首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Kachchh province of Western India is a major seismic domain in an intraplate set-up. This seismic zone is located in a rift basin, which was developed during the early Jurassic break-up of the Gondwanaland. The crustal strain determined from the GPS velocity data of post-seismic time period following the 2001 Bhuj earthquake indicates a maximum strain rate of ∼266 × 10−9 per year along N013°. Focal mechanism solutions of the main event of 26 January 2001 and the aftershocks show that the maximum principal stress axis is close to this high strain direction. Maximum shear strain rate determined from the GPS data of the area has similar orientation. The unusually high strain rate is comparable in magnitude to the continental rift systems. The partitioning of the regional NE–SW horizontal stress (SHmax) by the pre-existing EW-striking boundary fault developed the strike–slip components parallel to the regional faults, the normal components perpendicular to the faults, NE-striking conjugate Riedel shear fractures and tension fractures. The partitioned normal component of the stress is considered to be the major cause for compression across the regional EW faults and development of the second-order conjugate shear fractures striking NE–SW and NW–SE. The NE-striking transverse faults parallel to the anti-Riedel shear planes have become critical under these conditions. These anti-Riedel planes are interpreted to be critical for the seismicity of the Kachchh region. The high strain rate in this area of low to moderate surface heat flow is responsible for deeper position of the brittle–ductile transition and development of deep seated seismic events in this intraplate region.  相似文献   

2.
Horizontal ground deformation measurements were made repeatedly with an electronic distance meter near the Puu Oo eruption site approximately perpendicular to Kilauea's east rift zone (ERZ) before and after eruptive episodes 22–42. Line lengths gradually extended during repose periods and rapidly contracted about the same amount following eruptions. The repeated extension and contraction of the measured lines are best explained by the elastic response of the country rock to the addition and subsequent eruption of magma from a local reservoir. The deformation patterns are modeled to constrain the geometry and location of the local reservoir near Puu Oo. The observed deformation is consistent with deformation patterns that would be produced by the expansion of a shallow, steeply dipping dike just uprift of Puu Oo striking parallel to the trend of the ERZ. The modeled dike is centered about 800 m uprift of Puu Oo. Its top is at a depth of 0.4 km, its bottom at about 2.9 km, and the length is about 1.6 km; the dike strikes N65° E and dips at about 87°SE. The model indicates that the dike expanded by 11 cm during repose periods, for an average volumetric expansion of nearly 500 000 m3. The volume of magma added to the dike during repose periods was variable but correlates positively with the volume of erupted lava of the subsequent eruption and represents about 8% of the new lava extruded. Dike geometry and expansion values are used to estimate the pressure increase near the eruption site due to the accumulation of magma during repose periods. On average, vent pressures increased by about 0.38 MPa during the repose periods, one-third of the pressure increase at the summit. The model indicates that the dikelike body below Puu Oo grew in volume from 3 million cubic meters (Mm3) to about 10–12 Mm3 during the series of eruptions. The width of this body was probably about 2.5–3.0 m. No net long-term deformation was detected along the measured deformation lines.  相似文献   

