首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fractal Geometry of Element Distribution on Mineral Surfaces   总被引:3,自引:0,他引:3  
Fractal models have been established for the distributions of Au, As, S, Fe, and Si on mineral surface based on perimeter–area power-law association observed in mineral samples from fine-disseminated gold deposits at Jinya (JY), Larima (LRM), and Dongbeizhai (DBZ). The fractal index DAL, involved in the fractal perimeter–area relationship is a function of the formation conditions of the mineral. Minerals formed at higher temperatures have a larger value of DAL. For the same mineral, the values of DAL obtained for different elements are approximately the same. DAL may serve as a quantitative index characterizing the distribution configuration of elements on mineral surface.  相似文献   

2.
Fractal trees as a model for drainage systems are described in its generalized non-homogeneous form from the viewpoint of fractal geometry. Box covering techniques are used to show the numerical equivalence between the Hausdorff-Besicovitch dimension and the similarity dimension of the fractally-dominant dust formed by the sources. In this way, the similarity relationD=log (N)/log (1/r) is reinterpreted in terms of bifurcation and length ratio (r B andr L ) asD=log (r B )/log (r L ). We test this relation for non-homogeneous exact fractal trees and two natural drainage systems. The fact thatr B andr L are common parameters in quantitative geomorphology allows a trivial stimation of the fractal dimension of well-known drainage basins.  相似文献   

3.
Fractal trees as a model for drainage systems are described in its generalized non-homogeneous form from the viewpoint of fractal geometry. Box covering techniques are used to show the numerical equivalence between the Hausdorff-Besicovitch dimension and the similarity dimension of the fractally-dominant dust formed by the sources. In this way, the similarity relationD=log (N)/log (1/r) is reinterpreted in terms of bifurcation and length ratio (r B andr L ) asD=log (r B )/log (r L ). We test this relation for non-homogeneous exact fractal trees and two natural drainage systems. The fact thatr B andr L are common parameters in quantitative geomorphology allows a trivial stimation of the fractal dimension of well-known drainage basins.  相似文献   

4.
Summary Thirteen natural rock profiles (Barton and Choubey, 1977) are analyzed for their fractal properties. Most of the profiles were found to approximate fractal curves but some also showed features of specific wavelengths and amplitudes superimposed on fractal characteristics. The profiles showed fractal dimensions from 1.1 to 1.5 covering a range of selfsimilar and self-affine curves. The analysis results suggest a negative correlation between fractal dimension,D, and amplitude,A. Joint roughness coefficients (JRC) show a positive correlation with amplitude,A, and a negative correlation with fractal dimension,D. A numerical model of fracture closure is used to investigate the effects of different profile characteristics (D, A and sample size) on the nature of dilation and contact area, using the natural profiles and synthetic fractional Brownian motion profiles. Smooth profiles (low JRC, highD, lowA) display many small contact regions whereas rough fractures (high JRC, lowD, highA) display few large contact areas. The agreement with published experimental data supports the suggested correlations between JRC and the fractal parameters,A andD. It is suggested that observed scale effects in JRC and joint dilation can be explained by small differential strain discontinuities across fractures, which originate at the time of fracture formation.  相似文献   

5.
《Tectonophysics》2001,330(1-2):93-102
The fractality of the earthquake sequence (1983–1997) of Irpinia–Basilicata (Southern Italy), one of the most seismically active regions of the Mediterranean area, has been analysed by temporal and spatial fractal tools. The fractal exponent α, estimated by the Allan Factor method, characterises the time-clustering behaviour of the set of earthquakes, while the correlation dimension DC, calculated by means of the correlation integral method, gives information on the space-clustering behaviour of the sequence of seismic events. Analysing the variations of both the parameters, we recognised the presence of a strong space–time clusterisation associated with the major events that occurred in the investigated area.  相似文献   

