首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Arctic stratospheric polar vortex was exceptional strong, cold and persistent in the winter and spring of 2019–2020. Based on reanalysis data from the National Centers for Environmental Prediction/National Center for Atmospheric Research and ozone observations from the Ozone Monitoring Instrument, the authors investigated the dynamical variation of the stratospheric polar vortex during winter 2019–2020 and its influence on surface weather and ozone depletion. This strong stratospheric polar vortex was affected by the less active upward propagation of planetary waves. The seasonal transition of the stratosphere during the stratospheric final warming event in spring 2020 occurred late due to the persistence of the polar vortex. A positive Northern Annular Mode index propagated from the stratosphere to the surface, where it was consistent with the Arctic Oscillation and North Atlantic Oscillation indices. As a result, the surface temperature in Eurasia and North America was generally warmer than the climatology. In some places of Eurasia, the surface temperature was about 10 K warmer during the period from January to February 2020. The most serious Arctic ozone depletion since 2004 has been observed since February 2020. The mean total column ozone within 60°–90°N from March to 15 April was about 80 DU less than the climatology.摘要2019-2020冬季北极平流层极涡异常并且持续的偏强,偏冷.利用NCEP再数据和OMI臭氧数据, 本文分析了此次强极涡事件中平流层极涡的动力场演变及其对地面暖冬天气和臭氧低值的影响.此次强极涡的形成是由于上传行星波不活跃.持续的强极涡使得2020年春季的最后增温出现时间偏晚.平流层正NAM指数向下传播到地面, 与地面AO指数和NAO指数相一致, 欧亚大陆和北美地面气温均比气候态偏暖, 在欧亚大陆的一些地区, 2020年1月和2月的气温甚至偏高了10K.2020年2月以来北极臭氧出现了2004年以来的最低值, 2020年3-4月60°–90°N的平均臭氧柱总量比气候态偏低了80DU.  相似文献   

2.
Extending the atmospheric model top to high altitude is important for simulation of upper atmospheric phenomena, such as the stratospheric quasi-biennial oscillation. The high-top version of the Institute of Atmospheric Physics Atmospheric General Circulation Model with 91 vertical layers (IAP-AGCML91) extends to the mesopause at about 0.01 hPa (~80 km). The high-top model with a fully resolved stratosphere is found to simulate a warmer stratosphere than the low-top version, except near the South Pole, thus reducing its overall cold bias in the stratosphere, and significantly in the upper stratosphere. This sensitivity is shown to be consistent with two separate mechanisms: larger shortwave heating and larger poleward stratospheric meridional eddy heat flux in the high-top model than in the low-top model. Results indicate a significant influence of vertical resolution and model top on climate simulations in IAP-AGCM.摘要提高大气环流模式的模式顶层高度对中高层大气 (如平流层准两年振荡) 的准确模拟至关重要. 本研究将IAP大气环流模型 (IAP-AGCM) 延伸至中层大气顶 (~0.01 hPa, ~80 km) 并提高垂直方向分辨率 (91层) , 发展了一个中高层大气环流模型 (IAP-AGCML91) . 结果表明, 与低层模式相比, 该中高层大气模式在整体上显著减小了平流层尤其是上平流层的冷偏差.研究发现这种改善与两种机制有关:与低层模式相比, 高层模式模拟的短波加热更大, 极区平流层附近的经向涡动热通量更大.上述结果表明, 垂直分辨率和模式顶层高度对IAP-AGCML91的气候模拟有重要影响.  相似文献   

