首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Wave reflection and diffraction due to the presence of a detached breakwater are studied with the aid of directional wave fields. At first, experiments were carried out for the case where a breakwater is the sole factor affecting the wave field. It is shown that, estimated directional spectra in front of a detached breakwater can be separated into two parts in the spatial domain. Denoting these as the incident and reflected part of the total energy, an estimate of the reflection coefficient can be obtained. An empirical equation is proposed. This equation relates the reflection coefficients with the distances of the measuring stations away from the breakwater, as well as directionality of the wave field. This equation was then applied to the experiments where the fishing harbour Ba-Do-Zhi (BDZ) was used as model. It is shown that favorable results are obtained. On the other hand, diffraction due to the detached breakwater was also studied in a similar way. It is shown that predictions based on the empirical equation are in quantitative agreements with measurements. It is proposed that these empirical equations can be used in engineering applications.  相似文献   

2.
波浪反射系数谱的特征分析   总被引:3,自引:1,他引:2  
应用斜向不规则波反射系数的改进两点法(MTPM),用模型试验研究了混凝土护面堤和块石护面堤波浪反射系数的频率谱和方向谱,结果表明,分析的反射系数随入射波频率的增加、结构坡度的减小和入射角的加大而减小.给出了波浪反射系数频率谱及其随Iribarren数变化的规律,提出了反射系数三维谱的经验公式,由此可定量地描述斜向不规则波的反射系数随无量纲特征参数Iribarren数和入射波角度的变化规律.  相似文献   

3.
Oblique wave diffraction by segmented offshore breakwaters   总被引:3,自引:0,他引:3  
This paper presents a theoretical model to examine oblique wave diffraction by a detached breakwater system consisting of an infinite row of regularly-spaced thin, impermeable structures located in water of uniform depth. The fluid is assumed incompressible and inviscid and to undergo irrotational motion. Wave heights are assumed to be sufficiently small such that linear wave theory is applicable. The eigenfunction expansion solution of Dalrymple and Martin (1990) for normal wave incidence on this breakwater geometry is modified herein to study oblique wave effects. Numerical results, in the form of contour maps of the relative wave height behind the structure, or complex reflection coefficients, are presented for a range of wave and breakwater parameters. The accuracy of the present model is verified by a comparison with existing results for the limiting cases of an isolated detached breakwater, and a breakwater with a single gap. Also, for the multi-gap breakwater, the present solution is further verified for both normal and oblique wave incidence with results in the open literature.  相似文献   

4.
Comprehensive experimental and numerical studies have been undertaken to investigate wave energy dissipation performance and main influencing factors of a lower arc-plate breakwater. The numerical model, which considers nonlinear interactions between waves and the arc-plate breakwater, has been constructed by using the velocity wave- generating method, the volume of fluid (VOF) method and the finite volume method. The results show that the relative width, relative height and relative submergence of the breakwater are three main influencing factors and have significant influence on wave energy dissipation of the lower arc-plate open breakwater. The transmission coefficient is found to decrease with the increasing relative width, and the minimum transmission coefficient is 0.15 when the relative width is 0.45. The reflection coefficient is found to vary slightly with the relative width, and the maximum reflection coefficient is 0.53 when the relative width is 0.45. The transmission and reflection coefficients are shown to increase with the relative wave height for approximately 85% of the experimental tests when the relative width is 0.19 0.45. The transmission coefficients at relative submergences of 0.04, 0.02 and 0 are clearly shown to be greater than those at relative submergences of 0.02 and 0.04, while the reflection coefficient exhibits the opposite relationship. After the wave interacts with the lower arc-plate breakwater, the wave energy is mainly converted into transmission, reflection and dissipation energies. The wave attenuation performance is clearly weakened for waves with greater heights and longer periods.  相似文献   

5.
《Coastal Engineering》2001,44(2):141-151
An analytical model has been developed that predicts the reflection of irregular waves normally incident upon a perforated-wall caisson breakwater. To examine the predictability of the developed model, laboratory experiments have been conducted for the reflection of irregular waves of various significant wave heights and periods impinging upon breakwaters having various wave chamber widths. For frequency-averaged reflection coefficients, though the overall agreement is fairly good between measurement and calculation, the model somewhat over-predicts the reflection coefficients at larger values, and under-predicts at smaller values. The model also underestimates the energy loss coefficients as wave reflection becomes larger. These differences occur because the model neglects the evanescent waves near the breakwater, which increase the energy loss at the perforated wall. The frequency-averaged reflection coefficient shows a minimum when the wave chamber width is approximately 0.2 times the significant wavelength, and it decreases with increasing wave steepness. Finally, it is shown that the reflection of irregular waves from a perforated-wall caisson breakwater depends on the wave frequency, so that the reflected wave spectrum shows a frequency dependent oscillatory behavior.  相似文献   

