefficient and the geometric shape factor of simple spherical and cylindrical buried structures. This new approach is based on both Fair function minimization and on stochastic optimization modeling. The validity of this interpretative approach is demonstrated through studying and analyzing two synthetic gravity anomalies, using simulated data generated from a known model with different random noises components and a known statistical distribution. Being theoretically proven, this new approach has been applied on three real field gravity anomalies from Sweden, Senegal and the United States. The agreement between the results obtained by the proposed method and those obtained by other interpretation methods is good and comparable.  相似文献   

12.
本文通过柯尔-柯尔模型研究地下不同几何参数的极化椭球体在地表的中梯双频激电响应,从而了解不同产状极化体产生极化率的特征,便于后期交互建模。由理论推导可知,任何具有激发极化特征的地质体在地表产生的激电异常都可近似为一个地下电偶极子的三维空间积分,这个积分形式与磁场正演计算公式一致,这意味着我们可以用解释磁法异常的方法解释激电异常,即磁类比法。只要根据先验信息实时改变模型,使激电正演得到的曲线与实测激电曲线逼近,当拟合差小于均方误差时,我们将最后一次模型近似看作是真实模型,由此获得地下极化体的顶埋深、倾角和几何大小等空间参数。实测数据测试表明,这种磁类比人机交互方法加入矿体的一些已知信息后,其拟合反演结果比自动反演更具合理性。   相似文献   

13.
We have developed three different least-squares approaches to determine successively: the depth, magnetic angle, and amplitude coefficient of a buried sphere from a total magnetic anomaly. By defining the anomaly value at the origin and the nearest zero-anomaly distance from the origin on the profile, the problem of depth determination is transformed into the problem of finding a solution of a nonlinear equation of the form f(z)=0. Knowing the depth and applying the least-squares method, the magnetic angle and amplitude coefficient are determined using two simple linear equations. In this way, the depth, magnetic angle, and amplitude coefficient are determined individually from all observed total magnetic data. The method is applied to synthetic examples with and without random errors and tested on a field example from Senegal, West Africa. In all cases, the depth solutions are in good agreement with the actual ones.  相似文献   

14.
The magnetometric resistivity (MMR) method uses a sensitive magnetometer to measure the low-level, low-frequency magnetic fields associated with the galvanic current flow between a pair of electrodes. While the MMR anomalies of simple structures such as dikes and vertical contacts have been determined analytically, there is a lack of systematic information on the expected responses from simple three-dimensional bodies. We determine the characteristic anomalies associated with square, plate-like conductors, which are excellent models of many base metal mineral deposits. The anomalies of plates of finite size are determined numerically using an integral equation method. A plate is subdivided into many sections and the current flow within each section is solved by equating the electrical field within each section to the tangential electrical field just outside it. When the plate size is small in relation to either the depth or the transmitter spacing, the shape and amplitude of the anomaly produced is closely approximated by a current dipole model of the same length and depth. At the other extreme, a large plate is represented by a half-plane. The dipole and half-plane models are used to bracket the behaviour of plates of finite size. The form of a plate anomaly is principally dependent on the shape, depth and orientation of the plate. A large, dipping plate near the surface produces a skewed anomaly highly indicative of its dip, but the amount of skew rapidly diminishes with increased depth or decreased size. Changes in plate conductivity affect the amplitude of the anomaly, but have little effect on anomaly shape. A current channelling parameter, determined from the conductivity contrast, can thus be used to scale the amplitude of an anomaly whose basic shape has been determined from geometrical considerations. The separation into geometrical and electrical factors greatly simplifies both the interpretation and modelling of MMR anomalies, particularly in situations with multiple plates. An empirical formula, using this separation, predicts the anomaly of two or more parallel plates with different conductances. In addition, the relation between the resolution of two vertical, parallel plates of equal conductance and their separation is determined. The ability of the integral equation method to model plate-like structures is demonstrated with the interpretation of an MMR anomaly in a survey conducted at Cork Tree Well in Western Australia. The buried conductor, a mineralized graphitic zone, is modelled with a vertical, bent plate. The depth to the top of the plate, and the plate conductance, is adjusted to fit the anomaly amplitude as closely as possible. From the modelling it would appear that this zone is not solely responsible for the observed anomaly.  相似文献   

