首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
An abrupt decrease in the solar wind pressure and its effect on the magnetosphere and ionosphere during the event occurring on April 4, 1971, are studied. This event differs fundamentally from a typical sudden commencement (SC) of a geomagnetic storm or from a positive sudden impulse (SI+) and is determined as a negative sudden impulse (SI). The geomagnetic variations at different latitudes and the cosmic radio emission in the auroral zone are analyzed. From the data of low-latitude geomagnetic observatories, several subsequent negative impulses observed with a periodicity of ~45 min were found. At the same time, a sudden decrease in the absorption of cosmic radio emission in the auroral zone was revealed. Possible physical explanations of the observed changes are discussed.  相似文献   

2.
Recent observations have quantified the auroral wind O+ outflow in response to magnetospheric inputs to the ionosphere, notably Poynting energy flux and precipitating electron density. For moderate to high activity periods, ionospheric O+ is observed to become a significant or dominant component of plasma pressure in the inner plasma sheet and ring current regions. Using a global circulation model of magnetospheric fields and its imposed ionospheric boundary conditions, we evaluate the global ionospheric plasma response to local magnetospheric conditions imposed by the simulation and evaluate magnetospheric circulation of solar wind H+, polar wind H+, and auroral wind O+. We launch and track the motions of millions of test particles in the global fields, launched at randomly distributed positions and times. Each particle is launched with a flux weighting and perpendicular and parallel energies randomly selected from defined thermal ranges appropriate to the launch point. One sequence is driven by a two-hour period of southward interplanetary magnetic field for average solar wind intensity. A second is driven by a 2-h period of enhanced solar wind dynamic pressure for average interplanetary field. We find that the simulated ionospheric O+ becomes a significant plasma pressure component in the inner plasma sheet and outer ring current region, particularly when the solar wind is intense or its magnetic field is southward directed. We infer that the reported empirical scalings of auroral wind O+ outflows are consistent with a substantial pressure contribution to the inner plasma sheet and plasma source surrounding the ring current. This result violates the common assumption that the ionospheric load is entirely confined to the F layer, and shows that the ionosphere is often an important dynamic element throughout the magnetosphere during moderate to large solar wind disturbances.  相似文献   

3.
The interval 0000-1400 UT of the superstorm of November 20, 2003, has been studies based on the ACE/WIND data and the MIT2 magnetogram inversion technique. The distributions of the electric potential and currents, field-aligned currents, and Joule heat in the ionosphere have been calculated. The variable magnetotail length and powers coming into the magnetosphere, ionosphere and ring current have been estimated. The selected superstorm intervals, when it became possible to identify the disturbance mode produced by the interaction between the variable solar wind dynamic pressure and IMF effects, have been described. Spontaneous substorms, two types of driven responses to changes in IMF or in the solar wind dynamic pressure (P d ), zero events at simultaneous jumps of IMF and P d , and a previously unknown mode of saturation of the ionospheric electric field at a redistribution of the energy coming into the magnetosphere between the ionosphere and ring current are among the selected modes.  相似文献   

4.
Substorm-associated radar auroral surges (SARAS) are a short lived (15–90 minutes) and spatially localised (5° of latitude) perturbation of the plasma convection pattern observed within the auroral E-region. The understanding of such phenomena has important ramifications for the investigation of the larger scale plasma convection and ultimately the coupling of the solar wind, magnetosphere and ionosphere system. A statistical investigation is undertaken of SARAS, observed by the Sweden And Britain Radar Experiment (SABRE), in order to provide a more extensive examination of the local time occurrence and propagation characteristics of the events. The statistical analysis has determined a local time occurrence of observations between 1420 MLT and 2200 MLT with a maximum occurrence centred around 1700 MLT. The propagation velocity of the SARAS feature through the SABRE field of view was found to be predominately L-shell aligned with a velocity centred around 1750 ms–1 and within the range 500 m s–1 and 3500 m s–1. This comprehensive examination of the SARAS provides the opportunity to discuss, qualitatively, a possible generation mechanism for SARAS based on a proposed model for the production of a similar phenomenon referred to as sub-auroral ion drifts (SAIDs). The results of the comparison suggests that SARAS may result from a similar geophysical mechanism to that which produces SAID events, but probably occurs at a different time in the evolution of the event.  相似文献   

