首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A three dimensional time-dependent baroclinic hydrodynamic model, including sediment transport and incorporating a turbulence energy sub-model, is used in cross sectional form to examine sediment movement at the shelf edge off North West Iberia at 42°40.5’N where measurements were made as part of the OMEX-II programme. These calculations are complemented by a simpler, in essence time-independent model, which is used to examine the sensitivity of the sediment distribution over the slope (from a shelf-break source) to changes in the specified values of horizontal and vertical diffusion coefficients. The philosophy of the paper is to use idealized tidal, wind and wind wave forcing to examine changes in sediment distribution resulting from these processes. Calculations with the time-dependent and steady state models give insight into both the role of events and long-term effects. The steady state model focuses on the off-shelf region, whilst the time-dependent model considers on-shelf events.Tidal calculations showed that for the stratification used here the internal tide in the OMEX region was primarily confined to the shelf edge and ocean. A mean on-shelf sediment transport in the surface layer and off-shelf transport at the bed was found. Across-shelf circulations produced by up-welling/down-welling favourable winds gave rise to on-shelf/off-shelf currents in the bottom boundary layer with an opposite flow in the surface layer. In the case of an up-welling favourable wind, sediment suspension was at a maximum in the near coastal region, with sediment being advected off shore in the surface layer. With a down-welling favourable wind, surface sediment was advected towards the shore, but there was offshore transport at the bed. Near the shelf edge any upwelling flow had the tendency to return this sediment to the surface layer from whence it was transported on-shore. So in essence the sediment was trapped within an on-shelf circulation cell. Wind waves effects increased the total bed stress and hence the sediment concentration and its transport, although its pattern was determined by tidal and wind forcing.The time independent model with increased/decreased lateral diffusivity gave an enhanced/reduced horizontal sediment distribution for a given settling velocity. As the settling velocity increases, the down-slope movement of sediment is increased, with a reduction in the thickness of the near-bed sediment layer, but with little change in its horizontal extent.  相似文献   

2.
Velocity profiles in a salt marsh canopy   总被引:7,自引:0,他引:7  
Flow velocity profiles, measured in aSpartina anglica canopy in a laboratory flume, change with the location of measurement and plant stem density. The shear velocity above the canopy is larger than that within the canopy. The reduction ofu * within the canopy will favor the deposition of cohesive sediment. The reducedu * and flow turbulence within the canopy can enhance particle flocculation and settling velocity. The canopy exerts a strong influence on the concentration, settling velocity of the flocs, and deposition rate of the suspended sediment through effects on bed shear stress and turbulence of flow within the canopy.  相似文献   

3.
A criterion for initiation of sediment movement on a horizontal bed under non-breaking waves is established. Bagnold's sediment transport model is used. The dissipation rate of energy has been related to the length and velocity scales of the large-scale turbulence. The proposed equation is compared with the available laboratory results for fine and coarse material 0.1 mm < D ? 45 mm over a wide range of particle sizes, density ratios and liquid viscosities and a reasonable agreement between the two is obtained. An incipient motion hypothesis based on the development of vorticity is proposed.  相似文献   

4.
Tide-driven bed load transport is an important portion of the net annual sediment transport rate in many shoreface and shelf environments. However, bed load transport under waves cannot be measured in the field and bed load transport by currents without waves is barely measurable, even in spring tidal conditions. There is, consequently, a strong lack of field data and validated models. The present field site was on the shoreface and inner shelf at 2 to 8.5 km offshore the central Dutch coast (far outside the surfzone), where tidal currents flow parallel to the coast. Bed load transports were carefully measured with a calibrated sampler in spring tidal conditions without waves at a water depth of 13–18 m with fine and medium sands. The near-bed flow was measured over nearly a year and used for integration to annual transport rates. An empirical bed load model was derived, which predicts bed load transports that are a factor of > 5 smaller than predicted by existing models. However, they agree with laboratory data of sand and gravel transport in currents near incipient motion. The damped transport rates may have been caused by cohesion of sediment or turbulence damping due to mud or biological activity. The annual bed load transport rate was calculated using a probability density function (pdf) derived from the near-bed current and orbital velocity data which represented the current and wave climate well when compared to 30 years of data from a nearby wave station. The effect of wave stirring was included in the transport calculations. The net bed load transport rate is a few m2/year. This is much less than predicted in an earlier model study, which is partly due to different bed load models but also due to the difference in velocity pdf. The annual transport rate is very sensitive to the probability of the largest current velocities.  相似文献   