6.
The aim of the presented study is to assess the fractal dimension (D) and the geometrical characteristics (length and width) of the landslides identified in North of Tehran, Iran. At first, the landslide locations (528 landslides) were identified by interpretation of aerial photographs, satellite images and field surveys, and then to calculate the fractal dimension (D), we used the computer programming named as FRACEK. In the next step, geometrical characteristics of each landslide such as length (L) and width (W) were calculated by ArcGIS software. The landslide polygons were digitized from the mentioned landslide inventory map and rotated based on movement direction. The fractal dimension for all landslides varied between 1.665 and 1.968. Subsequently, the relationship between the length/width ratios and theirs fractal D values for 528 landslides was calculated. The results showed that correlation coefficients (R), which are different regression models such as exponential, linear, logarithmic, polynomial, and power, between D and L/W ratio are relatively high, respectively (0.75, 0.75, 0.76, 0.78, and 0.75). It can be concluded that the fractal dimension values and geometry characteristics of landslides would be useful indices for the management of hazardous areas, susceptible slopes, land use planning, and landslide hazard mitigation.  相似文献   

7.
吉林省水系构成的分形研究   总被引:16,自引:1,他引:15  
根据对分形水系的新近认识探讨了吉林省水系结构的自相似规律。Horton-Strahler的水系标度定律隐含着水系的位序-规模法则和河流长度-流域面积的异速生长关系,这暗示着α= lnRb/lnRl是一种等级结构的维数,不能将之与空间结构维数混同;Hack模型的标度因子b=lnRl/lnRa是一种广义的空间维数之比,不能据之确定主河道的分维。基于上述思想,对吉林省10个主要水系的等级结构进行考察,发现气候相对湿润的山区水系的α值高于气候相对干燥的平原地区水系的α值,而平原-干燥区水系的b值高于山地-湿润区水系的b值。从河流发育的地质、地貌背景和气候-水文关系等角度对上述现象进行了的初步解释,并根据洮儿河的异常α值修正了LaBabera-Rosso的水系分维定义。  相似文献   

8.
Summary Many rock mass classification systems exist to assist the engineer in assessing the rock support requirements for underground design. On-going research in this area is directed at attempting to utilize the fractal dimension and the acoustic emission response of the tuffs at the Nevada Yucca Mountain to further aid in rock mass classification. Acoustic emission response is shown to be correlated with the porosity of the sample. Engineering behaviour of the rock varies dramatically with porosity; events and peak amplitude offer a means to distinguish between fracture porosity and pore porosity and consequently the engineering behaviour of the rock. Fractal dimension is used to characterize the roughness of fracture surfaces. Two fractal dimension calculation methods, one based on the semi-variogram for the surface and the other based on the use of dividers, are applied for this purpose. The divider method is shown to resolve deviation from a straight line; the semi-variogram method is shown to identify statistical similarity to various types of noise.Nomenclature D fractal dimension - AE acoustic emission - b b-value determined from log(frequency) against log(amplitude) plots - (h) semi-variogram function - h lag distance for semi-variogram function - H an exponent term related to fractal dimension asD=2 –H  相似文献   

9.
To investigate inhomogeneous and porous structures in nature, the concept of fractal dimension was established. This paper briefly introduces the definition and measurement methods of fractal dimension. Three different methods including mercury injection capillary pressure (MICP), nuclear magnetic resonance (NMR), and nitrogen adsorption (BET) were applied to determine the fractal dimensions of the pore space of eight carbonate rock samples taken from West Tushka area, Egypt. In the case of fractal behavior, the capillary pressure P c and cumulative fraction V c resulting from MICP are linearly related with a slope of D-3 in a double logarithmic plot with D being the value of fractal dimension. For NMR, the cumulative intensity fraction V c and relaxation time T 2 show a linear relation with a slope of 3-D in a double logarithmic plot. Fractal dimension can also be determined by the specific surface area S por derived from nitrogen adsorption measurements and the effective hydraulic radius. The fractal dimension D shows a linear relation with the logarithm of S por . The fractal dimension is also used in models of permeability prediction. To consider a more comprehensive data set, another 34 carbonate samples taken from the same study area were integrated in the discussion on BET method and permeability prediction. Most of the 42 rock samples show a good agreement between measured permeability and predicted permeability if the mean surface fractal dimension for each facies is used.  相似文献   

