首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The dominant patterns of the winter (December–February) surface air temperature anomalies (SATAs) over Central Asia (CA) are investigated in this study. The first two leading modes revealed by empirical orthogonal function (EOF) analysis represent the patterns by explaining 74% of the total variance. The positive phase of EOF1 is characterized by a monopole pattern, corresponding to cold SATAs over CA, while the positive phase of EOF2 shows a meridional dipole pattern with warm and cold SATAs over northern and southern CA. EOF1 is mainly modulated by the negative phase of the Arctic Oscillation (AO) in the troposphere, and the negative AO phase may be caused by the downward propagation of the precursory anomalies of the stratospheric polar vortex. EOF2 is mainly influenced by the Ural blocking pattern and the winter North Atlantic Oscillation (NAO). The SATAs associated with EOF2 can be attributed to a dipole-like pattern of geopotential height anomalies over CA. The dipole-like pattern is mainly caused by the Ural blocking pattern, and the NAO can also contribute to the northern part of the dipole.摘要本文利用经验正交函数分解方法 (Empirical orthogonal function, EOF) , 针对1979–2019年冬季 (12月–2月) 中亚地区地面气温异常进行了研究. 结果表明, 中亚地区冬季地面气温异常的前两个EOF模态解释方差总占比可达74%. 其中, 第一模态 (EOF1) 正位相为一致型变化, 对应中亚地区气温冷异常; 第二模态 (EOF2) 正位相则为南北偶极型变化, 对应于中亚地区南冷北暖型气温异常. EOF1可能受到冬季北极涛动 (Arctic Oscillation, AO) 负位相的调制, 而AO的负位相则可能来自于前期平流层极涡正位势高度异常下传. EOF2则可能受到乌拉尔山阻塞及冬季北大西洋涛动 (North Atlantic Oscillation, NAO) 的共同调制. 乌拉尔山阻塞可引起中亚区域南北偶极型气温异常, 而冬季NAO可对该偶极型气温异常的北侧产生贡献.  相似文献   

2.
In early-to-mid November 2021, a pronounced reversal of surface air temperature (SAT) anomalies (SATAs) occurred over East Asia and Central Siberia, with extreme SATAs that reached up to about 10 °C. Such a synoptic-scale reversal of SATAs was characterized by the alternate emergence of the “colder Central Siberia–warmer East Asia” pattern and the “warmer Central Siberia–colder East Asia” pattern in November 2021. Coinciding with the reversals of the meridional dipole SATAs, large-scale atmospheric circulation anomalies experienced reversed changes. The development of the anomalous cyclonic (anticyclonic) flow over East Aisa (Central Siberia) was crucial for the occurrence of the “warmer Central Siberia–colder East Asia” pattern. Moreover, as the leading mode of daily SAT variability in approximately 56% of the Novembers during 1979–2021, the meridional dipole pattern of warmer (colder) anomalies over Central Siberia and colder (warmer) anomalies over East Asia may be one of the dominant modes of November SAT variability over Eurasia on the synoptic scale.摘要2021年11月, 东亚与中西伯利亚经历了相反的冷暖异常转换, 表现为“中西伯利亚偏冷, 东亚偏暖”与“中西伯利亚偏暖, 东亚偏冷”的交替出现. 该偶极型气温异常的天气尺度反转伴随着大尺度大气环流异常的反转. 进一步分析表明, 东亚与中西伯利亚的偶极型气温异常反转是1979–2021年期间11月欧亚气温日变化的主导模态之一(发生概率超过56%).  相似文献   

