首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
New structural, metamorphic, finite strain, and kinematic vorticity data for mylonitic granitic rocks from northern thrust in Wadi Mubarak reveal a history of deformation reflecting different tectonic regimes. The vorticity analysis of porphyroclasts was determined in high temperature mylonites. The kinematic vorticity number for the mylonitic granitic samples in the northern thrust in Wadi Mubarak range from 0.66 to 0.90, and together with the strain data suggest deviations from simple shear. It is concluded that nappe stacking occurred early during the underthrusting event probably by brittle imbrication and that ductile strain was superimposed on the nappe structure during thrusting. The accumulation of ductile strain during thrusting was not by simple shear and involved a component of vertical shortening, which caused the subhorizontal foliation in the northern thrust in Wadi Mubarak and adjacent units.  相似文献   

2.
The estimation of finite strain in rocks is fundamental to a meaningful understanding of deformational processes and products on all scales from microscopic fabric development to regional structural analyses. The Rf/φ and Fry methods on feldspar porphyroclasts and mafic grains from 5 granite, 1 metavolcanic, 3 metasedimentary and 1 granodiorite samples were used in Wadi El Falek region. Finite-strain data shows that a high to moderate range of deformation of the granitic to metavolcano-sedimentary samples and axial ratios in the XZ section range from 1.60 to 4.10 for the Rf/φ method and from 2.80 to 4.90 for the Fry method. Furthermore, the short axes are subvertical associated with a subhorizontal foliation. We conclude that finite strain in the deformed granite rocks is of the same order of magnitude as that from metavolcano-sedimentary rocks. Furthermore, contacts formed during intrusion of plutons with some faults in the Wadi El Falek area under brittle to semi-ductile deformation conditions. In this case, finite strain accumulated during superimposed deformation on the already assembled nappe structure. It indicates that the nappe contacts formed during the accumulation of finite strain.  相似文献   

3.
Numerous peraluminous and porphyritic granitic bodies and augen gneisses of granitic compositions occur in the nappe sequences of the Lower Himalaya. They are Proterozoic-to-lower Paleozoic in age and have been grouped into the ‘Lesser Himalaya granite belt’. The mode of emplacement and tectonic significance of these granites are as yet uncertain but they are generally considered to be sheet-like intrusions into the surrounding rocks. The small and isolated granite body (the Chur granite) that crops out around the Chur peak in the Himachal Himalaya is one of the more famous of these granites. Several lines of evidence have been adduced to show that the Chur granite has a thrust (the Chur thrust) contact with the underlying metasedimentary sequence (locally called the Jutogh Group). The Chur granite with restricted occurrence at the highest topographic and structural levels represents an erosional remnant of a much larger sub-horizontal thrust sheet. The contact relations between the country rocks and many of the other granite and granitic augen gneisses in the Lesser Himalaya belt are apparently similar to that of the Chur granite suggesting that at least some of them may also represent thrust sheets.  相似文献   

4.
The vorticity analysis technique was applied to measure the different lithological units,such as schist,metagranite and metavolcano-sedimentary rocks,which are present in the Halaban region.This work aims to interpret the relationship between the different lithologies and the tectonic setting,in order to elucidate the nature of kinematic analysis in the Halaban region.The kinematic analyses were applied to feldspar porphyroclasts,quartz and hornblende for twentysix samples.The kinematic vorticity number (W_m) for deformed rocks in the study area ranged from~0.6 to 0.9.The direction of the long axes for finite strain data (X axes) revealed a WNW trend with shallow dipping.The direction of the short axes for finite strain data (Z axes) were represented by vertical with associated horizontal foliation.The results of the kinematic vorticity and strain analyses are characterized by simple shear with different degrees of deformation in the Halaban region.Furthermore,our finite strain data shows no significant volume change during deformation.The subhorizontal foliation was synchronized with thrusting and deformation.Furthermore,throughout the overlying nappes,the same attitudes of tectonic contacts are observable,the nappes in the orogens being formed from simple shear deformation.  相似文献   