5.
《Coastal Engineering》2001,42(2):173-197
Intra-wave sediment suspension is examined using high-resolution field measurements and numerical hydrodynamic and sediment models within 120 mm of a plane seabed under natural asymmetric waves. The detailed measurements of suspended sediment concentration (at 5 mm vertical resolution and at 4 Hz) showed two or three entrainment bursts around peak flow under the wave crest and another at flow reversal during the decelerating phase. At flow reversal, the mixing length was found to be approximately double the value attained at peak flow under the crest. To examine the cause of multiple suspension peaks and increased diffusion at flow reversal, a numerical “side-view” hydrodynamic model was developed to reproduce near-bed wave-induced orbital currents. Predicted currents at the bed and above the wave boundary layer were oppositely directed around flow reversal and this effect became more pronounced with increasing wave asymmetry. When the predicted orbital currents and an enhanced eddy diffusivity during periods of oppositely directed flows were applied in a Lagrangian numerical sediment transport model, unprecedented and extremely close predictions of the measured instantaneous concentrations were obtained. The numerical models were simplified to incorporate only the essential parameters and, by simulating at short time scales, empirical time-averaged parameterisations were not required. Key factors in the sediment model were fall velocities of the full grain size distribution, diffusion, separation of entrainment from settlement, and non-constant, but vertically uniform, eddy diffusivity. Over the plane bed, sediment convection by wave orbital vertical currents was found to have no significant influence on the results.  相似文献   

6.
The geographical distribution of coal particles that fell during nine years to the sea bottom from the open sea coal terminal off Hadera, Israel, shows a consistent northerly transport path, and it is inconceivable that the sand at that location would move in an opposite direction. Semicircular, current-scoured moats associated with small mounds found at the edge of the continental shelf off Ashdod and Haifa, Israel, also suggest a general northward-directed sediment transport. The northward sediment flow on the Israeli continental shelf inferred from this evidence therefore supports the model of Emery and Neev about general sand transport patterns along the Israeli coastline and continental shelf.  相似文献   

7.
The tidal current data observed off Hamada on San'in coast have shown the diurnal tidal currents to be larger than the semidiurnal ones by a factor of 5–8, although the ratio (K1+O1)/(M2+S2) for the tidal heights at Hamada is 1.3. Furthermore, the diurnal currents are found to be more remarkable on the shelf slope than on the shelf. We consider such diurnal current features as being due to the vortical mode waves, and show that the broad shelf and steep shelf slope off San'in coast allow 1st-mode interior shelf waves (ISWs) at a diurnal-period. Using a simple shelf model, it is shown that ISWs occur in response to the seaward component of diurnal tidal oscillations on the shelf and their propagation originates from the western entrance of the Tsushima Straits.  相似文献   

8.
潮流波浪联合输沙及海床冲淤演变的理论体系与其数学模拟   总被引:14,自引:1,他引:13  
根据近岸带及河口区潮流、波浪、湍流各自物理尺度的不同,从Navier-Stokes方程和质量传输方程出发,利用Reynolds分解的方法,建立了模拟波浪 流联合输沙及海床冲淤演变的理论体系,给出了潮流作用下近岸波浪传播方程、波浪作用下潮流运动方程并通过利用波流合成底部切应力、底层湍流脉动随机特性,得出了波流联合作用下不平衡沙计算中泥沙起悬与沉降量的确定方法。本文模型应用于“广西合浦围垦工程潮流波浪  相似文献   

9.
Based on a wave bottom boundary layer model and a sediment advection-diffusion model, seven turbulence schemes are compared regarding their performances in prediction of near-bed sediment suspension beneath waves above a plane bed. These turbulence algorithms include six empirical eddy viscosity schemes and one standard two-equation k-ε model. In particular, different combinations of typical empirical formulas for the eddy viscosity profile and for the wave friction factor are examined. Numerical results are compared with four laboratory data sets, consisting of one wave boundary layer hydrodynamics experiment and three sediment suspension experiments under linear waves and the Stokes second-order waves. It is shown that predictions of near-bed sediment suspension are very sensitive to the choices of the empirical formulas in turbulence schemes. Simple empirical turbulence schemes are possible to perform equally well as the two-equation k-ε model. Among the empirical schemes, the turbulence scheme, combining the exponential formula for eddy viscosity and Swart formula for wave friction factor, is the most accurate. It maintains the simplicity and yields identically good predictions as the k-ε model does in terms of the wave-averaged sediment concentration.  相似文献   