3.
The Southern Annular Mode (SAM) is the leading mode of atmospheric variability in the mid–high latitudes of the Southern Hemisphere, representing large-scale variations in pressure and the polar front jet (PFJ). In SAM events, the combination of the SAM and other modes may result in different atmospheric patterns. In this study, a neural-network-based cluster technique, the self-organizing map, was applied to extract the distinct patterns of SAM events on the monthly time scale based on geopotential height anomalies at 500 hPa. Four pairs of distinguishable patterns of positive and negative SAM events were identified, representing the diversity in spatial distribution, especially the zonal symmetry of the center of action at high latitudes—that is, symmetric patterns, split-center patterns, West Antarctica patterns, and a tripole pattern. Although the SAM is well known to be belt-shaped, within the selected SAM events, the occurrence frequency of symmetric patterns is only 23.8%—less than that of West Antarctica patterns. Diverse PFJ variations were found in the symmetric and asymmetric patterns of SAM events. The more asymmetric the spatial distribution of the pressure anomaly, the more localized the adjusted zonal wind anomaly. The adjusted PFJ varied in meridional displacement and strength in different patterns of SAM events. In addition, the entrance and exit of the jet changed in most of the patterns, especially in the asymmetric patterns, which might result in different climate impacts of the SAM.摘要南半球环状模 (SAM) 是南半球中–高纬度地区大气变化的主导模态, 表现为气压和极锋急流 (PFJ) 的大尺度变动, 形成强烈的气候影响. 当SAM事件发生时, 气压场异常可呈现出不同的空间结构. 本文利用自组织映射网络方法对月尺度的SAM事件进行分类, 可识别出四对具有显著差异的正, 负SAM事件类型, 包括对称型, 中心分裂型, 西南极洲型和一种三极型分布. 气压异常的空间分布越不对称, 调整后的纬向风异常越局地化. PFJ的经向位移和强度变化入口和出口的变化, 可能导致了SAM的不同气候影响.  相似文献   

4.
This paper investigates the distribution of spatial modes of cloud-to-ground (CG) lightning activity across China's land areas during the period 2010–20 and their possible causes based on the CG lightning dataset of the China National Lightning Detection Network. It is found that the first empirical orthogonal function mode (EOF1) occupies 32.86% of the total variance of the summer CG lightning anomaly variation. Also, it exhibits a negative–positive–negative meridional seesaw pattern from north to south. When the SST of the East Pacific and Indian Ocean warms abnormally and the SST of the Northwest Pacific becomes abnormally cold, a cyclonic circulation is stimulated in the Yellow Sea, East China Sea, and tropical West Pacific region of China. As the water vapor continues to move southwards, it converges with the water vapor deriving from the Bay of Bengal in South China, and ascending motion strengthens here, thus enhancing the CG lightning activity of this area. Affected by the abnormal high pressure, the corresponding CG lightning activities in North China and Northeast China are relatively weak. The ENSO phenomenon is the climate driver for the CG lightning activity occurring in land areas of China.摘要本文利用中国气象局国家雷电监测网 (CNLDN) 的地闪观测数据集, 分析了2010–2020年中国陆地区域地闪空间模态分布特征及其可能的气候成因. 研究发现, 夏季地闪第一模态的方差贡献率为32.86%, 其分布从北到南呈现出“−+−”的经向跷跷板模式. 当东太平洋和印度洋的海温异常增暖, 西北太平洋的海温异常变冷时, 在中国黄海, 东海及热带西太平洋地区激发出气旋性环流. 随着水汽南下至华南地区, 与来自孟加拉湾的水汽汇合, 上升运动在此加强, 从而使得该地区的雷电活动增强. 表明厄尔尼诺-南方涛动 (ENSO) 现象, 是发生在中国陆地区域的地闪活动的气候驱动因子.  相似文献   

5.
北美偶极子(NAD)是热带北大西洋西部和北美东北部的南北向海平面气压异常偶极型模态.以往的观测研究表明,NAD可以有效地影响ENSO事件的爆发.本文利用全球耦合模式FGOALS-g2,评估了NAD与ENSO的关系.结果表明,该模式能较好地重现NAD模态.进一步的分析验证了冬季NAD可以通过强迫冬末春初副热带东北太平洋上空的反气旋和暖海温的出现,在随后的冬季触发El Ni?o事件.此外,在同化NAD实验中,发生El Ni?o事件的概率增加了将近一倍.相比之下,NAO未能在副热带东北太平洋上空引起表面风和海温的异常,因而不能有效地激发次年冬季ENSO事件.  相似文献   