3.
The northwestern section of the Zhangjiakou-Bohai fault zone starts in the west of Zhangjiakou, extending southeast through Huailai, Shunyi and Tianjin and entering into the Bohai Sea, with a width up to several tens of kilometers, narrow in the west and wide in the east. The Neogene-Quaternary has extended in the northwest and southeast direction, forming a large regional active structure. There are many earthquakes of magnitude 7 or above in the history on the Zhangjiakou-Bohai fault zone and it is also a strong earthquake activity zone in eastern China. Therefore, the modern tectonic activities of this fault zone have an important impact on regional seismic hazard, and are of great significance for earthquake prediction and disaster reduction. In this paper, using the mobile GPS station observation data of 1999, 2007, 2009, 2011, 2013 and 2015, and with the rigid-linear elastic block motion model equation proposed by LI Yan-xing, the horizontal deformation rate and strain rate of the Zhangjiakou-Bohai fault zone of the five adjacent periods of 1999-2007, 2007-2009, 2009-2011, 2011-2013 and 2013-2015 were calculated, the tectonic activity characteristics and evolution of the fault zone were studied. The results show that in the five periods, the average deformation rate of the Zhangjiakou-Bohai fault zone is 1. 74mm/a, the left-lateral strike-slip rate is 1.59mm/a, and the compression rate is -0.59mm/a. The Zhangjiakou-Bohai fault zone is characterized by left-lateral strike-slip and compression on the whole, and the left-lateral strike-slip rate is greater than the compression rate at each period. The strike-slip rate is significantly greater than the compression rate, indicating that the activity of Zhangjiakou-Bohai fault zone is dominated by left-lateral strike-slip faulting with compression. The minimum principal strain rate of the Zhangjiakou-Bohai fault zone in the five periods varies from -12.06×10-9/a to -4.62×10-9/a, and the average minimum principal strain axis direction is N63.9°E, with little change in direction. The maximum principal strain rate varies from 1.55×10-9/a to 5.99×10-9/a, and the average maximum principal strain axis direction is N333.9°W, the direction does not change much. The strike of the Zhangjiakou-Bohai fault zone is NWW(the overall strike is calculated by N300°W), and the normal strain rate of the fault zone is -5.87×10-9/a(being compressional), and the shear strain rate is 12.70×10-9/a. The shear strain rate on the fault zone is about twice the value of the normal strain rate, and the shear strain rate of the fault zone is greater than the normal strain rate, which indicates the shear stress of the 5 periods of 1999-2007, 2007-2009, 2009-2011, 2011-2013 and 2013-2015 is relatively significant, suggesting that the fault plain is dominated by left-lateral shear stress. This suggests that the Japan 3·11 earthquake has little effect on the deformation strain of the Zhangjiakou-Bohai fault zone, and it does not change the nature of activity of the fault zone. The tectonic activity is still inheriting. Since the tectonic activity of the Zhangjiakou-Bohai fault zone has gradually decreased after the Japan 3·11 earthquake, the deformation strain evolution trend has gradually returned to a unified consistent state. Therefore, the deformation strain state of the Zhangjiakou-Bohai fault zone does not have the condition for strong earthquakes.  相似文献   

4.
A study of seismic anisotropy was performed using data from earthquakes of the Mexicali Valley. The investigated region encompasses the Cerro Prieto Geothermal Field (CPGF), one of the most important fields in the world. The results showed that at most of our stations the average polarization directions of the fast S waves range from N14°W to N17°E. A N-S polarization direction was obtained for the whole area by averaging the polarization directions from all stations used. In terms of the EDA hypothesis, this average trend agrees with the postulated state of stress for southern California, and with fault plane solutions for events of the Mexicali Valley. Notorious deviations from the N-S global trend were found southeast of the CPGF, with polarization trends between N25°E and N67°E, and in the geothermal field, with polarization directions between N7°W and N14°W. The polarization results for these zones indicated stress conditions that are different from the more regional stress pattern. The delay times that were measured between the fast and slow shear waves reached values of up to 0.6 sec, with a mean value of 0.35 sec. Consistent with our polarization results, the larger delay times (0.2–0.6 sec) were found in the CPGF. Smaller or null values were observed at the periphery of the study area. No temporal trends in the delay times were apparent, as shown by data from the two stations that recorded the larger number of events. Overall, we conclude that the splitting effects of this study result from a shallow anisotropy volume. The splitting results are thus interpreted as caused by the preferred orientation of vertical fluid-filled microcracks aligned in a direction that is parallel to the regional stress field. The stronger splitting effects that were observed in the area of the CPGF were found consistent with the geothermal reservoir that is embedded in the sedimentary cover of the zone, at depths of 1 to 4–5 km from the surface. We thus believe that such marked splitting effects have a direct relation with the reservoir of the CPGF.We are grateful to Miguel Navarro, Tito Valdez, and Manuel Luna for their contribution in the operation of RANM and for processing and cataloguing the strong-motion data. Ignacio Méndez and Francisco Farfán helped us with data from the RESNOM system. The study benefited from funding provided by CICESE and from grants awarded by CONACYT to Luis Munguía (Grants F195T and PCCNCNA-031339).  相似文献   