6.
Wang  Ke  Shi  Peng-fei  Chen  Yu-chao  Cheng  Xiao-ming 《中国海洋工程》2019,33(2):219-225
Based on the wave radiation and diffraction theory, this paper investigates a new type breakwater with upper arcshaped plate by using the boundary element method(BEM). By comparing with other three designs of plate type breakwater(lower arc-shaped plate, single horizontal plate and double horizontal plate), this new type breakwater has been proved more effective. The wave exiting force, transmission and reflection coefficients are analyzed and discussed. In order to reveal the wave elimination mechanism of this type of breakwater, the velocity field around the breakwater is obtained. It is shown that:(1) The sway exciting force is minimal.(2) When the ratio of the submergence and wave amplitude is 0.05, the wave elimination effect will increase by 50% compared with other three types of breakwater.(3) The obvious backflow is found above the plate in the velocity field analysis.  相似文献   

7.
试验研究了多向随机波浪在直立式防波堤和斜坡式防波堤前的反射情况。在试验中,改变波浪要素(波陡、周期)、波浪入射角度(正向、斜向)和方向分布以及防波堤的坡度,以充分研究这些因素对波浪反射的影响。遗传算法用来分析多向随机波从建筑物的反射。试验结果表明,直立堤的反射系数基本上不随入射波浪方向变化,斜坡堤的反射系数随波浪峰频的增大和堤坡的变缓而减小,且随波浪方向有一定变化。还探讨了多向随机波浪在斜坡式防波堤上的反射面位置问题。  相似文献   

8.
Wave interaction with a wave absorbing double curtain-wall breakwater   总被引:3,自引:0,他引:3  
Yong Liu  Yu-cheng Li 《Ocean Engineering》2011,38(10):1237-1245
This study examines the hydrodynamic performance of a wave absorbing double curtain-wall breakwater. The breakwater consists of a seaward perforated wall and a shoreward impermeable wall. Both walls extend from above the seawater to some distance above the seabed. Then the below gap allows the seawater exchange, the sediment transport and the fish passage. By means of the eigenfunction expansion method and a least square approach, a linear analytical solution is developed for the interaction of water waves with the breakwater. Then the reflection coefficient, the transmission coefficient and the wave forces acting on the walls are calculated. The numerical results obtained for limiting cases agree very well with previous predictions for a single partially immersed impermeable wall, the double partially immersed impermeable walls and the bottom-standing Jarlan-type breakwater. The predicted reflection coefficients for the present breakwater also agree reasonable with previous experimental results. Numerical results show that with appropriate structure parameters, the reflection and transmission coefficients of the breakwater may be both below 0.5 at a wide range of the relative water depth. At the same time, the magnitude of wave force acting on each wall is small. This is significant for practical engineering.  相似文献   

9.
Studies on the possible effects of a detached breakwater on the characteristics of the wavefield are carried out experimentally.A serpentine wave generator is used to generate both uni- andmulti-directional waves.Characteristics of the wave fields analyzed here include the wave fielddirectionality,and the probability distributions of surface elevations and of the wave heights.Owing to thepresence of the breakwater,waves outside the harbour are found to be reflected with,however,concen-trated energy within the harbour entrance.In general,wave heights can be approximated with a Rayleighdistribution,with occasional deviations from the theory.This occurs more frequently for waves with high-er peak frequency values than for those with lower values both for uni-and multi-directional waves.Sur-face elevations can be approximated with the Gaussian model.although the Edgeworth's form of the typeA Gram-Charlier series expansions would yield better fits.Wave directionality is found to have nodiscernible effects on  相似文献   

