首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
Detailed observations were performed of the wind-exerted surface flow, before and after the generation of wind waves. As flow visualization techniques, 6 classes of polystyrene beads of from 0.33 mm to 1.93 mm in diameter, with a specific gravity of 0.99, and also, hydrogen bubble lines, were used. Experiments were carried out at three ranges of the wind speed: 4.0, 6.2 and 8.6ms–1 in the mean in the wind-wave tunnel section, and the observations were made at 2.85 m in fetch. In the case of 6.2 m s–1, when the initial surface skin flow attains 0.22 cm in the scale thickness and 16 cm s–1 in the surface velocity in about 3 second from the onset of the wind, regular waves of about 1.7 cm in wave length appear on the water surface. In one second after that, the downward thrust of the surface flow and the consequent forced convection commences, and the transition of the surface layer to a turbulent state occurs. Ordinary wind waves begin to develop from this state. In developed wind waves the viscous skin flow grows on the windward side of the crests, frequently producing macroscopic skin flows, and these skin flows converge to make a downward thrust at the lee side, and the viscous skin layer disappears there. The velocity of the downward flow has a maximum at the phase of about 30, and the value is of the order of 10 cm s–1 at 4-mm depth after the orbital velocity of the sinusoidal wave is subtracted. As the process through which the wind stress acts on the water surface, it is considered that the following particular one may be real: the skin friction concentrated at the windward side of the crest produces skin flows, which thrust into the inner region to make the forced convection, carrying the acquired momentum. The viscous shearing stress just before the generation of the surface undurations was about 1/4 of the total shearing stress under the existence of wind waves. It is considered that the increase of the wind stress by wind waves is caused by this mechanism.  相似文献   

2.
The minimum value of wind stress under which the flow velocity in short wind waves exceeds the phase speed is estimated by calculating the laminar boundary layer flow induced by the surface tangential stress with a dominant peak at the wave crest as observed in previous experiments. The minimum value of the wind stress is found to depend strongly on, the ratio of the flow velocity just below the boundary layer and the phase speed, but weakly onL, the wavelength. For wind waves previously studied (=0.5,L=10 cm), the excess flow appears when the air friction velocityu * is larger than about 30 cm sec–1. The present results confirm that the excess flow found in my previous experiments is associated with the local growth of a laminar boundary layer flow near the wave crest.  相似文献   

3.
The internal flow structure of wind waves in a wind-wave tunnel was investigated on the bases of the measured vorticity distributions, streamline patterns, internal pressure fields, and stress distributions at the water surface for some waves in the field. In part I the experimental method and the internal vorticity structure relative to the individual wave crests are described. The measured vorticity distributions of distinct waves (waves with waveheight comparable with or larger than that of significant wavesH 1/3) in the field indicate that the surface vorticity layer is extraordinarily thickened near the crest, and the vorticity near the water surface shows a particularly large value below the crest. The flow near the crest of distinct waves is found to be in excess of the phase speed in a very thin surface layer, and the tangential stress distribution has a dominant peak near the crest. It is argued that the occurrence of the region of high vorticity in distinct waves is associated with the local generation of vorticity near the crest by tangential stress which attains a peak, under the presence of excess flow.  相似文献   

4.
Wind-wave tunnel experiments reveal, by use of techniques of the flow visualization, that wind waves are accompanied by the wind drift surface current with large velocity shear and with horizontal variation of velocity relative to the wave profile. The surface current converges from the crest to a little leeward face of the crest, making a downward flow there, even though the wave is not breaking. Namely, wind waves are accompanied by forced convections relative to the crests of the waves. Since the location of the convergence and the downward flow travels on the water surface as the crest of the wave propagates, the motion as a whole is characterized by turbulent structure as well as by the nature of water-surface waves. In this meaning, the term of real wind waves is proposed in contrast with ordinary water waves. The study of real wind waves will be essential in future development of the study of wind waves.  相似文献   

