首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Nepal is located in a highly active tectonic region of the Himalayan belt, one of the most severe earthquake prone areas of the world. Nepal is lying between the Indian and the Eurasian plate, which are moving continuously, resulting in frequent devastating earthquakes. Moreover, different authors state that the accumulated slip deficit (central seismic gap) is likely to produce large earthquakes in the future. Cultural heritage buildings and monuments are, therefore, at risk, and the eventual cultural loss in the consequence of an earthquake is incalculable. Post-seismic surveys of past earthquakes have shown the potential damage that unreinforced masonry structures, particularly Pagoda temples, may suffer in future earthquakes. Most of the Nepalese Pagoda temples, erected during XIV century, are considered non-engineered constructions that follow very simple rules and construction detailing in respect to seismic resistance requirements and, in some cases, without any concern for seismic action. Presently, conservation and restoration of Nepalese temples is one of the major concerns, since they are considered world heritage with universal value. The present paper is devoted to outline particular building characteristics of the UNESCO classified Nepalese Pagoda temples and the common structural fragilities, which may affect their seismic performance. Moreover, based on a parametric sensitivity analysis, structural weaknesses and fragilities of Pagoda temples were identified associated to the local and traditional construction techniques, detailing and common damages.  相似文献   

2.
青藏高原地震活动特征及当前地震活动形势   总被引:53,自引:27,他引:26       下载免费PDF全文
青藏高原是我国现代构造活动和地震活动最强烈的地区,自有地震记录以来,在高原内记录到多达18次8级以上巨大地震和100余次7~7.9级地震,它们均发生在喜马拉雅板块边界构造带和板内断块区及其次级断块的边界活动构造带上.自1900年有地震仪器记录以来,青藏高原曾经历了3次地震活动丛集高潮,即1920-1937年,1947-1976年和1995-现在.在每次地震活动丛集期都形成以8级地震为核心的7级以上地震活动系列,它们分别是20世纪20-30年代的海原-古浪地震系列、50-70年代察隅-当雄地震系列和20世纪末期以来昆仑-汶川地震系列.每一个地震系列都有自己的主体活动区,最新的昆仑-汶川地震系列的主体活动区为巴颜喀喇断块.青藏高原地震活动高潮与全球Mw≥8.0巨大地震活动高潮紧密相关,昆仑-汶川地震系列与自2001年至今的全球最新地震活动高潮相对应,它们反映了两者的动力学联系.经过详细对比研究认为,它们至今均仍在延续之中,全球板块边界构造带8~9级地震和板内大陆断块区的7~8级地震都仍在连续发生.研究了全球和区域地震活动的相关关系及青藏高原地震活动的时空分布特征,指出了该区当前地震活动的总体形势,评价了其近期地震危险性,提出了加强地震监测的建议.  相似文献   

3.
藏东南及周边地区地震活动特征研究   总被引:1,自引:0,他引:1  
张浪平  邵志刚  晏锐 《地震》2011,31(3):9-18
藏东南及周边地区是印度板块与欧亚板块动力碰撞的影响区, 该区历史地震活动强烈, 曾发生过1950年墨脱—察隅8.6级和1951年当雄8.0级地震。 本文首先介绍藏东南及周边地区的地质构造背景, 其次通过考察该地区强震活动情况和活动地块边界带相关段落的加卸载响应比(LURR)时序特征, 分析了研究区的强震活动状态。 从历史地震活动看, 安达曼弧地区与喜马拉雅东构造结地区强震活动存在一定的动力关联, 当前研究区域的周边动力环境表现为安达曼弧地区地震活动强烈和东构造结地区的持续平静。 从地震活动图像看, 1980年以来6级以上地震在藏东南及周边地区已经形成空区, 表现类似于1950年墨脱—察隅地震前的空间分布特征。 从活动地块边界带相关段落LURR时序特征看, 喜马拉雅带东段现处于高应力状态, 其次为澜沧江带与三江带。  相似文献   