10.
采用模型试验和数值模拟研究了不同水深工况下半潮堤前的反射形态及时均流速场。基于Hilbert变换建立了叠合波的时频分离技术,同时获取了入射波和反射波的波面过程及相位关系,通过试验数据证明其适用于不同反射程度的波浪信号分析。不同水深工况下,半潮堤前形成了部分立波系统,腹点和节点分别以四分之一波长的偶数倍和奇数倍交替增加。半潮堤前底床水质点水平速度包络图与波面包络图相差四分之一周期的相位,水平速度的极大值和极小值分别出现在波面包络图的节点和腹点,意味着节点处易形成冲刷,腹点处易形成淤积。3种工况的周期平均速度场均在迎浪基床上方的堤脚处存在一个小型环流系统,可能引起局部冲刷,此处需加强防护。淹没工况下,半潮堤前的周期平均速度场形成一个大型环流系统,表层水流向堤后,中下层水流向海侧,意味着底床悬起的泥沙很可能向离岸方向流失。  相似文献   

11.
A procedure for estimating directional wave spectra from an array of wave probes based on the Maximum Entropy Method (MEM) is developed in the present paper. The MEM approach yields an angular spreading function at each frequency band consistent with the input cross-spectral density matrix. The method is evaluated using numerical simulations of directional sea states. The MEM is also used to analyze data obtained from the three-dimensional wave basin of the Hydraulics Laboratory, National Research Council of Canada. Finally, the MEM is compared with the Maximum Likelihood Method (MLM) and is shown to be a powerful tool for directional wave analysis.  相似文献   

12.
The comprehensive utilization of floating breakwaters, specially acting as a supporting structure for offshore marine renewable energy explorations, has received more and more attention recently. Based on linear water-wave theory, the hydrodynamic performance of a T-shaped floating breakwater is semi-analytically investigated through the matched eigenfunction expansion method (MEEM). Auxiliary functions, to speed up the convergence and improve the accuracy in the numerical computations, are introduced to represent the singular behavior of fluid field near the lower salient corners of the structure. The effects of the height and installation position of the vertical screen on the reflection and transmission coefficients, dynamic response and wave forces are examined. It is found that the presence of the screen shifts the resonance frequency of RAO for both surge and pitch modes to the low-frequency area, while has no effect on heave mode. The identical added masses, damping and transmission coefficients can be obtained in the cases where the screen holds the same distance away from the longitudinal central axis of the upper box-type structure. Moreover, a relatively small pitch response can be achieved in a wide wave–frequency range, when the breakwater is Γ-shaped.  相似文献   

13.
The aim of this paper is to develop an offshore breakwater, for which coefficients of both the wave reflection and transmission have low values. The breakwater is suggested to compose of n layers of porous materials with different porosities. A complex eigen function method is used in the theoretical analysis. Continuities of both mass flux and fluid pressure are assumed at interfaces between every two adjoining porous materials and at the interface between end materials and water region. Following a series of mathematical processes, the coefficients of the wave transmission and reflection along with the wave energy loss are calculated. The porosity of materials is varied in computations; and results are compared among structures composing of different layers of porous materials. A single layer offshore breakwater is shown to reduce simultaneously the coefficients of transmission and reflection only when the structure is very wide in the direction of wave propagation, and the structure material has a high porosity. A multilayer breakwater, however, can function well in reducing both coefficients at a much narrower width; structure having more layers can be more effective at narrower width. Finally, several experiments are conducted; theoretical computations and experimental results agree well.  相似文献   

14.
A series of regular and irregular wave experiments are conducted to study the reflective and transmitting performances of quarter circular breakwater (QCB) in comparison with those of semi-circular breakwater (SCB). Based on regular wave tests, the reflection and transmission characteristics of QCB are analyzed and a few influencing factors are investigated. Then, the wave energy dissipation as wave passing over the breakwater is discussed based on the hydraulic coefficients of QCB and SCB. In irregular wave experiments, the reflection coefficients of QCB and their spectrums are studied. Finally, the comparisons between the experimental results and numerical simulations for QCB under regular and irregular wave conditions are presented.  相似文献   

15.
A two-dimensional analytical solution is presented to study the reflection and transmission of linear water waves propagating past a submerged horizontal plate and through a vertical porous wall. The velocity potential in each fluid domain is formulated using three sets of orthogonal eigenfunctions and the unknown coefficients are determined from the matching conditions. Wave elevations and hydrodynamic forces acting on the porous wall are computed. Reflection and transmission coefficients are presented to examine the performance of the breakwater system. The present analytical solutions are found in fairly good agreement with the available laboratory data. The results indicate that the plate length, the porous-effect, the gap between plate and porous wall, and the submerged depth of the plate all show a significant influence on the reflected and transmitted wave fields. It is also interesting to note that the submerged plate plays an important role in reducing the transmitted wave height, especially for long incident waves.  相似文献   