10.
The ongoing continent?Ccontinent collision between Indian and Eurasian plates houses a seismic gap in the geologically complex and tectonically active central Himalaya. The seismic gap is characterized by unevenly distributed seismicity. The highly complex geology with equally intricate structural elements of Himalaya offers an almost insurmountable challenge to estimating seismogenic hazard using conventional methods of Physics. Here, we apply integrated unconventional hazard mapping approach of the fractal analysis for the past earthquakes and the box counting fractal dimension of structural elements in order to understand the seismogenesis of the region properly. The study area extends from latitude 28°N?C33°N and longitude 76°E?C81°E has been divided into twenty-five blocks, and the capacity fractal dimension (D 0) of each block has been calculated using the fractal box counting technique. The study of entire blocks reveal that four blocks are having very low value of D 0 (0.536, 0.550, 0.619 and 0.678). Among these four blocks two are characterized by intense clustering of earthquakes indicated by low value of correlation fractal dimension (D c ) (0.245, 0.836 and 0.946). Further, these two blocks are categorized as highly stressed zones and the remaining two are characterized by intense clustering of structural elements in the study area. Based on the above observations, integrated analysis of the D c of earthquakes and D 0 of structural elements has led to the identification of diagnostic seismic hazard pattern for the four blocks.  相似文献   

11.
Based on the analysis of newly collected data of plate tectonics, distribution of active faults and crustal deformation, the Taiwan area is divided into two seismic regions and six seismic belts. Then, correlation fractal dimensions of all the regions and belts are calculated, and the fractal characteristics of hypocenteral distribution can be quantitatively analyzed. Finally, multifractal dimensions Dq and f(α) are calculated by using the earthquake catalog of the past 11 years in the Taiwan area. This study indicates that (1) there exists a favorable corresponding relationship between spatial images of seismic activity described with correlation fractal dimension analysis and tectonic settings; (2) the temporal structure of earthquakes is not single but multifractal fractal, and the pattern of Dq variation with time is a good indicator for predicting strong earthquake events.  相似文献   

12.
Accurate quantification of rock fracture aperture is important in investigating hydro-mechanical properties of rock fractures. Liquefied wood’s metal was used successfully to determine the spatial distribution of aperture with normal stress for natural single rock fractures. A modified 3D box counting method is developed and applied to quantify the spatial variation of rock fracture aperture with normal stress. New functional relations are developed for the following list: (a) Aperture fractal dimension versus effective normal stress; (b) Aperture fractal dimension versus mean aperture; (c) Fluid flow rate per unit hydraulic gradient per unit width versus mean aperture; (d) Fluid flow rate per unit hydraulic gradient per unit width versus aperture fractal dimension. The aperture fractal dimension was found to be a better parameter than mean aperture to correlate to fluid flow rate of natural single rock fractures. A highly refined variogram technique is used to investigate possible existence of aperture anisotropy. It was observed that the scale dependent fractal parameter, K v, plays a more prominent role than the fractal dimension, D a1d, on determining the anisotropy pattern of aperture data. A combined factor that represents both D a1d and K v, D a1d × K v, is suggested to capture the aperture anisotropy.  相似文献   