5.
内蒙古苏尼特左旗交其尔推覆构造带的发现及其地质意义   总被引:5,自引:0,他引:5  
张维杰  李述靖 《现代地质》1995,9(2):220-225,T001
内蒙古苏尼特左旗中部交其尔一带发现一条近EW向延伸的推覆构造带。上元古界-下古生界浅变质岩以低角度向北推覆于晚古生代花岗岩基之上.推覆构造上盘的浅变质岩中发育有一套轴面向南倾的同斜倒转褶皱系,并伴有一系列向南倾的叠瓦状逆冲断面。下盘花岗岩中发育有较宽的糜棱岩带.沿推覆构造带分布有一系列的飞来峰及构造窗。这一构造带的发现,为纬向构造带的存在提供了有力证据,并显示了晚古生代末期以来地壳沿经线方向的强烈缩短。  相似文献   

6.
The Wadi Ibib area is situated in the northern part of the Neoproterozoic Hamisana Shear Zone (HSZ), which is a high strain zone evolved during the late stages of the Pan-African orogeny, likely as a tectonic escape structure. Amphibolite facies pelitic metasedimentary windows crop out in the axial parts of the HSZ and are noticeably associated with numerous N-trending pegmatite dikes. Whole-rock geochemistry of the pegmatites reveals a peraluminous (S-type) affinity, with low K/Rb ratios and elevated concentrations of U, Th, REE, Rb, Li, Cs, Y, Nb and Ta. Structurally, the pegmatite sets intrude along the shear plane of the HSZ, corresponding to the regional N-trending tectonic fabrics, such as axial planar foliation and dextral-shearing in the metasedimentary host rock. Field relationships, including structural context, coupled with geochemical characteristics of the Wadi Ibib pegmatites, do not support their formation as a complementary part of evolved granitic magmas. Space-localized decompression-induced partial melting of peraluminous garnet-bearing metapelites was alternatively the underlying process for formation of these pegmatites. Such decompression was associated with regional escape tectonics and stress axes permutations during the late deformation stage (D3) in the evolution of the south Eastern Desert terrane, due to end-orogeny system pressure-release.  相似文献   

7.
Neoproterozoic rocks, Oligocene to Neogene sediments and Tertiary Red Sea rift-related volcanics (Harrat) are three dominant major groups exposed in the Jeddah tectonic terrane in Western Arabia. The basement complex comprises amphibolites, schists, and older and younger granites unconformably overlain by a post-amalgamation volcanosedimentary sequence (Fatima Group) exhibiting post-accretionary thrusting and thrust-related structures. The older granites and/or the amphibolites and schists display mylonitization and shearing in some outcrops, and the observed kinematic indicators indicate dextral monoclinic symmetry along the impressive Wadi Fatima Shear Zone. Finite strain analysis of the mylonitized lithologies is used to interpret the deformation history of the Wadi Fatima Shear Zone. The measured finite strain data demonstrate that the amphibolites, schists, and older granites are mildly to moderately deformed, where XZ (axial ratios in XZ direction) vary from 2.76 to 4.22 and from 2.04 to 3.90 for the Rf/φ and Fry method respectively. The shortening axes (Z) have subvertical attitude and are associated with subhorizontal foliation. The data show oblate strain ellipsoids in the different rocks in the studied area and indication bulk flattening strain. We assume that the different rock types have similar deformation behavior. In the deformed granite, the strain data are identical in magnitude with those obtained in the Fatima Group volcanosedimentary sequence. Finite strain accumulated without any significant volume change contemporaneously with syn-accretionary transpressive structures. It is concluded that a simple-shear deformation with constant-volume plane strain exists, where displacement is strictly parallel to the shear plane. Furthermore, the contacts between various lithological units in the Wadi Fatima Shear Zone were formed under brittle to semi-ductile deformation conditions.  相似文献   