5.
The high-latitude geomagnetic effects of an unusually long initial phase of the largest magnetic storm (SymH ~–220 nT) in cycle 24 of the solar activity are considered. Three interplanetary shocks characterized by considerable solar wind density jumps (up to 50–60 cm–3) at a low solar wind velocity (350–400 km/s) approached the Earth’s magnetosphere during the storm initial phase. The first two dynamic impacts did not result in the development of a magnetic storm, since the IMF Bz remained positive for a long time after these shocks, but they caused daytime polar substorms (magnetic bays) near the boundary between the closed and open magnetosphere. The magnetic field vector diagrams at high latitudes and the behaviour of high-latitude long-period geomagnetic pulsations (ipcl and vlp) made it possible to specify the dynamics of this boundary position. The spatiotemporal features of daytime polar substorms (the dayside polar electrojet, PE) caused by sudden changes in the solar wind dynamic pressure are discussed in detail, and the singularities of ionospheric convection in the polar cap are considered. It has been shown that the main phase of this two-stage storm started rapidly developing only when the third most intense shock approached the Earth against a background of large negative IMF Bz values (to–39 nT). It was concluded that the dynamics of convective vortices and the related restructing of the field-aligned currents can result in spatiotemporal fluctuations in the closing ionospheric currents that are registered on the Earth’s surface as bay-like magnetic disturbances.  相似文献   

6.
The study describes the time and space morphologies of a rather new type of counter electrojet event on the basis of data from the excellent chain of magnetic and ionospheric observatories along the Indo-Russian longitude sector. Abnormally large westward currents are observed during almost the whole of the daytime hours on a series of days. These events do not form any vortices in the current system and do not apparently seem to be associated with tidal effects or any solar magnetosphere events or geomagnetic disturbances. The existence of a westward electric field over the equatorial ionosphere has been confirmed by the absence of an equatorial type of sporadic E in the ionograms at Thumba precisely during the periods when H at Trivandrum minus H at Alibag is negative. The equatorial F region anomaly was also absent on the counter electrojet day. Such counter electrojet events during the northern winter months of low solar activity years are suggested to be the result of the modified wind system in the ionosphere associated with stratospheric warming events.  相似文献   

7.
As a rule, bright auroral arcs evolve near the poleward boundary of the auroral oval at the growth phase of a substorm, a phenomenon that is known to occur near the poleward edge of the auroral oval. The closeness of these arcs to the projection of the magnetic separatrix on the night side suggests that their generation is related to magnetic reconnection in the magnetospheric tail in a particular way. In this study this suggestion is confirmed by the fact that integral brightness of the auroral oval at the poleward edge correlates with magnetic field structures in the solar wind that are observed by ACE and Wind satellites at distances of 50–300 RE upstream and are shifted towards the magnetospheric tail with time delays of ~ 10–80 min, consistent with measurements of the solar wind velocity. About 50 examples of this correlation have been found. The possible physical mechanisms of the effect observed are discussed.  相似文献   

8.
The Polar Ionospheric X-ray Imaging Experiment (PIXIE) on board the NASA/GGS POLAR spacecraft has been making observations of ionospheric X-ray emissions from the vantage of space for more than 3 years. A wide variety of observations have been made by PIXIE, which are detailed in this work. These include the local time distribution of the auroral X-ray intensity as well as the dependence of auroral X-rays on geomagnetic activity and solar wind magnetic field conditions. The auroral X-rays are produced as energetic electrons within the magnetosphere precipitate and are stopped in the ionosphere. Comparisons of the X-ray auroral intensity with other instrument observations have been made, which enables us to distinguish between temporal and spatial processes. In addition, several other X-ray features (not of an auroral nature) have been observed by PIXIE, and are described.  相似文献   

9.
南向行星际磁场事件与磁暴关系的研究   总被引:5,自引:5,他引:5       下载免费PDF全文
利用172-182年IMP-8飞船的太阳风观测资料和相应地磁活动性指数Dst和AE,研究了43个南向行星际磁场事件期间太阳风和磁层的耦合问题. 与这43个事件对应的地磁暴是中等的和强的磁暴(Dst<-50nT). 结果表明:(1) 在43个事件中有11个(约占25.6髎)紧随激波之后,18个处于激波下游流场中(占42髎),其余14个(占33髎)和激波没有关连. 绝大多数事件都伴有太阳风动压和总磁场强度的增加;(2) 当行星际晨昏向电场强度EI>-4mV/m时,只引起磁亚暴,对Dst指数没有明显影响. 仅当EI<-5mV/m时,磁亚暴和磁暴才会同时出现;(3) 太阳风动压的增加会增强能量向环电流的输入,但不是密度和速度单独起作用,而是以PK=ρV2的组合形式影响能量的输入;(4) 虽然行星际磁场(IMF)南向分量BZ对太阳风和磁层的耦合起着关键作用,但IMF的BX和BY分量相对于BZ的大小对太阳风向磁层的能量传输也有一定影响. 当BX、BY相对BZ较大时能量耦合加强.  相似文献   