4.
滇西南地区龙陵—澜沧断裂带地震危险性评价   总被引:1,自引:1,他引:0       下载免费PDF全文
邵延秀  袁道阳  梁明剑 《地震学报》2015,37(6):1011-1023
龙陵—澜沧新生地震断裂带位于地震活动强烈的滇西南地区, 该地区历史上曾发生多次MS≥7.0大地震, 已知的历史地震破裂几乎覆盖了整条断裂带. 本文首先对滇西南地区主要断裂的最新构造活动特征进行分析; 然后通过该区域地震活动b值图像的空间扫描计算, 圈定出高应力集中区, 并结合历史地震和现今小震的分布情况以及晚第四纪以来断裂的活动强度、 古地震最晚离逝时间等定量参数, 综合分析龙陵—澜沧断裂带的未来大震危险性; 最后基于地震空区理论, 识别该断裂带存在的地震空区. 研究结果表明, 龙陵—澜沧断裂带内的龙陵、 永德、 沧源、 澜沧及孟连断裂中东段在未来10年内均存在发生中强以上地震的危险性, 应引起关注.   相似文献   

5.
张军龙 《地震》2014,34(4):20-29
本文通过整理和分析青藏高原西北于田地区强震后,地震迁移的空间分布,迁移特征,同时整理和分析与迁移地震相关的青藏高原主要活动构造的结构和地震活动,分析两者之间的关系。得到以下结论:①迁移地震空间分布具有不均匀性,主要分布在活动地块边界,受大型活动构造带控制;②迁移路径主要有三条,第二条路径更为重要,主要沿着昆仑山脉向唐古拉山、巴颜喀拉山及阿尼玛卿山,在若尔盖盆地东北侧折向东南,向岷山、龙门山迁移;③未来5年内在青藏高原西北于田地区可能发生1~2次6.5级左右地震,在龙门山南段等地震空区内可能发生迁移强地震;④1900年以来发生的地震沿先前存在的地震空区分布。  相似文献   

6.
— Numerical simulation of recurring large interplate earthquakes in a subduction zone is conducted to explore the effects of aseismic sliding on the variation of stresses and the activity of small earthquakes. The frictional force obeying a rate- and state-dependent friction law is assumed to act on the plate interface in a 2-D model of uniform elastic half-space. The simulation results show that large earthquakes repeatedly occur at a constant time interval on a shallow part of the plate interface and that aseismic sliding migrates from the upper aseismic zone as well as from the lower aseismic zone into the central part of the seismogenic zone before the occurrence of a large interplate earthquake. This spatiotemporal variation of aseismic sliding significantly perturbs the stresses in the overriding plate and in the subducting oceanic plate, leading to the precursory seismic quiescence in the overriding plate and the activation of the intermediate-depth earthquakes of down-dip tension type. After the occurrence of a large interplate earthquake, the activity of the intermediate-depth earthquakes of down-dip compression type in the subducting slab is expected to increase and migrate downward. This is because the downward propagation of postseismic sliding causes the downward migration of compressional-stress increase in the down-dip direction of the plate interface. The simulation result further indicates that episodic events of aseismic sliding may occur when the spatial distributions of friction parameters are significantly nonuniform. The variation of stresses due to episodic sliding is expected to cause seismicity changes.  相似文献   

7.
本文研究了日本内陆及其外围海域发生大地震后的地震活动迁移现象。在所研究的6个震例中,一个共同的特点是,地震活动的迁移总是沿着地壳内的活动地质构造带发生。有时可以根据地震活动的迁移来进一步确定活动构造带的存在。把板块边缘地区的地震活动类比为沿着力学偶合平面迁移和扩散,我们可以认为,岛上的活动构造带对应着地壳块体的力学相互作用边界。地震迁移的形式可能不只一种。在我们所研究的震例中发现了以下特征:地震迁移速度约为几km/年;大地震震源区之间存在着地震空区;在每一条地震带上有一定的地震活动周期。地震迁移的一种可能机制是:由于地壳块体的相对运动,在其边界上的凹凸不平区造成了构造应力集中,这些凹凸不平区相继地发生破裂,形成了地震迁移。  相似文献   