5.
We present the results of a multidisciplinary study of the Ms = 6.2, 1995, June 15, Aigion earthquake (Gulf of Corinth, Greece). In order to constrain the rupture geometry, we used all available data from seismology (local, regional and teleseismic records of the mainshock and of aftershocks), geodesy (GPS and SAR interferometry), and tectonics. Part of these data were obtained during a postseismic field study consisting of the surveying of 24 GPS points, the temporary installation of 20 digital seismometers, and a detailed field investigation for surface fault break. The Aigion fault was the only fault onland which showed detectable breaks (< 4 cm). We relocated the mainshock hypocenter at 10 km in depth, 38 ° 21.7 N, 22 ° 12.0 E, about 15 km NNE to the damaged city of Aigion. The modeling of teleseismic P and SH waves provides a seismic moment Mo = 3.4 1018 N.m, a well constrained focal mechanism (strike 277 °, dip 33 °, rake – 77°), at a centroidal depth of 7.2 km, consistent with the NEIC and the revised Harvard determinations. It thus involved almost pure normal faulting in agreement with the tectonics of the Gulf. The horizontal GPS displacements corrected for the opening of the gulf (1.5 cm/year) show a well-resolved 7 cm northward motion above the hypocenter, which eliminates the possibility of a steep, south-dipping fault plane. Fitting the S-wave polarization at SERG, 10 km from the epicenter, with a 33° northward dipping plane implies a hypocentral depth greater than 10 km. The north dipping fault plane provides a poor fit to the GPS data at the southern points when a homogeneous elastic half-space is considered: the best fit geodetic model is obtained for a fault shallower by 2 km, assuming the same dip. We show with a two-dimensional model that this depth difference is probably due to the distorting effect of the shallow, low-rigidity sediments of the gulf and of its edges. The best-fit fault model, with dimensions 9 km E–W and 15 km along dip, and a 0.87 m uniform slip, fits InSAR data covering the time of the earthquake. The fault is located about 10 km east-northeast to the Aigion fault, whose surface breaks thus appears as secondary features. The rupture lasted 4 to 5 s, propagating southward and upward on a fault probably outcropping offshore, near the southern edge of the gulf. In the shallowest 4 km, the slip – if any – has not exceeded about 30 cm. This geometry implies a large directivity effect in Aigion, in agreement with the accelerogram aig which shows a short duration (2 s) and a large amplitude (0.5 g) of the direct S acceleration. This unusual low-angle normal faulting may have been favoured by a low-friction, high pore pressure fault zone, or by a rotation of the stress directions due to the possible dip towards the south of the brittle-ductile transition zone. This fault cannot be responsible for the long term topography of the rift, which is controlled by larger normal faults with larger dip angles, implying either a seldom, or a more recently started activity of such low angle faults in the central part of the rift.  相似文献   

6.
Magnetizations in 24 flows of Tertiary age in Israel indicate two stable directions, each of which has both normal and reversed polarities. AF demagnetization decreases the scatter of the NRM results. Typical Tertiary poles are near 70°N 110°W and another set of anomalous poles are near 34°N 50°W. These are similar to other reported Tertiary and Cretaceous poles.  相似文献   

7.
Summary In situ strain was measured by overcoring foil-resistance strain gauge rosettes bonded to five outcrops of Potsdam Sandstone near Alexandria Bay, New York. Strain relaxation magnitude and orientation correlated with the area of the intact outcrop outlined by intersecting vertical fractures. The maximum expansion occurred at the outcrop with the largest area between intersecting fractures. Outcrops with more than one set of longer, open fractures or more complicated fracture patterns have lower recoverable strains. Strain relaxation was lowest next to a postglacial pop-up. The orientation of the pop-up indicated relief of an ENE directed compression, the direction also observed as the maximum expansion at the outcrop yielding the largest strain relaxation.Lamont-Doherty Geological Observatory Contribution No. 2456.  相似文献   