3.
The stratospheric polar vortex (SPV), which is an important factor in subseasonal-to-seasonal climate variability and climateprediction, exhibited a remarkable transition from weak in early winter to strong in late winter in 1987/88 (most significant on the interannual timescale during 1979–2019). Therefore, in this study, the subseasonal predictability of this transition SPV case in 1987/88 was investigated using the hindcasts from a selected model (that of the Japan Meteorological Agency) in the Subseasonal-to-Seasonal Prediction project database. Results indicated that the predictability of both weak and strong SPV stages in winter 1987/88, especially near their peak dates, exhibited large sensitivity to the initial condition, which derived mainly from the sensitivity in capturing the 100-hPa eddy heat flux anomalies. Meanwhile, the key tropospheric precursory systems with respect to the occurrence and predictability of this transition SPV case were investigated. The Eurasian teleconnection wave trains might have been a key precursor for the weak SPV stage, while significant tropospheric precursors for the strong SPV stage were not found in this study. In addition, positive correlation (r = 0.41) existed between the forecast biases of the SPV and the NAO in winter 1987/88, which indicates that reducing the forecast biases of the SPV might help to improve the forecasting of the NAO and tropospheric weather.摘要平流层极涡作为冬季次季节尺度上一个重要的可预测性来源, 其强度在1987/88年冬季表现为1979–2019年最显著的转折, 即在前 (后) 冬极端偏弱 (强). 因此在本文中选取这一个例研究了该年冬季平流层极涡在次季节尺度上的可预测性. 结果表明弱极涡和强极涡事件的预测与模式能否准确预测上传行星波的强度紧密相关. 同时, 发现前期对流层欧亚遥相关波列可能是弱极涡事件发生的关键预兆信号. 此外, 模式对平流层极涡强度和北大西洋涛动预测误差之间存在显著正相关关系, 表明模式减少平流层极涡的预测误差可能可以提高北大西洋涛动及相关对流层气候预测.  相似文献   

4.
The quasi-biennial oscillation (QBO), a dominant mode of the equatorial stratospheric (~100–1 hPa) variability, is known to impact tropospheric circulation in the middle and high latitudes. Yet, its realistic simulation in general circulation models remains a challenge. The authors examine the simulated QBO in the 69-layer version of the Institute of Atmospheric Physics Atmospheric General Circulation Model (IAP-AGCML69) and analyze its momentum budget. The authors find that the QBO is primarily caused by parameterized gravity-wave forcing due to tropospheric convection, but the downward propagation of the momentum source is significantly offset by the upward advection of zonal wind by the equatorial upwelling in the stratosphere. Resolved-scale waves act as a positive contribution to the total zonal wind tendency of the QBO over the equator with comparable magnitude to the gravity-wave forcing in the upper stratosphere. Results provide insights into the mechanism of the QBO and possible causes of differences in models.摘要平流层准两年振荡 (QBO) 是赤道平流层 (~100–1 hPa) 变率的主要模态, 可对中高纬地区的环流产生重要影响, 但目前利用通用大气环流模式 (GCM) 对其进行准确模拟仍然是一个挑战.本文利用IAP大气环流模式 (IAP-AGCM) 的中高层大气模式版本 (IAP-AGCML69) 对QBO进行模拟, 并对其动量收支情况进行分析.研究发现, QBO主要是由对流活动引起的重力波强迫 (参数化) 引起的, 但该动量强迫被平流层赤道上升流所引起的平流过程显著削弱.模式可分辨尺度的波动强迫对赤道上空的QBO的总纬向风倾向有正贡献, 在上平流层, 其量值大小与参数化的重力波强迫相当.以上结果提供了对QBO形成机制以及模式模拟差异可能原因的认识.  相似文献   

5.
In November 2020, the eastern Arctic experienced an extensive extreme warm anomaly (i.e., the second strongest case since 1979), which was followed by extreme cold conditions over East Asia in early winter. The observed Arctic warm anomaly in November 2020 was able to extend upwards to the upper troposphere, characterized as a deep Arctic warm anomaly. In autumn 2020, substantial Arctic sea-ice loss that exceeded the record held since 1979, accompanied by increased upward turbulent heat flux, was able to strongly warm the Arctic. Furthermore, there was abundant northward moisture transport into the Arctic from the North Atlantic, which was the strongest in the past four decades. This extreme moisture intrusion was able to enhance the downward longwave radiation and strongly contribute to the warm conditions in the Arctic. Further analysis indicated that the remote moisture intrusion into the Arctic was promoted by the large-scale atmospheric circulation patterns, such as the wave train propagating from the midlatitude North Atlantic to the Arctic. This process may have been linked to the warmer sea surface temperature in the midlatitude North Atlantic.摘要2020年11月北极东部显著偏暖, 表面气温暖异常为1979年以来第二强, 且北极表层偏暖可以延伸至对流层上层. 本文进一步研究了此次北极极端偏暖的可能原因. 2020年秋季北极海冰大幅减少, 11月从北大西洋向北极的水汽输送显著增加, 且二者的变化幅度均超过了1979年以来的最高纪录, 进而导致北极出现极端暖异常. 此外, 从中纬度向北极的Rossby波传播有利于向极水汽输送增加, 且此过程可能与北大西洋中纬度海温异常有关.  相似文献   