6.
The evaluation of East Asian summer monsoon (EASM) simulations could improve our understanding of Asian monsoon dynamics and climate simulations. In this study, by using Phase 6 of the Coupled Model Intercomparison Project (CMIP6) experiments of the Atmospheric Model Intercomparison Project (AMIP) and historical runs of the Chinese Academy of Sciences (CAS) Flexible Global Ocean–Atmosphere–Land System (FGOALS-f3-L) model, the model simulation skill for the interannual variability in the EASM was determined. According to multivariate empirical orthogonal function (MV-EOF) analysis, the major mode of the EASM mainly emerged as a Pacific-Japan pattern in the western Pacific accompanied by a local anticyclonic anomaly with a total variance of 24.6%. The historical experiment could suitably reproduce this spatial pattern and attained a closer total variance than that attained by the AMIP experiment. The historical experiment could also better simulate the time frequency of the EASM variability than the AMIP experiment. However, the phase of principal component 1 (PC1) was not suitably reproduced in the historical experiment since no initialization procedure was applied at the beginning of the integration in the historical simulation process, whereas the sea surface temperature (SST) was preset in the AMIP experiment. Further analysis revealed that air–sea interactions in the Indian Ocean and tropical western Pacific were important for the model to provide satisfactory EASM simulations, while El Niño–Southern Oscillation (ENSO) simulation was possibly related to the climate variability in the EASM simulations, which should be further analyzed.摘要对东亚夏季季风(EASM)模拟的评估可以提高我们对亚洲季风动力和气候模拟的理解. 在这项研究中, 通过使用中国科学院(CAS)全球海洋-大气-陆地系统(FGOALS-f3-L)模式参加的第六次耦合模式相互比较计划(CMIP6)中的大气模式相互比较计划(AMIP)和历史(historical)试验, 明确了EASM的年际变率的模拟能力. 通过多变量经验正交函数(MV-EOF)分析发现, 观测的EASM的主导模态为西太平洋上的太平洋-日本模态, 并伴有局部反气旋异常. 主导模态的方差贡献率为24.6%. 历史(historical)试验可以基本再现这种空间模态, 其方差贡献率较AMIP试验更接近于观测. 与AMIP试验相比, 历史(historical)试验还能更好地模拟EASM变率的时间频率. 然而, 由于历史(historical)模拟没有在积分开始时应用初始化过程, 而AMIP试验受到海表面温度(SST)的约束, 因此主成分(PC1)的位相在历史(historical)试验中没有得到较好地再现. 进一步分析发现, 印度洋和西太平洋热带地区的海气相互作用对EASM的模拟非常重要, 而EASM气候变率的模拟可能与厄尔尼诺-南方涛动(ENSO)的模拟能力有关, 这值得进一步分析.  相似文献   

7.
The effect of the Tibetan Plateau (TP) on the Intertropical Convergence Zone (ITCZ) was investigated using a coupled Earth system model. The location of the ITCZ (in this work represented by the center of the tropical precipitation maximum) over the tropical Atlantic was found to be sensitive to the existence of the TP. Removing the TP led to a remarkable sea surface temperature (SST) cooling (warming) in the Northern (Southern) Hemisphere, which manifested clearly in the Atlantic rather than the Pacific. The locations of maximum precipitation and SST moved southwards clearly in the tropical Atlantic, forcing a southward shift of the atmospheric convection center, and thus the ITCZ. The shift in the ITCZ was also supported by the latitudinal change in the ascending branch of the tropical Hadley Cell, which moved southwards by about 2° in the boreal summer in response to the TP's removal. From the viewpoint of the energy balance between the two hemispheres, the cooling (warming) in the Northern (Southern) Hemisphere requires an enhanced northward atmospheric heat transport across the equator, which can be realized by the southward displacement of the ITCZ. This study suggests that the presence of the TP may have played an important role in the climatology of the ITCZ, particularly its location over the tropical Atlantic.摘要本文利用耦合地球气候系统模式研究了青藏高原对热带辐合带 (ITCZ) 的影响. 我们研究发现热带大西洋ITCZ的位置对青藏高原存在与否有明显的敏感性. 与目前真实情况相比, 移除青藏高原会导致北半球海面降温, 南半球海面升温. 这种海面温度变化在大西洋表现得尤为明显, 导致热带大西洋最大海温中心向南移动, 从而迫使大气对流中心向南移动, 即表现为ITCZ的南移. 相应地, 夏季热带大气Hadley环流的上升支也发生明显南移. 北 (南) 半球海洋变冷 (变暖) 这种态势要求增强跨赤道向北的大气经向热量输送, 从而维持各个半球的能量平衡, 而这需要ITCZ位置的南移才能实现. 本文研究表明, 青藏高原的存在在现今ITCZ气候态的形成中可能扮演了重要角色.  相似文献   