10.
The natural spectrum of electromagnetic variations surrounding Earth extends across an enormous frequency range and is controlled by diverse physical processes. Electromagnetic (EM) induction studies make use of external field variations with frequencies ranging from the solar cycle which has been used for geomagnetic depth sounding through the 10\(^{-4}\)–10\(^4\) Hz frequency band widely used for magnetotelluric and audio-magnetotelluric studies. Above 10\(^4\) Hz, the EM spectrum is dominated by man-made signals. This review emphasizes electromagnetic sources at \(\sim\)1 Hz and higher, describing major differences in physical origin and structure of short- and long-period signals. The essential role of Earth’s internal magnetic field in defining the magnetosphere through its interactions with the solar wind and interplanetary magnetic field is briefly outlined. At its lower boundary, the magnetosphere is engaged in two-way interactions with the underlying ionosphere and neutral atmosphere. Extremely low-frequency (3 Hz–3 kHz) electromagnetic signals are generated in the form of sferics, lightning, and whistlers which can extend to frequencies as high as the VLF range (3–30 kHz).The roughly spherical dielectric cavity bounded by the ground and the ionosphere produces the Schumann resonance at around 8 Hz and its harmonics. A transverse resonance also occurs at 1.7–2.0 kHz arising from reflection off the variable height lower boundary of the ionosphere and exhibiting line splitting due to three-dimensional structure. Ground and satellite observations are discussed in the light of their contributions to understanding the global electric circuit and for EM induction studies.  相似文献   

11.
Paleomagnetic studies have shown that, moving backwards in time, the geomagnetic dipole moment increased to a peak nearly 50% greater than at present ca. 2500 years ago. Attempts to model how changes in dipole moment affect solar–terrestrial relations have hitherto invoked a scaling relation for the size of the magnetosphere based on finding where the magnetic pressure of the dipole field balances the ram pressure of the solar wind. This approach predicts that, following a solar storm, the strength of the terrestrial response represented by the electrical potential across the auroral zones in the ionosphere should vary as the 1/3 power of dipole moment. Such a weak dependence suggests that a 50% increase in dipole moment would minimally effect (14%) terrestrial manifestations of solar storms. Recent work, however, based on a feedback mechanism involving electrical currents coupling the magnetosphere and ionosphere has identified a stronger 4/3, power scaling relation applicable to storm conditions. Here we use a global MHD simulation to calculate for a 50% increased dipole moment the correspondingly increased auroral-zone potential and its extension to low latitudes.  相似文献   

12.
The sensitive method for detecting and measuring the velocity of a weak luminosity wave, traveling from bottom to top along an arc or isolated auroral beams, has been developed. This wave is caused by dispersion of precipitating electrons over velocities and by a differential atmospheric penetration of different-energy electrons, and the wave velocity gives information about the location of the electron acceleration region in the magnetosphere. The method was tested using different model signals and was used to study pulsating auroras and auroral breakup. A luminosity wave has been detected in pulsating auroras, and it has been estimated that the injection region is located at a distance of 5–6 R e . The application of the method to intensification of auroras during breakup indicated that such a wave is absent; i.e., breakup electrons being accelerated near the ionosphere at altitudes of 2000–8000 km. It has been assumed that the regions of anomalous resistance, generated in the ionosphere by field-aligned currents during the breakup phase, cause intense local field-aligned electric fields. These fields accelerate thermal electrons and form the auroral breakup pattern.  相似文献   

13.
This tutorial review examines the role of O+ in the dynamics of magnetosphere–ionosphere coupling. The life cycle of an O+ plasma element is considered as it circulates from the mid- to high-latitude ionosphere. Energization and diversion of the convecting plasma element into outflows involves Alfvénic turbulence at the low-altitude base of the cusp and plasmasheet boundary layer and in downward-current “pressure cookers.” Observational evidence indicating that O+ dominates the plasmasheet and ring current during extreme storm intervals is reviewed. The impacts of an O+-enriched plasma on solar wind–magnetosphere–ionosphere coupling are considered at both the micro and global scales. A synthesis of results from observation, theory and simulations suggests that the presence of O+ in the magnetosphere is both a disruptive and a moderating agent in maintaining the balance between dayside and nightside magnetic merging.  相似文献   

14.
本文讨论了行星际磁场B2分量变化时内磁层和中低纬度电离层的响应.指出B2变化引起的磁层大尺度对流电场的变化在一定条件下有可能透入内磁层,并沿磁力线映射到中低纬度电离层,在那里产生电场和电流体系,从而使Sq电流体系发生畸变,并在地面磁场中反映出来.数值计算表明,当△B2<0时,Sq电流体系的焦点向东和向高纬移动,地面磁场会观测到数伽马的变化.这就为中低纬地磁观测诊断磁层和太阳风状态提供了一种可能性.此外,本文还用上述物理过程解释了赤道地区一些高空物理现象,如B2倒转时电离层漂移速度的变化,赤道磁场异常以及赤道q型偶现E层的消失等等.  相似文献   