8.
根据地震复发周期模型, 利用现有的地质构造等资料把南北地震带划分为若干相对独立的活动构造区, 对能量积累阶段及地震危险性的预测建立相应的数学模型, 并构建基于WebGIS的网络计算平台, 由客户端任意在研究区选择构造分区, 并输入所选构造分区相应的计算参数, 提交到集群服务器计算模型进行计算, 对所选构造分区的地震危险性阶段及潜在震级进行预测并把结果以WebGIS方式返回给客户端。 实现了利用远程计算技术与并行算法对活动断裂能量积累与释放过程的模拟计算, 其结果可以为判定地震中短期预测的地点和震级提供依据。  相似文献   

9.
介绍了20世纪80年代以来日本开展人工地震探测研究的进展,以及在研究大地构造、地壳深部结构、地球动力学、深浅构造关系、大震震源区细结构等方面取得的重要成果。  相似文献   

10.
—A numerical study is conducted to simulate complicated sliding behavior and earthquake activity on a subducting plate boundary. A 2-D model of a uniform elastic half-space with a semi-infinite thrust fault is set up, and the frictional stress prescribed by a rate- and state-dependent friction law is assumed to act on the plate boundary fault. Spatial nonuniformity of friction parameters representing rate-dependence of friction and of slip-dependence of friction are introduced in the model to obtain complicated sliding behavior in the numerical simulation. Analogs of great earthquakes that break the entire seismogenic plate boundary repeatedly occur at a constant time interval. Smaller events of seismic or aseismic sliding occur during a great earthquake cycle. Regions of rate-strengthening of friction and of a large characteristic distance in slip-dependence of friction behave as barriers or asperities. Rupture propagation is often arrested in such a region and a great earthquake occurs later when the region is broken. The variety of earthquake activity observed in many regions along real plate boundaries may be explained by similar nonuniformity in friction parameters. Conversely, the friction parameters on plate boundaries might be estimated from comparison of theoretical simulations with observations of earthquake activity. Simulation results indicate that spatiotemporal variation in stress due to aseismic sliding may play an important part in generating earthquakes.  相似文献   

11.
渤海、黄海和东海等中国东部海域在地质构造上是大陆向海的自然延伸,海域内的构造方向与大陆一致,均为NNE-NE向,但属于不同的二级大地构造单元,渤海和北黄海属于华北地块,南黄海属于扬子地块,东海属于华南地块.由于各地块与现今活动板块边界位置不同,构造与地震活动性差异较大,渤海和北黄海地区地震活动主要受印度板块与欧亚板块碰...  相似文献   

12.
This report describes an interpretation of the tectonics of central Asia made from seismic and geologic data. It is suggested that central Asia is not a tectonically passive unit, as previously proposed by others, responding solely to the convergence of the Indian plate with Asia. We postulate that the tectonics of central Asia can be represented by the motion of a few continental blocks which are influenced by spreading from the Baikal rift zone as well as compression due to the collision of the Indian plate. Here, a block is defined as a tectonic unit, within a continental plate, with boundaries delineated by broad zones of high seismicity with respect to the interior of the unit. Five tectonic units are postulated for central Asia. These are: the Siberian block, the East and West China blocks, the Southeast Asian block; and the Indian plate. An unusual phenomenon is noted along the boundary between the Siberian and West China blocks. There is general horizontal crustal compression along this boundary from the Hindu Kush north-eastward to the southern tip of Lake Baikal; however, there is general horizontal extension eastward from Lake Baikal through the Stanovoy range. Thus the West China block, to the south of this boundary, seems to be turning clockwise about a point near the southern tip of Lake Baikal. The major known faults within this block, which strike mainly northwest-southeast, may be interpreted as shear zones where interior stresses, due to the block rotation, are released. We cannot support this suggestion with an analytical model because of the uncertainties in various model parameters and geometries. The suggested model gives a possible explanation of why India, to the south of the Himalayas, is almost completely aseismic while the regions to the north and northeast have higher seismicity.  相似文献   

13.
One of the most challenging problems in the estimation of seismic hazard is the ability to quantify seismic activity. Empirical models based on the available earthquake catalogue are often used to obtain activity of source regions. The major limitation with this approach is the lack of sufficient data near a specified source. The non-availability of data poses difficulties in obtaining distribution of earthquakes with large return periods. Such events recur over geological time scales during which tectonic processes, including mantle convection, formation of faults and new plate boundaries, are likely to take place. The availability of geometries of plate boundaries, plate driving forces, lithospheric stress field and GPS measurements has provided numerous insights on the mechanics of tectonic plates. In this article, a 2D finite element model of Indo-Australian plate is developed with the focus of representing seismic activity in India. The effect of large scale geological features including sedimentary basins, fold belts and cratons on the stress field in India is explored in this study. In order to address long term behaviour, the orientation of stress field and tectonic faults of the present Indo- Australian plate are compared with a reconstructed stress field from the early Miocene (20 Ma).  相似文献   