8.
The use of porphyroclasts rotating in a flowing matrix to estimate mean kinematic vorticity number (Wm) is important for quantifying the relative contributions of pure and simple shear in wall rocks alterations of shear zone at Dungash gold mine. Furthermore, it shows the relationship between the gold mineralization and deformation and also detects the orientation of rigid objects during progressive deformation. The Dungash gold mine area is situated in an EW-trending quartz vein along a shear zone in metavolcanic and metasedimentary host rocks in the Eastern Desert of Egypt. These rocks are associated with the major geologic structures which are attributed to various deformational stages of the Neoproterozoic basement rocks. We conclude that finite strain in the deformed rocks is of the same order of magnitude for all units of metavolcano-sedimentary rocks. The kinematic vorticity number for the metavolcanic and metasedimentary samples in the Dungash area range from 0.80 to 0.92, and together with the strain data suggest deviations from simple shear. It is concluded that nappe stacking occurred early during the underthrusting event probably by brittle imbrication and that ductile strain was superimposed on the nappe structure during thrusting. Furthermore, we conclude that disseminated mineralization, chloritization, carbonatization and silicification of the wall rocks are associated with fluids migrating along shearing, fracturing and foliation of the metamorphosed wall rocks.  相似文献   

9.
The present study aims to evaluate a relationship between the mineralogy and structural analysis in the Halaban area and to document the tectonic evolution of Halaban and Al Amar faults. The collected samples were taken from deformed granitiods rocks (such as granite, gneisses and tonalite), metasedimentary, metavolcanic, metagabbro and carbonate rocks are trend to NE-SW with low dip angle in the Halaban area. These samples were 8 from granite, 14 metagabbro, 6 metavolcanics, 5 tonalite, 6 metasedimentary, 10 gneisses and 8 carbonate rocks. Our results are described for the different axial ratios of deformed rocks as the following: XZ sections range from 1.10 to 4.60 in the Fry method and range from 1.70 to 2.71 in the Rf/? method. YZ sections range from 1.10 to 3.34 in the Fry method and range from 1.62 to 2.63 in the Rf/Phi method. In addition, XY sections range from 1 to 3.51 in the Fry method and range from 1 to 1.27 in the Rf/? method for deformed granite rocks, metasedimentry rocks, and metagabbro. The stretch axes for measured samples in the X direction axes (SX) variety from 1.06 to 2.53 in the Fry method and vary from 1.20 to 1.45 in the Rf/? method. The values of the Y direction axes (SY) vary from 0.72 to 1.43 in the Fry method, which indicates contraction and extension in this direction and vary from 1.13 to 1.37 in the Rf/? method which indicates extension in this direction. Furthermore, the Z direction axes (SZ) varies from 0.09 to 0.89 in the Fry method and from 0.52 to 0.71 in the Rf/? method. The stretches axes in the Z direction (SZ) show a vertical shortening about 11% to 91% in the Fry method and show vertical shortening about 29% to 48% in the Rf/? method. The studied rock units are generally affected by brittle-ductile shear zones, which are sub-parallel to parallel NW or NNW trend. It assumed that different rock types of have similar deformation behavior. Based on these results, it is concluded that the finite strain is accumulated during the metamorphism after that was started the deformation by thrusting activity. The contacts between the different rock types were deformed during thrusting under semi-brittle to ductile deformation conditions by simple shear. A component of vertical shortening is also involved causing subhorizontal foliation in the Halaban area.  相似文献   

10.
辽西兴城—台里地区发育系列花岗质岩石,强烈构造变形特征均显示其具有韧性剪切带的特点。对剪切带北段进行详细宏微观构造解析,结合岩石变形强度差异性分析、有限应变测量、石英C轴EBSD测试以及古差异应力值估算等研究,结果表明剪切带内花岗质片麻岩和眼球状花岗质片麻岩具有NEE向左行剪切变形特征,变形岩石为S-L构造岩,应变类型属于平面应变,古差异应力值介于30~40 MPa之间。长石-石英矿物温度计以及石英C轴EBSD组构指示剪切带以中低温变形为主,温度在400℃~500℃,属绿片岩相变质,具中-低温韧性剪切带特征。韧性剪切带内普遍存在变形分解现象,弱变形带内岩石残斑含量较高,眼球状构造和S-C组构较为发育;强变形带岩石残斑含量较低,剪切面理较为发育,糜棱面理发育较弱或者不发育。  相似文献   