5.
The instability of Taylor-Görtler vortices which are expected in the air flow on water waves was studied in part I, under the assumption that the curvature around the crest or the trough of water waves, where the instability was expected to take place first, was constant, namely that the characteristics of the vortices were affected little by the local change of the curvature along the direction of the progress of water waves (the direction ofx-axis) However, the curvature actually varies from positive to negative, or vice versa. In order to study this effect, the instability of Taylor-Görtler vortices is examined with respect to the range of the part of a constant curvature, in the model in which the curvature is positive constant near the trough and negative constant near the crest, and zero in the intermediate regions, respectively. It is shown that as the region of the constant curvature becomes narrower, the instability tends to weaken. For the same example with part I, namely, when the wind of 12.2 m s–1 is blowing over swells of 15 m in wavelength, if the range of constant curvature near the trough is taken as a quarter of one wave length, the critical wave height becomes 0.96 m instead of 0.50 m, and conversely, the wave length and the height of center of the vortex become 11.9 m and 2.1 m instead of 24 m and 3.7 m, respectively.Further, using the energy equations, quantitative estimates are performed of the intensity of the vortices which develop when the wave height of the swell is 1.05 m in the above described example, and also of the influence of the vortices upon the wind profile when the equilibrium state is reached. When the vortices are generated and grow to attain to an equilibrium state interacting with the mean flow, the maximumx-component of velocity in the vortices is about 1.04 m s–1. Consequently, the wind profile undergoes a considerable distortion from the logarithmic one near the level of 2 m height. This distorted wind profile has a form similar to those sometimes observed above the sea surface.  相似文献   

6.
Analysis of freak wave measurements in the Sea of Japan   总被引:3,自引:0,他引:3  
This paper presents an analysis of a set of available freak wave measurements gathered from several periods of continuous wave recordings made in the Sea of Japan during 1986–1990 by the Ship Research Institute of Japan. The analysis provides an ideal opportunity to catch a glimpse of the statistics of freak waves in the ocean. The results show that a well-defined freak wave may occur in the developed wind–wave condition: S(f)∝f−4, with single-peak directional spectra. The crest and trough amplitude distributions of the observed sea waves including freak waves are different from the Rayleigh distribution, although the wave height distribution tends to agree with the Rayleigh distribution. Freak waves can be readily identified from the wavelet spectrum where a strong energy density occurs in the spectrum, and is instantly surged and seemingly carried over to the high-frequency components at the instant the freak wave occurs.  相似文献   

7.
Two-dimensional temperature data observed by use of a 275 meter towed thermistor chain deployed from an oceanographic research vessel USS MARYSVILLE, which cruised with a speed of 6.2 knots in July 1966 across the Kuroshio Extension in the North Pacific, are investigated. Two-dimensional variations of the distribution of the isotherms along the ship's track are analyzed with special reference to their slope, wavelength and wave height. The results show that the slope and wave height of isotherms have a tendency to increase as the temperature decreases. Even if the contribution of wave heights smaller than 1.5 m is neglected, i.e., contribution of large scale slope with a horizontal scale of 5–30 km is subtracted, this tendency is still detected. In contrast to this, the wavelength evaluated by the crest to crest method has no dependency on the temperature. Power spectrum of the isotherm depth is proportional tok –1.87 for 13°C andk –2.13 for 27°C, wherek is the wave number. It is shown that the spectra of warmer isotherms are relatively well approximated by –2 power law (Garrett and Munk spectrum) for internal waves rather than the –5/3 power law (Kolmogorov spectrum) for three dimensional isotropic turbulence.  相似文献   

8.
The wind-stress field in the North Pacific Ocean during 1961–75 is computed from nearly five million ship reports. With a drag coefficient having a linear relation to wind speed, annual mean and monthly mean wind-stress fields are obtained, and their features are described.Compared with the stress fields obtained byHellerman (1967) andWyrtki andMeyers (1976), the eastward component of the stress in the present study is larger in magnitude and the northward one smaller in magnitude, especially in the trade wind region. Differences in the drag coefficient do not have a pronounced effect on the estimated stress field. Long-period inter-annual variations in the wind field are the most likely cause of the discrepancies between the present study and those of the above authors.The maximum of the wind-stress curl, estimated from the annual mean wind-stress fields, is as large as 1.0×10–8dyn cm–3 around 30°N, and is larger than that estimated byEvenson andVeronis (1975). The discrepancy is considered to be mainly due to differences in the computed stress field itself rather than due to differences in the grid size used in the stress computations.The Sverdrup transports integrated from the eastern boundary on the basis of the present stress field have a maximum greater than 40×10–12cm3 s–1 (Sv.) near the western boundary around 30°N. This value is closer to the observed transport of the Kuroshio than that based on Hellerman's stress field.  相似文献   