8.
2019 was one of the hottest years in recent decades, with widespread heatwaves over many parts of the world, including Africa. However, as a developing and vulnerable region, the understanding of recent heatwave events in Africa is limited. Here, the authors incorporated different climate datasets, satellite observations, and population estimates to investigate patterns and hotspots of major heatwave events over Africa in 2019. Overall, 2019 was one of the years that experienced the strongest heatwaves in terms of intensity and duration since 1981 in Africa. Heatwave hotspots were clearly identified across western-coastal, northeastern, southern, and equatorial Africa, where major cities and human populations are located. The proportion of urban agglomerations (population) exposed to extreme (99th percentile) heatwaves in the Northern Hemisphere and Southern Hemisphere rose from 4% (5 million people) and 15% (17 million people), respectively, in the baseline period of 1981–2010 to 36% (43 million people) and 57% (53 million people), respectively, in 2019. Heatwave patterns and hotspots in 2019 were related to anomalous seasonal change in atmospheric circulation and above-normal sea surface temperature. Without adaptation to minimize susceptibility to the effects of heatwave events, the risks they pose in populated areas may increase rapidly in Africa.摘要2019 年是近几十年来最热的年份之一, 包括非洲在内的全球许多地区都受到大范围的热浪侵袭. 然而, 非洲作为脆弱的发展中地区, 我们对其近年热浪事件的了解非常有限. 本研究中, 我们结合了不同的气候数据集, 卫星观测资料和人口数据, 研究了 2019 年非洲地区主要热浪事件发生的时空特征和热点分布区. 总体而言, 2019 年是非洲地区自 1981 年以来热浪强度最强, 持续时间最久的年份之一. 在主要城市和人口所在的非洲西海岸, 东北部, 南部和赤道地区是热浪发生的热点区. 位于赤道以北的非洲地区, 暴露于极端 (第 99 个百分位) 热浪的城市人口比例从 1981–2010 年基准期的 4% (500 万人) 上升至2019 年的 36% (4300 万人). 位于赤道以南地区, 暴露于极端热浪的城市人口则从基准期的15% (1700 万人) 上升至57% (5300 万人). 2019 年的热浪时空特征和热点分布与大气环流的季节变化异常和海温的暖异常有关. 如果不及时采取适应措施以尽量减少人口对热浪事件影响的敏感性, 热浪对非洲人口稠密地区构成的风险可能会迅速增加.  相似文献   

9.
Previous studies have demonstrated that the western Pacific subtropical high (WPSH) has experienced an eastward retreat since the late 1970s. In this study, the authors propose that this eastward retreat of the WPSH can be partly attributed to atmospheric responses to the positive phase of the Pacific decadal oscillation (PDO), based on idealized SST forcing experiments using the Community Atmosphere Model, version 4. Associated with the positive phase of the PDO, convective heating from the Indian Peninsula to the western Pacific and over the eastern tropical Pacific has increased, which has subsequently forced a Gill-type response to modulate the WPSH. The resulting cyclonic gyre over the Asian continent and the western Pacific in the lower troposphere is favorable for the eastward retreat of the WPSH. Additionally, the resulting anticyclonic gyre in the upper troposphere is favorable for the strengthening and southward expansion of the East Asian westerly jet, which can modulate the jet-related secondary meridional–vertical circulation over the western Pacific and promote the eastward retreat of the WPSH.摘要以往的研究已证实, 西太平洋副热带高压 (副高) 在1970s后期减弱东退.基于大气模式 (CAM4) 的理想型海温强迫试验, 结果表明:副高的东退可能是大气对于正位相太平洋年代际振荡 (PDO) 的相应.伴随着PDO转变为正位相, 西太平洋至印度半岛以及热带东太平洋的对流加热增强, 大气表现为Gill型响应, 在亚洲大陆至西太平洋上空低层产生气旋性异常, 有利于副高东退.同时, 高层产生反气旋异常, 使得东亚西风急流加强和向南扩展, 进而调节西太平洋上空的次级环流, 进一步有利于副高东退.  相似文献   