8.
A subset of 2660 shallow earthquakes (0–50 km) that occurred from 1988 to 1996 in south central Alaska between 155°W and 145°W and 59°N and 63°N was relocated using the joint hypocenter determination (JHD) method. Both P- and S-wave observations recorded by the regional seismic network were used. Events were relocated in twenty different groups based on their geographic location and depth using two velocity models. As a result of the relocation, the majority of the hypocenters shifted downward, while the epicenter locations did not change significantly. The distribution of the shallow subduction zone earthquakes indicates the existence of two seismically independent blocks, with one block occupying the northeastern part and the other occupying the central and western parts of the study area. The boundary between the blocks is marked by a 15 to 20 km wide seismicity gap to the southeast of 149.5°W and 62°N. The analysis of the fault plane solutions for shallow subduction zone earthquakes shows that an overwhelming majority of the solutions represent normal, oblique-normal or strike-slip faulting with predominant WNW-ESE orientation of T-axes. This indicates a down-dip extensional regime for the subducting slab at shallow depths. Very few earthquakes yielded fault plane solutions consistent with thrusting on a contact zone between the overriding and subducting plates. This result may be an indication that currently either the strain energy is not released at the contact zone or it is associated with aseismic motion.  相似文献   

9.
Relationships between the locations of mining-induced seismic events, local fault structure, and mine geometry were examined in a deep hard-rock mine in northern Idaho. Stopes experiencing rock bursts and other large seismic events were found to fall into two structural regimes: the Silver Vein, and the N48°W Trend, a steeply dipping plane of seismic activity that is subparallel to major local steeply dipping faults which bound blocky structures. The N48°W Trend also intersects a shaft that was seriously damaged when fault gouge was expelled into the opening during a 3-month period of high seismic energy release. Models of stress interaction are used to support the hypothesis that mining-induced deformation was mobilized along a 1.5 km length of the N48°W Trend. Specifically, numerical models are used to simulate rupture of seismic events and estimate induced changes in the quasi-static stress field. A Coulomb failure criterion is used with these results to estimate the spatial variation in potential for slip on planes parallel to local faulting. Increases in the potential for slip on fault planes subparallel to the N48°W Trend are consistent with activation of deformation along its 1.5 km length. For events with constant seismic moment, stress drop is shown to be far more important than source dimension in elevating slip potential along the observed plane of seismic activity  相似文献   

10.
Many volcanic rift zones show dikes that are oriented oblique rather than parallel to the morphological ridge axis. We have evidence that gravitational spreading of volcanoes may adjust the orientation of ascending dikes within the crust and segment them into en-echelon arrays. This is exemplified by the Desertas Islands which are the surface expression of a 60 km long submarine ridge in southeastern Madeira Archipelago. The azimuth of the main dike swarm (average = 145°) deviates significantly from that of the morphological ridge (163°) defining an en-echelon type arrangement. We propose that this deviation results from the gravitational stress field of the overlapping volcanic edifices, reinforced by volcano spreading on weak substratum. We tested our thesis experimentally by mounting analogue sand piles onto a sand and viscous PDMS substratum. Gravitational spreading of this setup produced en-echelon fractures that clearly mimic the dike orientations observed, with a deviation of 10°–32° between the model’s ridge axis and that of the main fracture swarm. Using simple numerical models of segmented dike intrusion we found systematic changes of displacement vectors with depth and also with distance to the rift zone resulting in a complex displacement field. We propose that at depth beneath the Desertas Islands, magmas ascended along the ridge to produce the overall present-day morphology. Above the oceanic basement, gravitational stress and volcano spreading adjusted the principal stress axes’ orientations causing counterclockwise dike rotation of up to 40°. This effect limits the possible extent of lateral dike propagation at shallow levels and may have strong control on rift evolution and flank stability. The results highlight the importance of gravitational stress as a major, if not dominant factor in the evolution of volcanic rift zones.Editorial responsibility: M Carroll  相似文献   

11.
Current horizontal strain field in Chinese mainland derived from GPS data   总被引:3,自引:0,他引:3  
Introduction In the years when the reliable data could not be obtained and in the analysis of strain property and magnitude in history, the intensity, property and activity pattern of strain field were mainly inferred on the bases of geometric characters of surface traces and behaviors (especially the faults) as well as the characteristics of petrology (XIE, et al, 1993; Molnar, Tapponnier, 1975, 1977; Tapponnier, Molnar, 1977; FU, et al, 2000). However, they are the averaged results accumu…  相似文献   