6.
Coordinated numerical ensemble experiments with six different state-of-the-art atmosphere models were used to evaluate and quantify the impact of global SST (from reanalysis data) on the early winter Arctic warming during 1982–2014. Two sets of experiments were designed: in the first set (EXP1), OISSTv2 daily sea-ice concentration and SST variations were used as the lower boundary forcing, while in the second set (EXP2) the SST data were replaced by the daily SST climatology. In the results, the multi-model ensemble mean of EXP1 showed a near-surface (~850 hPa) warming trend of 0.4 °C/10 yr, which was 80% of the warming trend in the reanalysis. The simulated warming trend was robust across the six models, with a magnitude of 0.36–0.50 °C/10 yr. The global SST could explain most of the simulated warming trend in EXP1 in the mid and low troposphere over the Arctic, and accounted for 58% of the simulated near-surface warming. The results also suggest that the upper-tropospheric warming (~200 hPa) over the Arctic in the reanalysis is likely not a forced signal; rather, it is caused by natural climate variability. The source regions that can potentially impact the early winter Arctic warming are explored and the limitations of the study are discussed.摘要本文使用六个不同的最新大气模式进行了协调数值集合实验, 评估和量化了全球海表面温度 (SST) 对1982–2014年冬季早期北极变暖的影响.本研究设计了两组实验:在第一组 (EXP1) 中, 将OISSTv2逐日变化的海冰密集度和SST数据作为下边界强迫场;在第二组 (EXP2) 中, 将逐日变化的SST数据替换为逐日气候态.结果表明: (1) EXP1的多模式集合总体平均值显示0.4 °C/10年的近地表 (约850 hPa) 升温趋势, 为再分析数据结果中升温趋势的80%. (2) 在这六个模式中, 模拟的变暖趋势均很强, 幅度为0.36–0.50 °C/10年. (3) 全球海表温度可以解释北极对流层中低层EXP1的大部分模拟的变暖趋势, 占再分析数据结果的58%. (4) 再分析数据结果中, 北极上空的对流层上层变暖 (约200 hPa) 不是由强迫信号而可能是由自然气候变率引起的.本文还探索了影响北极初冬变暖的可能源区, 并讨论了该研究的局限性.  相似文献   

7.
Since the 2000s, extratropical extremes have been more frequent, which are closely related to anomalies of planetary-scale and synoptic-scale systems. This study focuses on a key synoptic system, the extratropical cyclonic vortex (ECV) over land, to investigate its relations with extreme precipitation. It was found that ECVs have been more active post-2000, which has induced more extreme precipitation, and such variation is projected to persist along with increasing temperature within 1.5°C of global warming. An enhanced quasi-stationary vortex (QSV) primarily contributes to the ECV, rather than inactive synoptic-scale transient eddies (STEs). Inactive STEs respond to a decline in baroclinicity due to the tendency of the homogeneous temperature gradient. However, such conditions are helpful to widening the westerly jet belt, favoring strong dynamic processes of quasi-resonant amplification and interaction of STEs with the quasi-stationary wave, and the result favors an increasing frequency and persistence of QSVs, contributing to extreme precipitation.摘要自21世纪以来, 热带外极端降水频次增加. 随着中高纬度的显著增温, 经向温度梯度减弱导致低层大气斜压性减小, 由此产生的气旋型瞬变涡天气系统等活动减弱. 然而, 热力分布导致西风急流带变宽, 经向环流加大, 有助于行星尺度波动相关的涡旋异常增加, 如东北冷涡, 中亚涡, 东欧-地中海涡, 北美涡等, 进而增加了气旋涡影响范围的极端降水频次. 在未来变暖背景和1.5°C增温的目标内, 热带外气旋涡增强会进一步促进极端降水发生.  相似文献   

8.
本文通过对1979-2017年夏季925 hPa经向风异常进行经验正交函数(EOF)分解,研究了亚澳季风区内越赤道气流的年际变化特征.结果表明,越赤道气流的第一模态表现为亚澳季风区内不同通道间的同相变化,即一致加强或减弱;第二模态表现为孟加拉湾和澳大利亚越赤道气流的反相变化,其中新几内亚和孟加拉湾越赤道气流的反相变化最...  相似文献   