11.
The present study focuses on the gold mining in Mahd Ad Dahab region of Saudi Arabia. The study aims to assess the spatial relationship between tectonic contacts in Mahd Ad Dahab area and to provide a meaningful hypothesis relating gold metallogeny to the evolution of the Arabian Shield. Distribution and localization of gold occurrences in the study area was envisaged based on the different styles of microstructures and the major deformation phases affecting the area. The detailed petrographical and mineralogical investigations indicate that the metavolcanic rocks at the Mahd Ad Dahab gold mine area can be classified into metabasalt, metaandesite, and the felsic varieties (metadacite, metarhyodacite and metarhyolite) associating their metapyroclastics (conglomerate and tuffs). Furthermore, quartz forms allotriomorphic crystals which exhibit wavy extinction, deformational lamina and foliation due to subsequent deformations. Furthermore, we conclude that finite strain in the deformed rocks is of the same order of magnitude for all units of metavolcano-sedimentary rocks. Furthermore, contacts formed during intrusion of plutons with some faults in the Mahd Ad Dahab area under brittle to semi-ductile deformation conditions. In this case, finite strain accumulated during superimposed deformation on the already assembled nappe structure. It indicates that the contacts formed during the accumulation of finite strain.  相似文献   

12.
Mubarak shear belt provides an opportunity to investigate quantitative finite strain (Rs), proportions of pure shear and simple shear components, sense of shear indicators, subhorizontal to steeply plunging mineral lineations, in a dextral transpressional zone. The structural style of the Mubarak shear belt is consistent with dextral transpression within the Central Eastern Desert where dextral and reverse shear have developed simultaneously with the regional foliation. The high strain zone of the Mubarak shear belt is characterized by steeply dipping foliation with sub-horizontal stretching lineation (simple shear) surrounded by thrust imbrications with slightly plunging stretching lineations. Strain estimates from the Mubarak shear belt are used to determine how pure and simple shear components of deformation are partitioned. The axial ratios in XZ sections range from 1.16 to 2.33 with the maximum stretch, S X , ranges from 1.06 to 1.48. The minimum stretch, S Z , ranges from 0.65 to 0.92 indicating a moderate variation in vertical shortening. Volcaniclastic metasediments and metagabbros were subjected to prograde low-grade regional metamorphism in the range of greenschist to lower amphibolite facies (450–650°C at 2–4 kbar). Medium pressure (6–8 kbar at 530°C) was estimated from the high strain zone within the dextral strike-slip shear zones. Retrograde metamorphism occurred at a temperature range of 250–280°C. There is a trend towards decreasing the ratio of 100Mg/(Mg + Fetot + Mn) away from the high strain zone of the Mubarak shear belt. Integrated strain and temperature estimates indicate that the simple shear (non-coaxial) components of deformation played a significant role in formation and exhumation of the Mubarak shear belt during the accumulation of finite strain and consequently during progressive transpression and thrusting.  相似文献   

13.
《Precambrian Research》2005,136(1):27-50
The Wadi Mubarak belt in Egypt strikes west–east (and even northeast–southwest) and crosscuts the principal northwest–southeast trend of the Najd Fault System in the Central Eastern Desert of Egypt. The belt therefore appears to be a structural feature that formed postdate to the Najd Fault System. In contrast, it is shown here that the deformation in the Wadi Mubarak belt can be correlated with the accepted scheme of deformation events in the Eastern Desert of Egypt and that its geometry and apparently cross-cutting orientation is controlled by a large granite complex that intruded prior to the structural evolution. Structural correlation is facilitated by a series of intrusions that intrude the Wadi Mubarak belt and resemble other intrusions in the Eastern Desert. These intrusions include: (1) an older gabbro generation, (2) an older granite, (3) a younger gabbro and (4) a younger granite. The structural evolution is interpreted to be characterized by early northwest directed transport that formed several major thrusts in the belt. This event is correlated with the main deformation event in the Eastern Desert, elsewhere known as D2. During this event the regional fabric of the Wadi Mubarak belt was wrapped around the El Umra granite complex in a west–east orientation. The Wadi Mubarak belt was subsequently affected during D3 by west–east and northwest–southeast trending sinistral conjugate strike–slip shear zones. This event is related to the formation of the Najd Fault System. Detailed resolution of superimposed shear sense indicators suggest that D3 consisted of an older and a younger phase that reflect the change of transpression direction from east-southeast–west-northwest to eastnortheast–westouthwest. The El Umra granite complex is dated here with single zircon ages to consist of intrusion pulses at 654 and 690 my. These ages conform with the interpretation that it intruded prior to D2 and that the structural pattern of the Wadi Mubarak belt was initiated early during D2.  相似文献   