10.
Based on a large database of laboratory experiments, the predictability of the conventional one-dimensional vertical Reynolds-averaged Navier–Stokes (RANS) diffusion model is systematically investigated with respect to wave-induced net sediment transport. The predicted net sediment transport rates are compared with the measured data of 176 physical experiments in wave flumes and oscillating water tunnels, covering a wide range of wave conditions (surface, skewed, and asymmetric waves with and without currents), sediment conditions (fine, medium, and coarse sands with median grain diameters ranging from 0.13 to 0.97 mm) and bed forms (flat beds and rippled beds), corresponding to various sediment dynamic regions in the near-shore area. Comparisons show that the majority (73 %) of predictions on a flat bed are within a factor 2 of the measurements. The model behaves much better for medium/coarse sand than for fine sand. The model generally underpredicts the transport rates beneath asymmetric waves and overpredicts the fine sand transport beneath skewed waves. Nevertheless, the model behaves well in reproducing the transport rates under surface waves. A detailed discussion and a quantitative measure of the overall model performance are made. The poor model predictability for fine sand cases is mainly due to the underestimation of unsteady phase-lag effect. It is revealed that the model predictability can be significantly improved by implementing alternative bedload formulas and incorporating more physical processes (mobile-bed roughness, hindered settling, and turbulence damping).  相似文献   

11.
A simulation of suspended sediment movement relating to tidal and wave forcing during a winter monsoon in November 1983 in the Huanghai and East China Seas continental shelf is attempted by using the model describing the cohesive/non-cohesive sediment resuspension generated by interactions between currents and waves.model simulation showed that sediment concentration was increased by resuspension at shallow depths during the strong storm conditions due to high bottom stress interacted between currents and waves. This result is in general agreement with observations in horizontal distribution of suspended sediment distribution.At three current meter mooring positions off the southern Shandong Peninsula resuspension occurred only at a depth of 22m,nearest coastal position and at deeper parts at depths of 51 and 80m wave-current interaction effects were not significant. It has shown that the present model simulation demonstrated the capability of reproduction of suspended sediment movement under wintertime extreme event reasonably well.  相似文献   

12.
A large buried submarine trough crosses the seaward margin of the continental shelf off the southwest coast of Louisiana. Original length was about 90 km, and width at the shelf edge was 16 km. Maximum eroded depth may have been as much as 305 m. Seismic characteristics of the prograded fill indicate cyclically repeated sequences of retrogressive deltaic and partly slumped sediments overlain by well-layered transgressive deposits. Slumping was increasingly prevalent toward the shelf edge. The cyclic sequences indicate that the trough was a passageway for large volumes of sediment onto the continental slope during several stages of lowered sea level.  相似文献   

13.
The instantaneous turbulent velocity field created by the breaking of spilling regular waves on a plane slope was measured in a plane running parallel to the slope using particle image velocimetry. The measurement plane was located at a height of about 1 mm above the bed. The measurement area encompassed the region where the large eddies generated at incipient wave breaking impinged on the bottom inside the surf zone. A total of 30 trials were conducted under identical experimental conditions. In each trial, six consecutive wave cycles were recorded. The measured velocity fields were separated into a mean flow and a turbulence component by ensemble averaging. The instantaneous turbulent velocity fields were analyzed to determine the occurrence frequency, location, geometry and evolution of the large eddies, and their contributions to instantaneous shear stresses, turbulent kinetic energy and turbulence energy fluxes. The motion of single glass spheres along the bed was also investigated. The two-phase flow measurements showed that the velocity and displacement of large solid particles on a smooth bed were significantly affected by the magnitude and direction of turbulence velocities. Overall, this study has examined the kinematic and dynamic properties of large eddies impinging on the bed and the interaction of these large-scale turbulent flow structures with the mean flow. The study has also highlighted the important role of large eddies in sediment transport.  相似文献   