13.
The particle size distribution in small watershed changes under different land uses and affects soil erodibility. The aims of this study were (1) to investigate the volume fractal dimension of particle size distribution under different land uses in a typical small watershed of purple soil, (2) to estimate soil erodibilities of various land uses utilizing the Erosion-Productivity Impact Calculator (EPIC) model and the nomogram (NOMO) model, and (3) to relate volume fractal dimension with the soil erodibility used in the Universal Soil Loss Equation (USLE) in purple soil areas. Laser diffractions and double-logarithmic model were used to measure and calculate volume fractal dimension values. The results show that soil volume fractal dimensions were well linearly fitted to the double-logarithmic model with high correlation coefficients of 0.902–0.936 under six land uses in the small watershed. The averaged volume fractal dimension values under different land uses, from high to low were in the order of Zea mays L, Ipomoea batatas, Citrus reticulata Blanco, Setaria viridis, Robinia pseudoacacia L, Pinus massoniana Lamb. The volume fractal dimension was positively correlated to clay particle fraction (R = 0.933). The average soil erodibility values under different land uses from high to low were in the order of Setaria viridis, Citrus reticulata Blanco, Pinus massoniana Lamb, Zea mays L, Ipomoea batatas, Robinia pseudoacacia L while average soil erodibilities from high to low values were in the order of Setaria viridis, Citrus reticulata Blanco, Zea mays L, Ipomoea batatas, Pinus massoniana Lamb, Robinia pseudoacacia L. The soil erodibilities calculated by the two models were similar, and positively correlated (R = 0.630–0.877). The volume fractal dimension values of six land uses were negatively correlated to both soil erodibility estimated by EPIC and by NOMO models. Moreover, the correlations of the volume fractal dimension values of Zea mays L, Ipomoea batatas and Citrus reticulata Blanco estimated by EPIC or NOMO were lower than those of Pinus massoniana Lamb, Robinia pseudoacacia L and Setaria viridis. Further research is needed to determine the influence of volume fractal dimension on the soil erodibility under different land use and managements.  相似文献   

14.
The seismicity of a region is implicit of the causal faulting mechanisms and geodynamic diversity of the subsurface regime nucleating earthquakes of different magnitudes, several of which may be as devastating as ones historically reported in global perspective of tectonic complexity as in the case of India. Fractal analysis using box-counting method for the major fault networks across the country estimates fractal dimension, Df, values to be varying between 0.88 and 1.36. The fault segments in parts of northwest Himalayas, northeast India and Indo-Gangetic plains, are observed to be associated with higher Df values implicating high seismicity rates. On the other hand, low Df values in the peninsular India indicate isolated pattern of the underlying faults. The fractal dimension is observed to be indicative of predominant faulting types — higher values conforming to thrust faulting mechanism while lower to strike slip tectonism.  相似文献   

15.
《Engineering Geology》2002,63(1-2):141-155
Fractal theory is used in the present study to develop a more reliable method for rock mass characterization. Field studies have been carried out in opencast mines of dolomite, limestone, fluorite; sandstone and shale in coalmines. Fractal dimension of blasted fragments (Dfrag) and in situ rock blocks (Din situ) is calculated using size distribution curves according to Schumann's model. Based on the co-relation between Uniaxial Compressive Strength (UCS) and Dfrag, it is observed that change in fractal dimension is nominal beyond the UCS value of 20. From the co-relation between Bieniawaski's Rock Mass Rating (RMR) and Din situ, it is found that there is a sharp increase in fractal dimension for RMR greater than 40. Co-relation between RMR and Dfrag/Din situ shows that as RMR increases, Dfrag/Din situ ratio decreases. Rock mass classification based on fractal geometry is suggested.  相似文献   