14.
天山各分区地震活动性与能量积累阶段关系初探   总被引:1,自引:1,他引:1  
李莹甄  沈军  王海涛 《中国地震》2005,21(4):496-507
本文研究了天山各地震构造区的地震活动特征与所处能量积累阶段之间的关系,在此基础上分析了天山各分区当前地震危险性。初步得到处于不同能量积累阶段的天山不同地震构造区的地震活动特点及其所反映的能量积累状态。认为天山地区的地震活动性既受区域构造运动强度的影响,又受地震构造所处的能量积累阶段的影响。对于构造运动非常强烈的地区,正确判断其目前所处能量积累阶段,可以对未来地震震级上限有比较准确的判断;而对现今地震活动相对较弱地区所处能量积累阶段的判断,可使我们对潜在地震危险有较充分的认识。研究表明,南天山西段各区能量积累水平大都进入中、后期阶段,地震活动水平高,地震危险性明显高于北天山和中天山各区(段)。北天山各分区以及中天山地区能量积累多处于早、中期阶段.  相似文献   

15.
The tectonics of Asia are interpreted as a result of convergence of the Indian and Eurasian plates. The Indian shield bends down and underthrusts the Himalayas to the northeast along a shallow dipping fault plane while the Eurasian plate underthrusts the Pamir mountains, and therefore presumably the Indian Plate, to the south. The convergence of the Indian and Eurasian plates appears to cause relatively high stress to be transmitted across a broad area, north and east of the Himalayas, and this stress in turn causes earthquakes and renewed tectonic activity in some of the ancient Paleozoic and Mesozoic fold belts that separate more stable, aseismic blocks in Asia.  相似文献   

16.
On October 27, 2001, a large earthquake with Ms6.0, named the Yongsheng earthquake, occurred along the Jinshajiang segment of Chenghai fault in Yongsheng County, Yuunan Province. It is the largest event to occur along the Chenghai fault in the last 200 years. The seismo-geological survey shows that the seismogenic fault, which is the Jinshajiang segment of Chenghal fault, takes left-lateral strike-slip as its dominant movement pattern. According to differences in vertical motion, motion time, landforms and scales, the Chenhai fault can be divided into eight segments. The Jinshajiang segment has a vertical dislocation rate of 0.4mm/a, far lower than the mean rate of the Chenghai fault, about 2.0 mm/a. It‘ s deduced that the two sides of Jinshajiang segment “stuck“ tightly and hindered the strike-slip of the Chenghai fault. The strong earthquake distribution before this event shows that the Jinshajiang segment was in the seismic gap. The Chenghai fault, as a boundary of tectonic sub-blocks, makes the Northwest Yunnan block and the Middle Yunnan block move clockwise, and their margins move oppositely along the Chenghai fault. In the motion process of the Chenghai fault, structural hindrance and the seismic gap of strong earthquakes are propitious to the concentration and accumulation of structure stress. As a result, the Yongsheng Ms6.0 earthquake occurred. The Sujiazhuang-Shangangfu segment is similar to the Jinshajiang segment with a low vertical motion rate of 0.3 mm/a and in the seismic gap. So it‘s postulated that the segment may become a new structure hindrance, and the Yongsheng Ms6.0 earthquake may trigger the occurrence of future large earthquakes along this segment.  相似文献   