12.
推导了利用位移场计算主应变、面膨胀、最大剪应变的公式,通过1998—2000年间的两次重复GPS观测结果,计算了新疆伽师强震活动区在1998~2000年间的水平主应变、面膨胀、最大剪应变等水平变形特征量的分布,分析了2003年发生在该地区的Ms6.8级地震与GPS观测计算的变形场特征量之间的分布关系。并从力学理论的角度对该地区的地质构造运动、局部形变特征与地震活动的关系进行了讨论,得出了一些有意义的结论和认识。  相似文献   

13.
刘春  邵辉成  石军  孔德泉 《地震地质》2005,27(3):429-436
文中探讨了利用地震矩张量反演断裂形变带运动学参数的方法,并将其应用于鲜水河断裂带和汾渭断裂带现今运动学特征的研究。结果表明,鲜水河断裂带呈N16°W方向拉伸,N74°E方向压缩,并且以10.9mm/a的速率发生左旋剪切运动;汾渭断裂带呈N20°W方向拉伸,N78°E方向压缩,并且以0.24mm/a的速率发生右旋剪切运动  相似文献   

14.
Fracture system in Phlegraean Fields (Naples,southern Italy)   总被引:2,自引:0,他引:2  
During the 1983 seismic crisis in the Phlegraean Fields bradyseismic region (southern Italy), a structural analysis of the area was carried out.With a detailed field survey based on a net of 34 measure stations, a total of 536 fractures (mainly joints and a few normal faults) were measured on a 10 × 10 km area in volcanites capable of memorizing post depositional stress activity by fracturing.The analysis of the collected data was performed with the data bank of the University of Rome computer facilities. The azimuthal analysis of total fractures showed a nonrandom distribution with 5 major sets: N13°E, N45°E, N14°W, N55°W and E-W. These preferential orientations have been detected with an automatic fitting of gaussian curves (bell curves) on the azimuthal histograms. The areal distribution showed that all these fracture sets are in general present in the main collapse area. An azimuthal analysis performed by selecting the data collected for rocks older than 4,600 y BP showed a possible youngest age for the N14°W set (domain) (E-W extension). Fractures with an «opening» wider than 1 cm presented the same 5 azimuthal sets and fit fairly well with a concentric distribution around the main collapse area. The presence of an analogous radial pattern is not evident. A tentative interpretation model relates the superficial fracture sets to two possible causes: volcanic activity, including doming and collapsing, and propagation of active tensile deformations in the sedimentary basement due to regional stress trajectories.Contribution of «Centro di Studio per la Geologia dell'Italia Centrale», CNR, Roma.  相似文献   

15.
The spreading processes within the West Philippine Basin (WPB) remain partly unknown. This study presents an analysis of the tectono-magmatic processes that happened along its spreading axis during the conclusion of the last spreading phase at 33/30 Ma. We demonstrate that the late episode of N-S opening from an E-W-trending spreading system has been followed by a late tectonic event occurring in the central and eastern parts of the basin. This event was responsible for transtensional strain accommodated along the NW-SE faults cutting through the former E-W rift valley in the central part of the basin. In its eastern part, the same event occurred at a larger extent and led to the creation of a new NW-SE axis, obliquely cutting the older E-W spreading segments and their associated spreading fabrics. At this location, several tens of kilometers of slightly oblique amagmatic extension occurred following a ∼60° direction. We propose that this late event is associated with the onset of E-W opening of the Parece-Vela Basin located along the eastern border of the WPB at 30 Ma. Extensive stresses within this basin were probably transmitted to the hot and easily deformable rift zone of the WPB. The newly-created NW-SE axis most likely propagated from east to west, being responsible for scissors opening within the WPB. NE-SW extension ceased when well-organized spreading started at 26 Ma in Parece-Vela Basin, accommodating entirely the global extensive stress pattern.  相似文献   