14.
The E-W running Salem-Attur shear zone demarcates the tectonic boundary between Archaean Dharwar Craton in the north and Proterozoic Southern granulite terrane in the south. This study reveals that the shear zone is a low angle thrust. The thrust zone is around 10 m thick and it merges with the main shear zone along the strike. The thrust is developed on charnockite near Odyarpatti, which is retrograded into schists. Further, it is marked by gently dipping mylonitic foliation and subhorizontal lineation. The S-C fabric, mantled porphyroclasts and intragranular faults indicate northeasterly slip along the thrust. Recumbent shear folds SF1 are developed within the thrust zone. The thrust has been folded by late stage F2 fold which has brought variation in the orientation of the mylonitic foliation from subhorizontal to vertical attitude; the mylonitic lineations have been rotated to subvertical orientation also. Additionally, the F2 crenulations and shear cleavages and intersection lineations are superimposed on the mylonitic fabric. Thrusting along the Salem-Attur shear zone is probably the cause for upliftment of the charnockites to the upper crust. Post-upliftment stage has witnessed brittle deformation in the form of development of shear fractures in NNE-SSW and E-W directions. Pseudotachylites are emplaced along these fractures.  相似文献   

15.
MAIN CENTRAL THRUST ZONE IN THE KATHMANDU AREA, CENTRAL NEPAL, AND ITS TECTONIC SIGNIFICANCE1 AritaK ,LallmeyerRD ,TakasuA .TectonothermalevolutionoftheLesserHimalaya ,Nepal:constraintsfrom 4 0 Ar/3 9AragesfromtheKathmandunappe[J].TheIslandArc ,1997,6 :372~ 384. 2 RaiSM ,GuillotS ,LeFortP ,etal.Pressure temperatureevolutionintheKathmanduandGosainkundregions ,CentralNepal[J].JourAsianEarthSci ,1998,16 :2 83~ 2 98. 3 SchellingD ,KArita .…  相似文献   

16.
查汗查哈岩体出露于新疆西天山东南段,位于中天山南缘断裂北缘的那拉提-中天山侵入岩带,岩性主要为片麻状花岗闪长岩和二长花岗岩。锆石U-Pb定年结果显示,查汗查哈岩体花岗质岩石形成于421.9±6.2 Ma。岩石地球化学特征表明其属于准铝质钙碱性Ⅰ型花岗岩,并具有较典型的大陆边缘弧侵入岩的特征。这一研究结果显示,南天山洋在晚志留世已经开始向北俯冲,并在中天山南缘形成大陆边缘弧环境。   相似文献   

17.
Strain in an Archean greenstone belt of Minnesota   总被引:1,自引:0,他引:1  
We measured strain at more than 60 locations in metasedimentary and metavolcanic rocks of the Vermilion district, an E-W trending Archean greenstone belt in Minnesota. Strain ellipsoid orientations and shapes correlate strongly with N-S location in the belt, but magnitudes do not. Flattening strains occur near the present Vermilion fault (which bounds the greenstone belt to the north) with constrictional strains to the south. The observed strain patterns can be mathematically modeled by deformation paths which produce the flattening strains (with west plunging λ1 axes) by dextral shear of the constrictional strains (with east plunging λ1 axes). Using reasonable geologic constraints, the shear plane must dip to the north with a subhorizontal shear direction. Structures throughout the district also indicate dextral shear. A geometrical finite element program uses the measured strains to destrain the rocks and find the configuration which most closely satisfies strain compatibility equations. The linear E-W strain patterns and minor rotations about horizontal axes during the deformation preclude origin of the greenstone belt by infolding and shear off the flanks of a rising granitic diapir. By accounting for rotations which result in the (deformed) curvature of the original surface, a true estimate of 50% N-S shortening across the belt can be made. The data and deformation models favor the origin of the Vermilion district rocks at a convergent margin, most likely as a N-dipping subduction zone complex with shallow slab dip. The origin of the constrictional strains remains enigmatic.  相似文献   