9.
Wind-generated waves in Hurricane Juan   总被引:3,自引:0,他引:3  
We present numerical simulations of the ocean surface waves generated by hurricane Juan in 2003 as it reached its mature stage (travelling from deep waters off Bermuda to Nova Scotia and making landfall near Halifax) using SWAN (v.40.31) nested within WAVEWATCH-III (v.2.22; denoted WW3) wave models, implemented on multiple-nested domains. As for all storm-wave simulations, spectral wave development is highly dependent on accurate simulations of storm winds during its life cycle. Due to Juan’s rapid translation speed (accelerating from 2.28 m s−1 on 27 September, 1200 UTC to 20 m s−1 on 29 September, 1200 UTC), an interpolation method is developed to blend observed hurricane winds with numerical weather prediction (NWP) model winds accurately. Wave model results are compared to in situ surface buoys and ADCP wave data along Juan’s track. At landfall, Juan’s maximum waves are mainly swell-dominated and peak waves lag the occurrence of the maximum winds. We explore the influence of surface waves on the wind and show that the accuracy of the wave simulation is enhanced by introducing swell and Stokes drift feedback mechanisms to modify the winds, and by limiting the peak drag coefficient under high wind conditions, in accordance with recent theoretical and experimental results.  相似文献   

10.
Local balance in the air-sea boundary processes   总被引:2,自引:0,他引:2  
A combination of the three-second power law, presented in part I for wind waves of simple spectrum, and the similarity of the spectral form of wind waves, leads to a new concept on the energy spectrum of wind waves. It is well substantiated by data from a wind-wave tunnel experiment.In the gravity wave range, the gross form of the high frequency side of the spectrum is proportional tog u * –4, whereg represents the acceleration of gravity,u * the friction velocity, the angular frequency, and the factor of proportionality is 2.0×l0–2. The wind waves grow in such a way that the spectrum slides up, keeping its similar form, along the line of the gross form, on the logarithmic diagram of the spectral density,, versus. Also, the terminal value of, at the peak frequency of the fully developed sea, is along a line of the gradient ofg 2 –5.The fine structure of the spectrum from the wind-wave tunnel experiment shows a characteristic form oscillating around the –4-line. The excess of the energy density concentrates around the peak frequency and the second- and the third-order harmonics, and the deficit occurs in the middle of these frequencies. This form of the fine structure is always similar in the gravity wave range, in purely controlled conditions such as in a wind-wave tunnel. Moving averages of these spectra tend very close to the form proportional to –5.As the wave number becomes large, the effect of surface tension is incorporated, and the –4-line in the gravity wave range gradually continues to a –8/3-line in the capillary wave range, in accordance with the wind-wave tunnel data. Likewise, the –5-line gradually continues to a –7/3-line.Also, through a discussion on these results, is suggested the existence of a kind of general similarity in the structure of wind wave field.  相似文献   

11.
The relationship between the RMS amplitudes of the wind wave spectral components and the wind speed has been studied at ten frequencies in the band of 0.65–23 Hz. To measure the parameters of the high-frequenci waves, a resistance elevation wave gauge was operated, which was deployed in the Black See on an oceanographic platform near Katsively. The correlation between the wave amplitudes and the wind velocity at high frequencies of 5–23 Hz, corresponding to gravitation-capillary ripples, was found to reach a value of 0.8. At lower frequencies of 0.65–4.3 Hz, corresponding to short gravity waves, it dropped to 0.5–0.7. The response of spectral components to the wind speed variations in the gravity-capillary range is higher than in the range of short gravity waves. The results obtained differ from Phillips' idea about a saturated range for the frequency form of the spectrum of high-frequency gravity waves, since a linear dependence of the spectral amplitudes on the wind speed is established at a wind of force 1–8.Translated by Mikhail M. Trufanov.  相似文献   