15.
16.
Summary The magnetosphere depends on the astronomical orientation of the geomagnetic field with respect to the solar wind. The statistical distribution of polar auroras must therefore depend on the orientation of the geomagnetic field with respect to the ecliptic plane. We have investigated this peculiar feature of auroras that we call auroral astronomical geometry. We give here some preliminary results concerning a limited set of pre-IGY auroras. The criteria that we have chosen to prepare the auroral collection are also briefly summarized. The results conform to the hypothesis of the auroral origin from the magnetospheric neutral sheet. Auroral particles are found to impinge over the earth with low angles with respect to the ecliptic plane (40°). Only in a 4-hours interval around midnight they are found to impinge with angles up to 70°. Definite evidence of these facts requires further investigation with a larger amount of data. — We have also prepared a complex code for recording the morphological features of each aurora, namely: standard information, movement. intensity, color, sunlight illumination, period of pulsation, location in the sky among stars and planets, time evolution, duration and general features of the auroral display. It is well known in fact that the auroral morphology affects auroral heights and latitudes, etc.; presumably it should also affect its astronomical geometry, which we will investigate later.Presented at the Inter-Union Symposium on Solar-Terrestrial Physics — Belgrade 1966.  相似文献   

17.
We conducted a statistical analysis of the physical characteristics of the micropulsation activity (Pc3 and Pc4 range) detected, during the austral summer 1994/95, at Terra Nova Bay (Antarctica, corrected latitude 80.0°S), a station which is few degrees poleward of those where most of the Antarctic measurements in these frequency ranges have been performed. The emerging overview suggests that the correspondence between the pulsation power and the external parameters (solar wind speed, interplanetary magnetic field magnitude and orientation) is significantly stronger than at somewhat lower latitudes. The day-to-day power variability was found to be strictly related to the general level of the geomagnetic activity, and the power level sharply maximizes at local magnetic noon. In the Pc4 range peaks of correlation with the SW speed are found in the dawn and dusk sides of the Earths magnetosphere and the daily variation of the polarization pattern is closely consistent with that found at auroral latitudes and at lower frequencies. In the Pc3 range the correlation coefficient between the pulsation power and the SW speed has maximum values in the local morning, and the frequency of selected events reveals a strong IMF control during closed magnetospheric conditions. The local time dependence of the correlation coefficient between the pulsation power and the cone angle reveals an additional control by the IMF orientation, which becomes more explicit around local noon.  相似文献   

18.
A mathematical model of the middle and high latitude ionosphere   总被引:5,自引:0,他引:5  
  相似文献   

19.
A statistical analysis of the power spectra of the geomagnetic field components H and D for periods ranging between 3 min and 1 h was conducted at a lowlatitude observatory (Aquila, L = 1.6) at the minimum and maximum of the solar cycle. For both components, during daytime intervals, we found evidence of power enhancements at frequencies predicted for global modes of the Earths magnetosphere and occasionally observed at auroral latitudes in the F-region drift velocities (approximately at 1.3, 1.9, 2.6, and 3.4 mHz). Nighttime observations reveal a relative low frequency H enhancement associated with the bay occurrence together with a peak in the H/D power ratio which sharply emerges at 1.2 mHz in the premidnight sector. The strong similarity between solar minimum and maximum suggests that these modes can be considered permanent magnetospheric features. A separate analysis on a two-month interval shows that the observed spectral characteristics are amplified by conditions of high-velocity solar wind.  相似文献   

20.
Parameters of the interplanetary magnetic field and solar wind plasma during periods of 163 isolated substorms have been studied. It is shown that the solar wind velocity V and plasma density N remain approximately constant for at least 3 h before substorm onset Т o and 1 h after Т o . On average, the velocity of the solar wind exhibits a stable trend toward anticorrelation with its density over the whole data array. However, the situation is different if the values of V and N are considered with respect to the intensity of substorms observed during that period. With the growth of substorm intensity, quantified as the maximum absolute value of AL index, an increase in both the solar wind plasma velocity and density, at which these substorms appear, is obsreved. It has been found that the magnitude of the solar wind dynamic pressure P is closely related to the magnetosphere energy load defined as averaged values of the Kan–Lee electric field EKL and Newell parameter dΦ/dt averaged for 1 h interval before Т o . The growth of the dynamic pressure is accompanied by an increase in the load energy necessary for substorm generation. This interrelation between P and values of EKL and dΦ/dt is absent in other, arbitrarily chosen periods. It is believed that the processes accompanying increasing dynamic pressure of the solar wind result in the formation of magnetosphere conditions that increasingly impede substorm generation. Thus, the larger is P, the more solar wind energy must enter the Earth’s magnetosphere during the period of the growth phase for substorm generation. This energy is later released during the period of the substorm expansion phase and creates even more intense magnetic bays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号