10.
The authors explore the response of the Northern African (NAF) monsoon to orbital forcing in the Last Interglacial (LIG) compared with its response to greenhouses gas (GHG) forcing under the SSP5-8.5 scenario simulated in CMIP6. When the summer surface air temperature increases by 1 °C over the Northern Hemisphere, the NAF monsoon precipitation and its variability during the LIG increase by approximately 51% and 22%, respectively, which is much greater than under SSP5-8.5 (2.8% and 4.3%, respectively). GHG forcing enhances the NAF monsoon mainly by increasing the atmospheric moisture, while the LIG's orbital forcing intensifies the NAF monsoon by changing the monsoon circulation. During the LIG, models and data reconstructions indicate a salient hemispheric thermal contrast between the North and South Atlantic, strengthening the mean-state NAF monsoon precipitation. The interhemispheric temperature contrast enhances atmosphere–ocean interaction and the covariability of the northward sea surface temperature gradient and Saharan low, strengthening the NAF monsoon variability.摘要与人为强迫引起的全球变暖相比, 末次间冰期是轨道强迫引起的过去80万年来最暖的一个间冰期, 但鲜有人研究末次间冰期中北非季风的响应. 因此, 本文基于CMIP6多模式模拟结果对比研究了末次间冰期和SSP5–8.5情景下北非季风的响应, 发现末次间冰期下北非季风平均降水及其降水变率均远大于SSP5–8.5情景下的结果. 轨道强迫导致的北大西洋暖于南大西洋增加了北非季风环流和平均降水, 同时, 南北大西洋海温梯度变化通过增强热带北大西洋的海气相互作用增大了海温梯度和撒哈拉低压的变率, 从而增强了北非季风降水变率.  相似文献   

11.
Based on data observed from 1979 to 2017, the influence of Arctic sea ice in the previous spring on the first mode of interannual variation in summer drought in the middle and high latitudes of Asia (MHA) is analyzed in this paper, and the possible associated physical mechanism is discussed. The results show that when there is more sea ice near the Svalbard Islands in spring while the sea ice in the Barents–Kara Sea decreases, the drought distribution in the MHA shows a north–south dipole pattern in late summer, and drought weakens in the northern MHA region and strengthens in the southern MHA region. By analyzing the main physical process affecting these changes, the change in sea ice in spring is found to lead to the Polar–Eurasian teleconnection pattern, resulting in more precipitation, thicker snow depths, higher temperatures, and higher soil moisture in the northern MHA region in spring and less precipitation, smaller snow depths, and lower soil moisture in the southern MHA region. Such soil conditions last until summer, affect summer precipitation and temperature conditions through soil moisture–atmosphere feedbacks, and ultimately modulate changes in summer drought in the MHA.摘要本文分析了亚洲中高纬度地区 (MHA) 年际尺度夏季干旱的主模态时空变化特征, 以及影响第一模态的主要影响因子和可能的物理过程. 结果显示该区域夏季干旱第一模态主要呈现一个南北偶极性的分布. 而影响MHA夏季干旱的主要影响因子为前春北极海冰. 当春季斯瓦尔巴群岛附近海冰偏多, 而巴伦支海-喀拉海海冰减少时, 通过冰-气相互作用, 使得MHA北部春季降水增加, 雪深加厚, 土壤湿度偏高, 而南部则相反. 然后这样的土壤湿度条件从春季持续到夏季, 通过土壤湿度-大气反馈影响夏季MHA降水和温度变化, 最终对夏季干旱主模态产生影响.  相似文献   

12.
The global high-resolution marine reanalysis products that were independently developed by the National Marine Environmental Forecasting Center based on the Chinese Global Oceanography Forecasting System (CGOFS), are evaluated by comparing their climatologies with internationally recognized data from WOA (Word Ocean Atlas), SODA (Simple Ocean Data Assimilation), AVISO (Archiving, Validation, and Interpretation of Satellite Oceanographic Data), and C-GLORS (Global Ocean Reanalysis System). The results show that the SST RMSEs of CGOFS and SODA against WOA are 0.51 °C and 0.43 °C respectively; and in the North Pacific, the SST of CGOGS is closer to that of WOA than SODA. The SSS RMSEs of CGOFS and SODA compared with WOA are 0.48 PSU and 0.40 PSU, respectively. CGOFS can reproduce the main large-scale ocean circulation globally, and obtain a similar vertical structure of the Equatorial Undercurrent as SODA. The RMSE of the CGOFS global sea-level anomaly against AVISO is 0.018 m. The monthly averaged sea-ice extents are between those of SODA and C-GLORS in each month; the growth and ablation characteristics of the ice volume are consistent with SODA and C-GLORS; but the ice volume of CGOFS is greater than that of SODA and C-GLORS. In general, the climatology of the CGOFS global high-resolution reanalysis products are basically consistent with similar international products, and can thus provide reliable data for the improvement of marine science and technology in China.摘要通过同化系统将观测资料与海洋数值模式融合得到的海洋再分析产品为海洋科学研究提供了重要的资料基础.本文采用WOA,SODA,AVISO和GLORS四种数据资料与我国自主研发的中国全球海洋预报系统(CGOFS)的气候态结果进行了对比, 结果表明:CGOFS和SODA的全球海表面温度与WOA的均方根误差分别为0.51 和 0.43°C.CGOFS和SODA的海表面盐度与WOA的均方根误差分别为0.48和0.40 PSU;海流方面, CGOFS能较好的刻画主要大洋环流分布及赤道潜流的垂向结构;CGOFS的全球海表面高度异常与AVISO的均方根误差为0.018m;多年月平均海冰外缘线覆盖面积介于SODA 和 GLORS之间, 海冰体积的生消规律与SODA 和 GLORS一致.总体来看, CGOFS全球高分辨率海洋再分析产品的气候态结果与国际同类产品基本一致, 可为提升我国海洋综合科技实力提供可靠的资料保障.  相似文献   