12.
The paper documents the occurrence of long-period internal Kelvin waves in Split Channel in spring 2002. The analyses were performed on thermohaline and current data measured at three moorings and one hydrographic section. The internal oscillation had a period of 5–6 days, being larger just after the generation which was probably excited by the alongshore Sirocco wind. The recorded current amplitude was up to 0.3 m s−1 in the surface layer, while the observed pycnocline displacement was 10–15 m. The oscillation was reproduced by one-dimensional two-layered model of a channel, imposing nodal lines at its entrances. Cross-shore properties of the oscillation, such as observed offshore decrease in pycnocline amplitude, are explained by the dynamics of an internal Kelvin wave propagating along channel boundaries, because the internal Rossby radius is smaller than the width of the channel. Conclusively, the observed oscillation probably represents the fundamental mode of internal waves trapped in the channel complex off Split.  相似文献   

13.
A new growth equation for wind waves of simple spectrum is presented upon three basic concepts. The period and the wave height of significant waves in dimensionless forms, which are considered to correspond to the peak frequency and the energy level, respectively, are used as representative quantities of wind waves. One of the three basic concepts is the concept of local balance, and the other two concern the acquisition of wave energy and the dissipation of wave energy, respectively. It is shown from some actual data that the equation, together with two universal constants concerning the acquisition and the dissipation of wave energy (B=6.2×10?2 andK=2.16×10?5, respectively), is applied universally to wide ranges of wind waves from those in a wind-wave tunnel to fully developed sea in the open ocean. “The three-second power law for wind waves of simple spectrum”, and a few relations as the lemmas, are derived, such that the mean surface transport due to the orbital motion of wind waves is always proportional to the friction velocity in wind, and that the steepness is inversely proportional to the root of the wave age. It is also derived that the portion of wind stress which directly enters the wind waves decreases exponentially with increasing wave age and is 7.5 % of the total wind stress for very young waves. Also, equations are presented as to the increase of momentum of drift current, and as to the supply of turbulent energy by wind waves into the upper ocean.  相似文献   

14.
Properties of surface singularities and the form of wave crests of limiting gravity waves in steady-state flows of an ideal liquid are considered by analyzing the kinematic boundary condition. It is shown that, for rotational waves, the angle at the crest can have any value from 0° to 180°, while it has the only value 90° in the case of irrotational waves. Two inferences are made from Bernoulli’s integral and the properties of singularities: (i) the Stokes wave is a rotational wave and (ii) no angular points can appear on the profiles of capillary-gravity and capillary waves.  相似文献   

15.
本文在时域非线性数值波浪水槽中,研究了不同风速条件下极端波浪的特性。采用推板造波的方式生成非线性波浪,基于Jeffrey遮蔽理论将风压项引入自由面动力学边界条件来模拟风压作用,通过高阶边界元法和混合欧拉-拉格朗日时间步进法来求解初边值问题。通过与已发表的聚焦波群实验结果对比验证了该数值模型的准确性,并研究了风压对极端波浪的最大波高、聚焦位置的偏移和波浪谱的演变等波浪性质的影响。本文进一步在数值波浪水槽中引入均匀水流,来模拟风生流对波浪演变的影响。结果表明,风压的存在会少量增大极端波浪的最大波高,波浪的聚焦和解焦过程伴随着明显的能量传递,并且风生流进一步导致了波浪聚焦位置的偏移。  相似文献   

16.
The relation between the intensity of breaking of individual wind-wave crests and parameters of wave size and wave form (e. g., height, period, steepness and skewness) is examined, and the process of change of these parameters is studied in a wind-wave tank (reference wind speed 15 m sec−1, fetch 16 m). Distributions of the wave form parameters are different for breaking and nonbreaking waves. Fully breaking waves seem to hold the relationHT 2, whereH is the individual wave height andT is the period. The condition of breaking is not simply determined by the simple criterion of Stokes' limit. Wave height and steepness of a breaking wave are not always larger than those of a nonbreaking wave. This suggests the existence of an overshooting phenomenon in the breaking wave. The wave form parameters are found to change cyclically in a statistical sense during the wave propagation. The period of the cycle in the present case is estimated to be longer than four wave periods. An intermittency of wave breaking is associated with this cyclic process. Roughly speaking, two or three succeeding breaking-waves sporadically exist among a series of nonbreaking waves along the fetch.  相似文献   