15.
This study investigates the inverse solution on a buried and polarized sphere-shaped body using the self-potential method via multilayer perceptron neural networks (MLPNN). The polarization angle (α), depth to the centre of sphere (h), electrical dipole moment (K) and the zero distance from the origin (x 0) were estimated. For testing the success of the MLPNN for sphere model, parameters were also estimated by the traditional Damped Least Squares (Levenberg–Marquardt) inversion technique (DLS). The MLPNN was first tested on a synthetic example. The performance of method was also tested for two S/N ratios (5 % and 10 %) by adding noise to the same synthetic data, the estimated model parameters with MLPNN and DLS method are satisfactory. The MLPNN also applied for the field data example in ?zmir, Urla district, Turkey, with two cross-section data evaluated by MLPNN and DLS, and the two methods showed good agreement.  相似文献   

16.
We have developed a least-squares approach to determine simultaneously the depth to both the top and base of a buried finite vertical cylinder (vertical line element approximation) and a 2-D vertical thin sheet from moving average residual anomaly profiles obtained from gravity data using filters of successive window lengths. The method involves using a relationship between the depth to the top, and base of the source and a combination of windowed observations. The method is based on computing the standard deviation of the depths to the top, determined from all moving average residual anomalies for each value of the depth to the base. The standard deviation may generally be considered a criterion for determining the correct depth to the top and base of the buried structure. When the correct depth to the base value is used, the standard deviation of the depths to the top is less than the standard deviation using incorrect values of the depth to the base. This method can be applied to residuals as well as to the observed gravity data. The method is applied to synthetic examples with and without random errors and tested on two field examples from the USA and Canada.  相似文献   

17.
We have developed a least-squares minimization approach to determine the depth and the amplitude coefficient of a buried structure from residual gravity anomaly profile. This approach is basically based on application of Werner deconvolution method to gravity formulas due to spheres and cylinders, and solving a set of algebraic linear equations to estimate the two-model parameters. The validity of this new method is demonstrated through studying and analyzing two synthetic gravity anomalies, using simulated data generated from a known model with different random error components and a known statistical distribution. After being theoretically proven, this approach was applied on two real field gravity anomalies from Cuba and Sweden. The agreement between the results obtained by the proposed method and those obtained by other interpretation methods is good and comparable. Moreover, the depth obtained by the proposed approach is found to be in very good agreement with that obtained from drilling information.  相似文献   

18.
海底电性源频率域CSEM勘探建模及水深影响分析   总被引:4,自引:3,他引:1       下载免费PDF全文
为了探索我国海域油气和水合物等高阻目标体CSEM勘探的可行性和方法技术,本文研究了在海水中水平电性源激励下有限水深海洋地电模型的频率域电磁响应,为进一步的1D和3D仿真计算奠定了理论基础.在推导电磁响应公式时,首先给出了各层介质的Lorentz势,然后根据Coulomb势与Lorentz势的关系,得到了各层介质的Coulomb势.各层介质中的电磁场均可以由Lorentz势或者Coulomb势计算得到,但在有限元计算时Coulomb势具有优势.长导线源的电磁场和势函数可以由电偶源的电磁场和势函数沿导线长度积分得到.文中具体给出了海水中水平电偶源和长导线源在海水层的电磁场公式,并根据该公式计算了不同水深环境下海底表面的电磁场分布,分析了海水深度对海底油气储层电磁异常的影响.结果表明,随着水深减小,异常幅度和形态特征发生明显变化.当水深很浅时(如50 m),只有同线方向的Ex和Ez两个电场分量存在明显异常.最后,以两个已知海底油田为例,计算了不同水深环境下可观测到的电场异常,展示了电性源频率域CSEM在海底勘探中(包括浅海环境)的良好应用前景.对于该方法实用化过程中还需进一步解决的问题,文中结尾部分也进行了初步探讨.  相似文献   

19.
This paper gives analytical expressions for the 1-D and 2-D frequency spectra of the self-potential field produced by a polarized sphere. In 1-D, the amplitude spectrum of the potential field leads to a criterion for determination of the depthh to the centre of the sphere. The polarization angle of the buried sphere can be calculated from the maximum point of the amplitude spectrum of the electric field. In 2-D, the depth to the centre of the polarized sphere can be calculated if the polarization is vertical.  相似文献   

20.
Interpretation of magnetic anomalies of dikes using correlation factors   总被引:1,自引:0,他引:1  
The magnetic anomaly due to a buried dike consists of the sum of two easily separated elementary functions. These functions, which have simple symmetry, are called even and odd functions. The correlation factors (r 0,1 for the even andr 0,2 for the odd function) between least-squares residual anomalies from even and odd functions are computed. Correlation values are used to determine the depth to the top and the half-width of the dike. The method also includes the determination of the index parameter and the amplitude coefficient. The validity of the method is tested against a theoretical and a field example where the parameters of the latter were determined by other investigators in comparing the results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号