14.
A field campaign was conducted to better understand the influence of wave action, in terms of turbulence and bed shear stress, on sediment resuspension and transport processes on a protected tidal flat. An H-frame was deployed in a tidal channel south of Gangwha Island for 6 tidal cycles during November 2006 with instrumentation including an Acoustic Doppler Velocimeter, an Acoustic Backscatter System, and an Optical Backscatter Sensor. During calm conditions, the current-induced shear was dominant and responsible for suspending sediments during the accelerating phases of flood and ebb. During the high-tide slack, both bed shear stress and suspended sediment concentration were reduced. The sediment flux was directed landward due to the scour-lag effect over a tidal cycle. On the other hand, when waves were stronger, the wave-induced turbulence appeared to keep sediments in suspension even during the high-tide slack, while the current-induced shear remained dominant during the accelerating phases of flood and ebb. The sediment flux under strong waves was directed offshore due to the sustained high suspended sediment concentration during the high-tide slack. Although strong waves can induce offshore sediment flux, infrequent events with strong waves are unlikely to alter the long-term accretion of the protected southern Gangwha tidal flats.  相似文献   

15.
Sea-bottom pressure gauges were used to measure sea levels at two points on the shelf off the southern coast of Satsuma Peninsula, Kyushu, Japan. Spectral analysis of the observed records and the tide-gauge record of Makurazaki Harbor revealed several predominant common peaks. At the same time, the eigenmodes for the trapped waves on the shelf and inside Makurazaki Bay were obtained numerically using a two-dimensional model, and the periods and the spatial distribution of amplitudes of the proper modes were obtained. A comparison of the calculated modes with the periods and phase patterns of the observed peaks clarified that peaks with periods of 19.5, 16, 13.3, and 12.2 minutes in the shelf region were the modes of standing-edge waves, and the peak with the period of 16 minutes in Makurazaki Harbor was the fundamental mode of the harbor. Among the modes of standing-edge waves, the mode of the period 16 minutes on the shelf had nearly the same period as that of the fundamental mode of Makurazaki Harbor. An analysis of changes of spectral densities of these two modes confirmed that the fundamental mode of the Makurazaki Harbor was induced by this standing-wave mode.  相似文献   

16.
Regular waves were applied in a laboratory flume to investigate the evolutions of the velocity fields near above a fine sandy bed (d50=0.073 mm) during fluidized responses. Measurements of 2D velocity components and suspended sediment concentration (SSC) at 1 cm above the bed in addition to water surface displacements and sub-soil pore pressures were carried out with an acoustic Doppler velocimeter and an optical probe. The results have shown similar three typical soil responses including one unfluidized and two fluidized responses to previous report in other fine-grained soil beds. In the post- and pre-fluidized stages of a resonantly fluidized response, amplitudes of horizontal velocity component can be decreased by a maxima value of 50% while vertical components can be amplified up to 5 times larger. The developments of near-bed velocity field become less significant in consecutive non-resonantly fluidized responses. Particularly, the evolutions of the velocity field are closely dependent on the deepening of fluidized surface soil layers df and the characteristics of soil fluidization responses. The amplified vertical velocity components are clearly contradictory to the dissipated overloading waves near above a fluidized bed but are critical to much drastic sediment suspensions by interactions between overloading waves and fluidized bed soils.  相似文献   

17.
Coast-hugging surface flood plumes occur on the inner shelf of northern California during the winter season, generating dense, near-bottom suspensions which may attain fluid mud concentrations as particles settle. The period of storm-heightened waves may continue into the flood period, leading to gravity-driven seaward displacement of the bottom suspension; or the wave regime may ameliorate, leaving the suspension to consolidate as a short-lived, inner-shelf flood bed. Such beds tend to be resuspended within days or weeks by subsequent storm events that may recreate the original high concentrations. The sediment is thus dispersed seaward by gravity flows, to be deposited as a muddy flood bed on the central shelf. The locus of deposition of these “high-concentration regimes” is a function of the relative intensities of river discharge and storm wave height. Greater discharge piles thicker storm beds nearer shore, while intense wave regimes allow deposition of the fluid mud further seaward. During events with high values of both parameters, large amount of fluid mud may bypass over the shelf edge. In contrast, “low-concentration regimes” occur during storm periods when there has been no recent flood deposition on the inner shelf. The shelf floor is better consolidated than in the previous case, and the resulting suspended sediment concentrations are lower. As a consequence, low-concentration regimes are winnowing and bypassing regimes, and the beds deposited are thinner and sandier. Algorithms describing deposition by high and low-concentration regimes have been embedded in a probabilistic model. A simulation of a 400-year sequence of beds deposited by winter storms and floods suggests that on the Eel shelf, the Holocene transgressive systems tract consists of back-stepping, seaward-fining event beds, whose timelines (bedding planes) dip more gently than do their gradational facies boundaries. At these longer time scales, flood beds dominate over storm beds.  相似文献   