17.
Wave-height distributions and nonlinear effects   总被引:2,自引:0,他引:2  
Theoretical distributions proposed for describing the crest-to-trough heights of linear waves are reviewed briefly. To explore the effects of nonlinearities, these are generalized to second-order waves, utilizing quasi-deterministic results on the expected shape of large waves. The efficacy of Gram–Charlier models in describing the effects of third-order nonlinearities on the distributions of wave heights, crests and troughs are examined in detail. All models and a fifth-order Stokes–Rayleigh type model recently proposed are compared with linear and nonlinear waves simulated from the JONSWAP spectrum representative of long-crested extreme seas, and also with oceanic data gathered in the North Sea. Uncertainties arising from the variability of probability estimates derived from sample populations of limited size are considered. Ultimately, the comparisons show that nonlinearities do not have any discernable effect on the crest-to-trough heights of oceanic waves. Most of the linear models considered yield similar and reasonable predictions of the observed data trends. Gram–Charlier type distributions seem neither effective nor particularly useful in describing the statistics of large wave heights or crests under oceanic conditions. However, they do surprisingly well in predicting unusually large wave heights and crests observed in some 2D wave-flume experiments and 3D numerical simulations of long-crested narrow-band random waves.  相似文献   

18.
We analyze the time-longitude structure of composite cases from model-assimilated ocean data in the period 1958–1998, following on from earlier work by Huang and Kinter (J. Geophys. Res. 107(C11) (2002) 3199) that studied east–west thermocline variability in the Indian Ocean. Our analysis focuses on the Rossby wave signal along the thermocline ridge in the tropical SW Indian Ocean (10°S, 60–80°E), where wind stress curl is important. Anomalous winds in the equatorial east Indian Ocean force successive Rossby waves westward at speeds of 0.1 m s−1±30%. With a wavelength of 7000 km, the period of oscillation is in the range 1.9–5.2 years. The Indian Ocean Rossby wave is partially resonant with the global influence of the El Nino–Southern Oscillation, except during quasi-biennial rhythm. The presence of the Rossby wave offers potential predictability for east–west atmospheric circulation systems and climate that affect resources in countries surrounding the Indian Ocean.  相似文献   

19.
Current records obtained in the inshore region along the Fukushima coast are analyzed. The existence of periodical current fluctuations whose period is about 100 hours and whose amplitude is as large as 15–25cm s–1 is recognized. Auto-spectral analyses are made also for sea level, atmospheric pressure and wind records. Each spectrum has significant peaks at the similar period to the current spectrum. The wind spectrum has a broad peak compared with the current. The periodical current fluctuations propagate southward with speed of 3–5 km h–1. These propagation speeds seem to correspond to those of the second-and third-mode shelf waves.  相似文献   

20.
《Applied Ocean Research》2005,27(4-5):235-250
The present study describes an experimental investigation of breaking criteria of deepwater wind waves under strong wind action. In a wind wave flume, waves were generated using different wind speeds and measured at different locations to obtain wave trains of no, intermittent, or frequent breaking. Water particle movement and free surface elevation were measured simultaneously using a PIV system and a wave gauge, respectively. For wind waves, not all the waves measured at a fixed location are breaking waves, and the breaking of a larger wave is not guaranteed. However, the larger the wave height, the larger the probability of breaking. In order to take as many breaking waves as possible for the cases of frequent breaking, we used the waves whose heights were close to the highest one-tenth wave height. The experimental results showed that the geometric or kinematic breaking criteria could not explain the occurrence of breaking of wind waves. On the other hand, the vertical acceleration beneath the wave crest was close to the previously suggested limit value, −0.5g, when frequent breaking of large waves occurred, indicating that the dynamic breaking criterion would be good for discriminating breaking waves under a strong wind action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号