13.
The relationship between variations in the East Asian trough (EAT) intensity and spring extreme precipitation over Southwest China (SWC) during 1961–2020 is investigated. The results indicate that there is an interdecadal increase in the relationship between the EAT and spring extreme precipitation over eastern SWC around the late 1980s. During the latter period, the weak (strong) EAT corresponds to a strong and large-scale anomalous anticyclone (cyclone) over the East Asia–Northwest Pacific region. The EAT-related anomalous southerlies (northerlies) dominate eastern SWC, leading to significant upward (downward) motion and moisture convergence (divergence) over the region, providing favorable (unfavorable) dynamic and moisture conditions for extreme precipitation over eastern SWC. In contrast, during the former period, the EAT-related circulation anomalies are weak and cover a relatively smaller region, which cannot significantly affect the moisture and dynamic conditions over eastern SWC; therefore, the response in extreme precipitation over eastern SWC to EAT is weak over the period. The interdecadal change in the relationship between eastern SWC spring extreme precipitation and the EAT could be related to the interdecadal change in the EAT variability. The large (small) variability of the EAT is associated with significant (insignificant) changes in spring extreme precipitation over eastern SWC during the latter (former) period.摘要本文研究表明东亚大槽强度与中国西南地区东部春季极端降水的关系在20世纪80年代末后显著增强, 这可能与东亚大槽自身变率的年代际变化有关. 在80年代末之后, 东亚大槽的变率显著增强, 其对应的大气环流异常也偏强, 范围偏大, 可以显著影响西南地区东部的水汽和动力条件, 从而引起该地区春季极端降水的显著变化. 而在80年代末之前, 东亚大槽的变率偏弱, 其对应的大气环流异常也偏弱, 范围偏小, 因此不能对西南地区东部春季极端降水的变化产生显著影响.  相似文献   

14.
Observational data from satellite altimetry were used to quantify the performance of CMIP6 models in simulating the climatological mean and interannual variance of the dynamic sea level (DSL) over 40°S–40°N. In terms of the mean state, the models generally agree well with observations, and high consistency is apparent across different models. The largest bias and model discrepancy is located in the subtropical North Atlantic. As for simulation of the interannual variance, good agreement can be seen across different models, yet the models present a relatively low agreement with observations. The simulations show much weaker variance than observed, and bias is apparent over the subtropics in association with strong western boundary currents. This nearshore bias is reduced considerably in HighResMIP models. The underestimation of DSL interannual variance is at least partially due to the misrepresentation of ocean processes in the CMIP6 historical simulation with its relatively low resolution. The results identify directions for future model development towards a better understanding of the mean and interannual variability of DSL.摘要本研究采用卫星测高数据与第六次国际耦合模式比较计划 (CMIP6) 海平面动力进行对比, 重点针对40°S–40°N地区的动力海平面 (DSL) , 评估了模式对其平均态与年际变率的综合模拟能力. 结果表明, 对于DSL平均态的模拟, 模式与观测结果非常吻合, 模式之间的差异较小. 其中, 副热带北大西洋是模拟偏差和模式间差异较为显著的区域. 对于DSL年际变率的模拟, 模式之间保持较高的一致性, 但是, 模式与观测结果存在明显差异, 模式普遍低估了DSL的年际方差; 其中, 误差大值区域出现在副热带西边界流附近. 模式分辨率会影响CMIP6对中小尺度海洋过程的重现能力, 这可能是导致CMIP6历史模拟出现误差的原因之一.  相似文献   