17.
Seismicity constraints on stress regimes along Sinai subplate boundaries   总被引:1,自引:0,他引:1  
The relative movement between African, Arabian and Eurasian plates has significantly controlled the tectonic process of Sinai subplate region, although its kinematics and precise boundaries are still doubtful. The respective subplate bounded on both sides by the Aqaba-Dead Sea transform fault to the east and the Gulf of Suez, the only defined part, to the west. Seismicity parameters, moment magnitude relation and fault plane solutions were combined to determine the active tectonics along the aforementioned boundaries. Seven shallow seismogenic zones were defined by the heterogeneity in stress field orientations. Along the eastern boundary, the average fault plane solution obtained from the moment tensor summation (MTS) reveals a sinistral strike-slip faulting mechanism. The corresponding seismic strain rate tensor showed that the present tectonic stress producing earthquakes along the boundary is dominated by both NW-SE compression and NE-SW dilatation. Towards the north, the average focal mechanism showed a normal faulting mechanism of N185°E compression and an N94°E extension in the Carmel Fairi seismic zone. On the other hand, the active crustal deformation along the western boundary (Gulf of Suez region) showed a prevailing tensional stress regime of NE to ENE orientations; producing an average fault plane solution of normal faulting mechanism. The seismic strain rate tensor reveals a dominant stress regime of N58°E extension and N145°E compression in consistence with the general tectonic nature in northeastern Africa. Finally, the extensional to strike-slip stress regimes obtained in the present study emphasize that the deformation accommodated along the Sinai subplate boundaries are in consistence with the kinematics models along the plate boundaries representing the northern extremity part of the Red Sea region.  相似文献   

18.
19.
—The test that Kagan and Jackson (1991, 1995) applied to the seismic gap hypothesis did not bring us closer to understanding the generation of large earthquakes. On the contrary, it led some to the conclusion that the rebound theory of earthquake generation should be rejected. We disagree with this point of view and argue that a global test of the simplified gap hypothesis cannot be done because it cannot account for differences in the slip history of fault segments and tectonic differences between separate plate boundaries. Kagan and Jackson did show, however, that the original gap hypothesis was oversimplified and should be refined. We propose that consideration of all the facts, including slip history and seismicity patterns in the Andreanof Islands, show that the concept of seismic gaps and the elastic rebound theory are correct for that segment of the plate boundary. The coseismic slip in the M w 8.7 earthquake that broke this plate boundary segment in 1957 was only 2 m, as published before the repeat earthquake of 1986 (M w 8), and thus, using a plate convergence rate of 7.3 cm/year, the return time in this cycle was expected to be less than 30 years, unless substantial aseismic creep occurs. This supports the time predictable model of mainshock recurrence. In addition, Kisslinger et al. (1985) and Kisslinger (1986) noticed a seismic quiescence in the subsequent source volume before the 1986 earthquake and attempted to predict it. The specific parameters he estimated were not entirely correct although his interpretation of the observed quiescence as a precursor was. We conclude that the 1986, M w 8, Andreanof earthquake was not an example that disproves the seismic gap hypothesis. On the contrary, it shows that the hypothesis that plate motions reload plate boundaries after most of the elastic energy is released in great ruptures was correct in this case. This suggests that great earthquakes occur preferably in mature gaps. We believe the testing of the seismic gap hypothesis by algorithm on a global scale is an example that illustrates that overly simplified tests can lead to erroneous conclusions. To make progress in the actual understanding of the physics of the process of great earthquake ruptures, one must consider all the facts known for case histories.  相似文献   

20.
基于《中国震例》(1970—2013年), 系统清理了246次M≥5.0震例前的地震活动图像异常, 并结合区域差异进行地震空区和地震条带的统计特征研究。 结果显示: ① 在246次震例中, 震前出现地震空区、 地震条带的震例数分别为105次、 51次, 占震例总数的42.7%和20.7%; ② 随着主震震级的增大, 地震空区和地震条带出现的比例逐渐增大, 尤其是7级以上地震, 震前出现地震空区的震例数占同类震例总数的83.3%, 出现地震条带的震例数占同类震例总数的66.7%, 可见地震空区和地震条带可能是7级以上强震的重要异常判据; ③ 针对整个中国大陆及近海, 地震空区和地震条带的持续时间、 展布尺度、 起始震级与主震震级存在一定线性关系, 相关系数能够通过95%置信水平的阈值检验; ④ 各主要构造分区的统计结果差异较大, 青藏高原北部除地震空区持续时间外, 其余地震空区和地震条带参数与主震震级之间的线性关系均通过阈值检验, 南北带中南段和华北地区有个别参数通过检验, 天山地区所有参数均未通过检验。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号