16.
In this paper, we investigate the fractal properties of binary maps of rock fractures at different scales and different geological types, as well as different families of fracture patterns obtained from a two-dimensional Laplacian growth model (LGM). From these analyses we figure out which families of the LGM patterns match the structural properties of the fracture binary maps. The LGM is defined in terms of a nonlinear map that depends on two parameters, λ and \mathfraka\mathfrak{a}, that respectively define the area and shape of the elements of the aggregate that conforms the patterns. The fractal dimension and roughness exponent of the LGM patterns are found to depend on \mathfraka\mathfrak{a}, with 0 < \mathfrak a < 10<\mathfrak {a}<1. From a detailed statistical analysis of these patterns we found that the fractal dimensions of capacity, correlation and information decrease monotonically as \mathfraka\mathfrak{a} increases. We also found that the values of these three fractal dimensions tend to collapse on top of each other as \mathfraka\lessapprox1\mathfrak{a}\lessapprox1. Remarkably, the fractal properties of rock fractures in the scales from millimeters up to a few meters appear to be well represented by the fractal structure of the LGM families of patterns with \mathfraka=0.15\mathfrak{a}=0.15 and 0.30, while the fractal properties of rock fractures in the scale of kilometers seems to be well represented by the LGM family with \mathfraka=0.90\mathfrak{a}=0.90. In addition, the three fractal dimension values of fracture binary maps in the scales from millimeters up to meters were found to be different between them. Nonetheless, for fractures in the scale of kilometers, the values of the three fractal dimensions are very close to each other as an indication of self-similar behavior. Analysis of the corrections to the scaling of the roughness exponent, ζ, suggests that they are negligible for the LGM family of fracture patterns with \mathfraka=0.9\mathfrak{a}=0.9. This finding points to a self-affine structure for this family of patterns. In fact, the calculated roughness exponent results are in the range of values characteristic of rock fractures.  相似文献   

17.
An analysis of the possible relationship between fractal dimensions of the active fault network, spatial distribution of earthquake epicenters, and parameter b in the Gutenberg-Richter law is presented. The quantitative characteristics of self-similarity of the seismic process and the active fault network of seismically active areas of Eurasia are obtained. This self-similarity manifests itself over a range of at least two orders of spatial scales and magnitudes. The obtained estimations of the fractal dimensions of the fault network D f and epicenter field D e are close for all the areas analyzed. It is established that the average value connecting values D and b for all the investigated areas is slightly higher than the theoretical value (2.0) and varies within the range of 1.7–2.4.  相似文献   

18.
The aim of this short note is to test whether the morphological skeletal network (MSN) of water bodies that resembles a river network follows Horton's laws. A fractal relationship of MSN of a water body is also shown. This investigation shows that the MSN of the Nizamsagar reservoir follows Horton's laws. Furthermore, this reservoir has a fractal dimension (D m) of 1.92 which was computed by using two morphometric quantities and the fractal dimension of the main skeletal length (d). This value tallies exactly with the fractal dimension (D f) of the whole MSN computed through box-counting method.  相似文献   

19.
The aim of this short note is to test whether the morphological skeletal network (MSN) of water bodies that resembles a river network follows Horton's laws. A fractal relationship of MSN of a water body is also shown. This investigation shows that the MSN of the Nizamsagar reservoir follows Horton's laws. Furthermore, this reservoir has a fractal dimension (D m) of 1.92 which was computed by using two morphometric quantities and the fractal dimension of the main skeletal length (d). This value tallies exactly with the fractal dimension (D f) of the whole MSN computed through box-counting method.  相似文献   

20.
The fractal dimension of the epicentral field of earthquakes (D = 1.6) is determined for the Sikote Alin orogen and adjacent areas. According to this parameter, the region occupies the position between the Kamchatka Peninsula, Kuril Islands (1.61 and 1.69), the East China area, and the Lake Baikal region (1.55 and 1.40). Differentiation of the studied area based on the fractal dimension of the number of earthquakes and on the released energy calculated per unit square shows that the most active crustal areas are associated with the Kharpi–Kur–Priamur’e zone of the northeastern orientation, which is the northern segment of the Tan-Lu transregional fault system. Analysis of the time series of seismic events (MLH ≥ 2.4) in the Sikhote Alin and adjacent areas in the period from 1960 to 2013 shows that the “harmonic” with a 10.5-year period is most clearly displayed. This period (11–13 years) was previously distinguished by B.V. Levin and coauthors from the study of the largest number of earthquakes with M ≥ 4.4 for the period of 1971–2003.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号