15.
China has been frequently suffering from haze pollution in the past several decades. As one of the most emission-intensive regions, the North China Plain (NCP) features severe haze pollution with multiscale variations. Using more than 30 years of visibility measurements and PM2.5 observations, a subseasonal seesaw phenomenon of haze in autumn and early winter over the NCP is revealed in this study. It is found that when September and October are less (more) polluted than the climatology, haze tends to be enhanced (reduced) in November and December. The abrupt turn of anomalous haze is found to be associated with the circulation reversal of regional and large-scale atmospheric circulations. Months with poor air quality exhibit higher relative humidity, lower boundary layer height, lower near-surface wind speed, and southerly anomalies of low-level winds, which are all unfavorable for the vertical and horizontal dispersion and transport of air pollutants, thus leading to enhanced haze pollution over the NCP region on the subseasonal scale. Further exploration indicates that the reversal of circulation patterns is closely connected to the propagation of midlatitude wave trains active on the subseasonal time scale, which is plausibly associated with the East Atlantic/West Russia teleconnection synchronizing with the transition of the North Atlantic SST. The seesaw relation discussed in this paper provides greater insight into the prediction of the multiscale variability of haze, as well as the possibility of efficient short-term mitigation of haze to meet annual air quality targets in North China.摘要中国近几十年来频受雾霾污染问题困扰, 其中华北平原作为排放最密集的区域之一, 常遭遇不同尺度的严重雾霾污染. 本文利用30余年的能见度和颗粒物 (PM2.5) 观测数据, 发现了华北平原地区在秋季和早冬时雾霾污染在次季节尺度上“跷跷板式”反向变化的关系. 研究发现, 当9–10月污染较轻 (重) 时, 11–12月的污染倾向于加重 (减轻) . 这种突然的变化与局地和大尺度环流的反向变化有关. 污染较重的月份常伴随有更高的相对湿度, 更低的边界层高度和近地面风速以及低层的南风异常, 均不利于污染的垂直和水平扩散和传输, 从而导致了次季节尺度上霾污染的加重. 进一步的研究发现环流场的突然转向与在次季节尺度上活跃的中纬度波列的传播密切相关, 而此波列可能主要与大西洋海温转变及引起的EA/WR遥相关型有关. 这一次季节反向变化为霾污染多尺度变率预测提供了新的理解, 同时为华北地区年度空气质量达标的短期目标提供了具有可行性的参考方法.  相似文献   

16.
西伯利亚地区异常的升温可能会给生态系统带来灾难性的影响.本文从气候角度分析西伯利亚地区初夏升温的特征以及北极海冰减小的可能贡献.观测和再分析资料表明,1979-2020年间西伯利亚地区6月地表气温有很强的升温趋势(0.9℃/10年),明显高于同纬度地区平均的升温趋势(0.46℃/10年).升温从地表延伸至300hPa左...  相似文献   

17.
The stratospheric ozone layer protects life on earth by preventing solar ultraviolet radiation from reaching the surface. Owing to the large population in the Northern Hemisphere and extreme ozone loss in the Arctic, changes in Arctic stratospheric ozone (ASO) and their causes have attracted broad attention recently. Using monthly mean data during the period 1980–2020 from MERRA-2, the relationship between the stratospheric polar vortex (SPV) and ASO, along with the relative contributions of chemical and dynamic processes associated with the SPV to changes in ASO, were examined in this study. Results showed that the ASO in March has a strong out-of-phase link with the strength of the SPV in March, with no obvious lead–lag correlations, i.e., an increase (decrease) in ASO corresponds to a weakened (strengthened) SPV. Further analysis suggested that the strong out-of-phase link between the SPV and ASO is related to changes in Brewer–Dobson circulation (BDC). Strong SPV events, accompanied by a low temperature condition and weakened upward propagation of planetary waves over the Arctic in the stratosphere, result in weakened BDC. The weakened downwelling at high latitudes tends to transport less ozone-rich air in the upper stratosphere at lower latitudes into the lower stratosphere at high latitudes, facilitating a decrease in ASO. The BDC's vertical velocity plays the dominant role in modulating ASO.摘要利用1980–2020年MERRA-2资料, 分析了平流层极涡 (Stratospheric polar vortex, SPV) 和北极臭氧 (Arctic stratospheric ozone, ASO) 的关系, 评估了与SPV相关的化学, 动力过程在其中的相对作用. 结果表明, 3月份ASO与同期SPV强度反相关最大. SPV-ASO二者反相关与平流层剩余环流 (Brewer-Dobson circulation, BDC) 变化密切相关. 强SPV伴随的北极平流层低温条件和行星波向上传播减弱, 导致BDC减弱, 减弱的BDC下沉支将低纬度平流层上层臭氧含量较低的空气输送到北极平流层低层, 从而导致ASO减少. BDC垂直速度在其中起主导作用.  相似文献   