18.
底边界层中沉积物的再悬浮和沉降是控制陆架海悬浮沉积物的输运的关键过程。沉积物输运过程的数值*模拟也依赖于沉积物侵蚀和沉降的关键参数的研究。本文根据济州岛西南泥质区的坐底观测估算了此处临界应力。通过底边界层声学仪器ADV和PC-ADP的流速和悬浮物浓度同步观测,基于湍生成与耗散平衡假设,使用惯性耗散法计算沉降速度。这种方法得到的沉降速度ws平均值为0.91 mm s-1,标准差为0.20 mm s-1,此结果远大于Soulbsy(1997)和LISST-ST现场观测粒径分析仪等经验方法的结果。这主要是由于两种方法的本质不同,惯性耗散法形象的刻画了底边界层的水动力,并且更加合理的现场估计沉降速度ws,然而Soulsby的方法通常适用于静水环境。我们提出了一种估计临界应力的新方法,根据悬浮颗粒物浓度时空变化的统计分析(深度平均的悬浮颗粒物浓度对时间求导数)和对应的底应力估算侵蚀临界应力τce和沉降临界应力τcd。侵蚀临界应力τce和沉降临界应力τce的变化范围为0.11-0.25 Pa,对应的中值分别为0.20 Pa和0.16 Pa,这也证实了侵蚀临界应力略大于沉降临界应力。除此之外,我们还使用了另一种方法估算临界应力,通过沉降速度间接估算的临界应力范围为0.06-0.17 Pa。  相似文献   

19.
Sand transport rates were measured via bedload traps that were inserted into the sediment surface on the continental shelf southwest of England. Analysis of the trapped mobile sediment shows this to be finer and better sorted than nearby Shipek grab samples. The transport rates are combined with simultaneous, near-bed flow measurements to assess a Bagnold type predictive equation,j = k 1(u 2 100 -u 2 100cr)u 100. The measured transport rates vary between 0.41 × 10–3 and 1.67 × 10–3 gm/cm s. The data yield a mean calibration coefficient (k 1) of 0.4 × 10–6 which is slightly lower than values computed from flume and shallow water data.  相似文献   

20.
Meiofauna and macrofauna communities and several sediment characteristics were compared between a slope situated far from the coast (Goban Spur) and two transects across the Iberian Margin with steep slopes and close to the shore. The northern Galician transect (off La Coruña) was situated in an area subjected to wind-induced upwelling events. The western Galician transect was also subjected to upwelling, was additionally influenced by outflows of water rich in organic matter from the Rías Bajas. This transect also included the Galicia Bank. Macrofauna density decreased exponentially from the shelf edge (154 m) to the abyssal plain (4951 m) and different communities occurred on the shelf, the upper- and lower slope and on the abyssal plain. Apart from two extremely low-density stations on the Iberian Margin, there were no significant differences in the meiofauna between the Goban Spur and the Iberian Margin. Along the La Coruña-transect a station where meiofaunal densities were low occurred at a depth of 1522 m, where the sediment was characterised by having a high median-grain size, ripple structures, a low Corg and total N content. There were relatively high numbers of macrofaunal filter-feeders but low numbers of crustaceans, indicating a high current velocity regime. On top of the Galicia Bank (˜770 m) the sediment consisted mainly of shells of pelagic foraminifers, and had low contents of Corg and N. The macrofauna was dominated by filter-feeding and carnivorous taxa. At both these stations meiofauna densities were low. Meiofauna densities and community structure differed between the Goban Spur and the Iberian Margin. Meiofauna densities on the Galician shelf were more than double those on the Goban Spur shelf. The two deep stations on the La Coruña transect and the deepest station on the Galicia Bank transect all contained meiofaunal densities that were higher than found at similar depths off the Goban Spur. The meiofaunal densities were inversely correlated with %CaCO3 content and, excluding the shelf stations, were positively correlated with both %Corg and total N at the Iberian Margin. Neither upwelling nor the enriched outflows from the rias affected the macrofauna, but meiofaunal densities were greatly enhanced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号