16.
Rayleigh expansion is used to study the water-wave interaction with a row of pile breakwater in finite water depth. Evanescent waves, the wave energy dissipated on the fluid resistance and the thickness of the breakwater are totally included in the model. The formulae of wave reflection and transmission coefficients are obtained. The accuracy of the present model is verified by a comparison with existing results. It is found that the predicted wave reflection and transmission coefficients for the zero order are all highly consistent with the experimental data (Hagiwara, 1984; Isaacson et al., 1998) and plane wave solutions (Zhu, 2011). The losses of the wave energy for the fluid passing through slits play an important role, which removes the phenomena of enhanced wave transmission.  相似文献   

17.
The performance of the new wave diffraction feature of the shallow-water spectral model SWAN, particularly its ability to predict the multidirectional wave transformation around shore-parallel emerged breakwaters is examined using laboratory and field data. Comparison between model predictions and field measurements of directional spectra was used to identify the importance of various wave transformation processes in the evolution of the directional wave field. First, the model was evaluated against laboratory measurements of diffracted multidirectional waves around a breakwater shoulder. Excellent agreement between the model predictions and measurements was found for broad frequency and directional spectra. The performance of the model worsened with decreasing frequency and directional spread. Next, the performance of the model with regard to diffraction–refraction was assessed for directional wave spectra around detached breakwaters. Seven different field cases were considered: three wind–sea spectra with broad frequency and directional distributions, each coming from a different direction; two swell–sea bimodal spectra; and two swell spectra with narrow frequency and directional distributions. The new diffraction functionality in SWAN improved the prediction of wave heights around shore-parallel breakwaters. Processes such as beach reflection and wave transmission through breakwaters seem to have a significant role on transformation of swell waves behind the breakwaters. Bottom friction and wave–current interactions were less important, while the difference in frequency and directional distribution might be associated with seiching.  相似文献   

18.
Breakwaters are often built in coastal waters to facilitate navigation and recreation, both inside and outside regions of the breakwater. This requires that the reflection and transmission characteristics of the structure be both minimized at the same time. This is achieved by a design that will allow dissipation of wave energy by multiple reflection. Such structures will need the knowledge of these characteristics in their design. Model tests were performed on a shallow water breakwater concept of this type to determine the reflection and transmission coefficients. The concept of the breakwater was to reduce both the reflection and transmission of waves. It was found that the breakwater design was effective at certain wave characteristics. Nondimensional loads and local pressures on the breakwater panels are also reported which will facilitate the structural design of such breakwaters.  相似文献   

19.
海浪方向谱估计方法的比较   总被引:7,自引:3,他引:4  
分别利用数值模拟和实测资料对目前被认为分辨力较高的最大似然法(MLM)、扩展本征矢方法(EEV)、扩展最大滴方法(EMEP)以及贝叶斯方法(BDM)等四种海浪方向谱估计方法的可靠性进行了分析,从不同频率、不同噪声水平和不同方向集中度三个角度检验其再现性、稳定性和实用性,结果表明MLM、EEV和BDM大致给出相同的方向分布,其中BDM的再现性最好,但实用性逊于MLM和EEV,EMEP由于稳定性差,不适用于实测资料的分析.  相似文献   

20.
圆弧板透空式防波堤消波性能试验研究   总被引:1,自引:1,他引:0  
提出了一种由多层圆弧板组成的新型透空式防波堤结构,并对其在二维规则波浪作用下的消波性能进行了物理模型试验研究。在不同入射波高条件下,对圆弧板和水平板透空结构的消波性能进行了比较分析,探讨了圆弧板间距和层数对圆弧板透空式结构消波性能的影响。研究结果表明,圆弧板透空式结构的消波效果优于水平板式透空结构,在相对宽度为0.2时,可以使透射系数达0.5以下。随着圆弧板间距从0.15 m减小到0.05 m时,消波效果逐步提升,而圆弧板的层数对结构的消波性能也有一定影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号