18.
在积云中,大多数云粒子的直径在7到10微米之间,而在层云中,大多数云粒子的直径不超过2微米.云滴有效半径与云中行星边界层(PBL)及PBL上层的气溶胶数浓度(Na)呈负相关.在1500米以上的高液态水含量区域,云滴浓度(Nc)变化不大,Na含量降低.高雷达反射率对应于大的FCDP云粒子浓度和小的气溶胶粒子浓度.积云中的...  相似文献   

19.
Summer weather extremes (e.g., heavy rainfall, heat waves) in China have been linked to anomalies of summer monsoon circulations. The East Asian subtropical westerly jet (EASWJ), an important component of the summer monsoon circulations, was investigated to elucidate the dynamical linkages between its intraseasonal variations and local weather extremes. Based on EOF analysis, the dominant mode of the EASWJ in early summer is characterized by anomalous westerlies centered over North China and anomalous easterlies centered over the south of Japan. This mode is conducive to the occurrence of precipitation extremes over Central and North China and humid heat extremes over most areas of China except Northwest and Northeast China. The centers of the dominant mode of the EASWJ in late summer extend more to the west and north than in early summer, and induce anomalous weather extremes in the corresponding areas. The dominant mode of the EASWJ in late summer is characterized by anomalous westerlies centered over the south of Lake Baikal and anomalous easterlies centered over Central China, which is favorable for the occurrence of precipitation extremes over northern and southern China and humid heat extremes over most areas of China except parts of southern China and northern Xinjiang Province. The variability of the EASWJ can influence precipitation and humid heat extremes by driving anomalous vertical motion and water vapor transport over the corresponding areas in early and late summer.摘要东亚副热带西风急流是影响中国极端天气的重要原因之一, 然而之前的研究主要关注整个夏季急流的变率, 对其早夏和晚夏变率的区别及其对极端天气的影响关注较少. 本文研究了早夏和晚夏东亚副热带西风急流季节内变化特征的区别, 以及这种区别带来的极端天气的差异及其可能的动力学机制. 研究结果表明, 相比于早夏, 晚夏急流季节内变化中心位置偏西偏北, 通过改变垂直运动和水汽输送可以影响极端降水和湿热浪在相应区域的发生概率.  相似文献   

20.
Stemming from the multi-scale interactions of various processes, long-term memory (LTM) has become a well-recognized property in the climate system. Whether a dynamic model can reproduce the observed LTM is a widely used criterion for model evaluation, especially regarding its ability in simulating natural variabilities. While many works have shown poor model skill in simulating the LTM of land surface air temperature (LSAT), it is not yet known whether CMIP6 models offer any improvement. In this study, the performances of 60 CMIP6 models in simulating the LTM characteristics in LSAT were evaluated. Results showed that most models reproduced the LTM in the global-mean LSAT, among which AWI-ESM-1-1-LR and E3SM-1-0 performed best. All 60 models reproduced the variation in LTM with latitude. CNRM-CM6-1 and HadGEM3-GC31-LL performed best in simulating the LTM of LSAT at the global scale. The multi-model mean (MMM) performed better than any single model. The biases of the MMM and CRUTEM5, and among the 60 models, were significant in the equatorial and coastal regions, which may be attributable to the simulation differences of the models in terms of their ocean–atmosphere coupling processes.摘要利用去趋势涨落分析 (DFA) 方法计算序列的长程记忆性 (LTM) , 以CRUTEM5数据集的结果作为观测参照, 评估了60个参与第六次国际耦合模式比较计划 (CMIP6) 的气候模式对地表气温LTM的再现能力. 结果表明: 大部分模式可以再现全球平均地表气温序列的LTM特征, 其中AWI-ESM-1-1-LR和E3SM-1-0的模拟效果最好; 60个模式均能模拟LTM随纬度带的变化; 综合来说, 全球水平上CNRM-CM6-1和HadGEM3-GC31-LL对地表气温LTM的模拟性能最好; 多模式平均相比单一模式模拟性能更好; 多模式平均与观测结果的偏差以及模式之间的模拟差异显著体现在赤道和沿海区域, 这种偏差可能源于模式对海气耦合过程的模拟差异.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号