16.
The principal stress axes and eigenvalue ratios of the stress tensors from two active seismic regions in Alaska (eastern Aleutian Arc and eastern Gulf of Alaska) are computed. These results are obtained using focal mechanisms of earthquakes with magnitudes ranging from 5.5 to 8.2 and show for both regions slightly different compressional states with an orientation of the pressure axis of N26°W for the eastern Gulf of Alaska and N27°W for the east Aleutian Arc. The eigenvalue ratios for the eastern Gulf of Alaska and east Aleutian Arc are 0.84 and 0.99, respectively. The algorithm used in computations allows us to detect some focal mechanisms which are incoherent with respect to the obtained stress tensors. These incoherences are explained in terms of some tectonic features of the region. The orientations of possible pre-existing fractures which would need an unrealistically high maximum shear stress to start a slip on their fault planes are also investigated. These critical orientations depend on a constitutive frictional law as well as on eigenvalue ratios and eigenvectors of the stress tensors. The orientation, which is given in our case by the angle between the normal vector to a fracture and the regional tensional axis, is approximately 59° for the eastern Aleutian Arc. This angle ranges from 49° to 59° for the eastern Gulf of Alaska. It must be pointed out that fractures which need unrealistically high shear stress to start slip on their fault planes are defined by a very narrow band of possible angles between tensional direction and the normal vector to fault plane.  相似文献   

17.
Crustal movement and deformation in Taiwan and its coastal area   总被引:1,自引:0,他引:1  
Introduction Both Taiwan Island and Chinese mainland belong to Eurasian plate in geological structure. And the nearest distance between Taiwan Island and Fujian Province, which is located on the opposite coast, is only 130 km. Although there are high-precision GPS networks in both Taiwan and Fujian Province, joint GPS measurement cannot be made directly because of the inconvenient contact due to the strait between them. However, the GPS networks arranged on b…  相似文献   

18.
Summary The real area of contact has been determined, and measurements of the maximum and average surface temperatures generated during frictional sliding along precut surfaces in Tennessee sand-stone have been made, through the use of thermodyes. Triaxial tests have been made at 50 MPa confining pressure and constant displacement rates of 10–2 to 10–6 cm/sec, and displacements up to 0.4 om. At 0.2 cm of stable sliding, the maximum temperature decreases with decreasing nominal displacement rate from between 1150° to 1175°C at 10–2 cm/sec to between 75° to 115°C at 10–3 cm/sec. The average temperature of the surface is between 75 and 115°C at 10–2 cm/sec, but shows no rise from room temperature at 10–3 cm/sec. At 0.4 cm displacement, and in the stick-slip mode, as the nominal displacement rate decreases from 10–3 to 10–6 cm/sec, the maximum temperature decreases from between 1120° to 1150°C to between 1040° to 1065°C. The average surface temperature is 115° to 135°C at displacement rates from 2.6×10–3 to 10–4 cm/sec.With a decrease in the displacement rate from 10–2 to 10–6 cm/sec, the real area of contact increases from about 5 to 14 percent of the apparent area; the avergge area of asperity contact increases from 2.5 to 7.5×10–4 cm2. Although fracture is the dominate mechanism during stick-up thermal softening and creep may also contribute to the unstable sliding process.  相似文献   

19.
Profiles of salinity, temperature, oxygen and nutrients for a station at 35°46.5′N and 67°59.8′W show the influence of the five major sources of deep water in the North Atlantic Ocean. The presence of distinct, identifiable cores of water types, far removed from their sources, together with linear relationships between salinity and both oxygen and silicate in the deep water suggest that horizontal mixing processes predominate over vertical dissipation and in situ production or loss processes in determining the distribution of these tracers in the deep western Atlantic Ocean.  相似文献   

20.
The variations of total ozone at Alma-Ata (43°N, 76 °E) and ozone profiles obtained by balloon sounding at Tateno (36°N, 140°E), Wallops Island (38°N, 75°W) and Cagliari (39°N, 9°E) in the periods of Forbush decreases (FD) in galactic cosmic rays have been analysed. A decrease of total ozone was observed in the initial stage of the FD and an increase 10–11 days later. The average total deviations calculated using the superposed epoch method for 9 FD events are equal to 30 D. U. in the positive and to –18 D. U. in the negative phase. The changes of average ozone profiles, associated with 26 FD events, are more significant in the lower stratosphere and upper troposphere. The decrease of the partial ozone pressure at a height of 12–15 km is about 30 mb. These vertical variations of ozone coincide with the average changes of the respective temperature profiles. A cooling, on the average, of 3°C was observed at 12–15 km, and a heating of 4°C below this level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号