18.
构造制图和详细的构造解析,在东秦岭造山带核部识别出一个原先未曾注意的元古代变质岩区与古生代变质岩区间的构造边界——军马河-马蹄湾断裂带。实际上,这个构造边界是一个底部韧性变形带,带内发育构造混杂岩、糜棱岩和强直片麻岩。本文阐述了各种几何学特征,它们表明变形是发生在一个缓倾斜的剪切带之上。大量的运动学标志指出,在中生代花岗岩类岩体就位前,再造的元古代变质岩区沿着构造边界向北逆冲于古生代变质岩区之上。  相似文献   

19.
大巴山构造带是秦岭造山带南部发育的一个以逆冲推覆构造为特征的构造带。通过在大巴山弧形构造带中段渔渡地区进行的详细构造解析发现,大巴山构造带在侏罗纪以来经历了至少两期变形叠加,变形地层三叠系嘉陵江组—侏罗系沙溪庙组。早期变形以与滑脱构造相关的轴向北西—北北西向箱状或隔挡状褶皱为主,并在深部发育顺层滑脱构造,变形时代为晚侏罗世到早白垩世。晚期变形与北侧逆冲相关,导致右行走滑变形,主要形成右行走滑断层和北西—北北西向紧闭褶皱,变形时代比第一期稍晚,为晚侏罗世之后到早白垩世。两期变形形成的褶皱延伸方向一致,与区域构造线的方向协调,而且在远离北侧镇巴断裂的地区变形强度有减弱的趋势,两期变形叠加形成共轴或斜交叠加构造。研究表明,变形与大巴山冲断—推覆构造带向南逆冲有关。  相似文献   

20.
腾冲地块高地热异常区清水左所营初糜棱岩化黑云母二长花岗岩岩体、新华黑石河热田强糜棱岩化黑云母二长花岗岩岩体、热海热田硫磺塘硅化碎裂正长花岗岩岩体变形变质、岩石地球化学及锆石年代学的研究表明,晚白垩世(73Ma)初糜棱岩化黑云母二长花岗岩岩体为高温钾玄质强过铝花岗岩,形成于活动大陆边缘火山弧-后碰撞转换或过渡构造环境,并经历强烈伸展变形作用,普遍发育早期近水平-低角度(30°)韧性伸展剪切糜棱面理,局部发育晚期高角度右旋走滑挤压韧性糜棱面理;始新世(48~46Ma)强糜棱岩化黑云母二长花岗岩岩体、硅化碎裂正长花岗岩岩体为中-高温钾玄质强过铝花岗岩,并具铝质A型花岗岩特征,形成于后碰撞-板内构造环境,以发育晚期高角度(70°~87°)右旋走滑挤压韧性糜棱面理为特征,其右旋走滑韧性剪切变形时代晚于始新世(48~46Ma)。晚白垩世-始新世钾玄质强过铝花岗岩的形成与俯冲-碰撞造山隆升后的伸展垮塌、拆沉地幔物质上涌玄武质岩浆底侵和地壳部分熔融作用密切相关。始新世-第四纪岩浆活动与高地热异常区(带)空间上密切伴生,新近纪晚期-第四纪构造活动主要表现为脆性走滑-拉张正断层和构造拉分断陷盆地的形成,构造断陷边界断裂与深部岩浆活动是导致腾冲地区高地热异常区(带)中-高温地热温泉沿走滑-拉张断裂带集中分布的主要原因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号