9.
西北涡是我国西北地区一类发生频率较高的中尺度涡旋,其所引发灾害的强度与西南低涡,高原涡相当,但相关研究却远远少于前两种涡旋.为了深化对西北涡的认识,本文利用水汽与环流收支对一次长生命史西北涡(其在西北地区引发了一系列暴雨过程,导致了严重的输电线路故障与城市内涝)进行了研究,发现,东海与渤海是此西北涡引发暴雨的主要水汽来...  相似文献   

10.
Northeast China (NEC) witnessed an interdecadal increase in summer extreme heat days (EHDs) around the mid-1990s. The current study reveals that this interdecadal increase only occurs in June and July, while August features a unique interdecadal decrease in EHDs around the early 1990s. Plausible reasons for the interdecadal decrease in EHDs in August are further investigated. Results show that the interdecadal decrease in EHDs in August is due to the deceased variability of daily maximum temperature (Tmax). Overall, the variation of the Tmax over NEC in August is modulated by the Eurasian teleconnection pattern, Silk Road pattern, and East Asia–Pacific pattern. However, the influence of the Silk Road pattern dramatically weakens after the early 1990s because the meridional wind variability along the westerly jet significantly decreases. The weakened influence of the Silk Road pattern contributes to the decreased Tmax variability over NEC. Meanwhile, the convection over the western North Pacific, which accompanies the East Asia–Pacific pattern, presents a significant decrease in variance after the early 1990s, further decreasing the Tmax variability over NEC.摘要东北夏季极端高温频次在1990年代中期出现年代际增多.本文指出该年代际增多只出现在6–7月, 而8月则呈现特殊性, 即在1990年代初出现年代际减少.进一步分析表明, 东北8月极端高温频次的年代际减少由日最高温度变率的年代际减小造成.东北日最高温度受到欧亚遥相关,丝绸之路遥相关和东亚-太平洋遥相关的共同调制.1990年代初之后, 西风急流上的经向风变率显著减小, 丝绸之路遥相关对下游的影响减弱, 导致东北日最高温度变率减小.同时, 西北太平洋热带对流的变率也在1990年代初出现年代际减小, 通过东亚-太平洋遥相关使东北日最高温度变率进一步减小.  相似文献   

11.
The influences of strong El Niño events (1997/98 and 2015/16) on summertime near-surface ozone (O3) concentrations over China are investigated using the GEOS-Chem model. The results show that near-surface O3 concentrations increased by a maximum of 6 ppb (parts per billion) during the summer of the developing phase of the 1997/98 El Niño in northeastern China, mainly due to the increased chemical production related to the hot and dry conditions. Besides, the O3 concentration increased by 3 ppb during the developing summer of both the 1997/98 and 2015/16 El Niño in southern China. It was linked to the weakened prevailing monsoon winds, which led to the accumulation of O3 in southern China. In contrast, in the summer of the decaying phase of the two El Niño events, O3 concentrations decreased over many regions of China when the El Niño reversed to the cooling phase. This highlights that El Niño plays an important role in modulating near-surface O3 concentrations over China.摘要利用全球大气化学三维模式 (GEOS-Chem) 模拟研究两次强厄尔尼诺事件 (1997/98和2015/16) 对中国夏季近地面臭氧 (O3) 浓度的影响. 结果表明1997/98年厄尔尼诺事件发展期夏季中国东北区域O3浓度升高, 最大值超过6ppb, 这主要归因于高温晴朗低湿等气象因素导致O3化学生成升高. 此外, 两次厄尔尼诺事件发展期夏季O3浓度在中国南部均增加了3ppb, 这与盛行季风减弱导致中国南方O3局地积累有关. 相反, 在两次强厄尔尼诺衰减期夏季, 中国大部分地区O3浓度下降伴随着海温模态转变为拉尼娜事件. 这表明厄尔尼诺在调节中国近地面O3浓度中发挥着重要作用.  相似文献   

12.
To analyze the mechanism by which water vapor increase leads to cooling in the stratosphere, the effects of water-vapor increases on temperature in the stratosphere were simulated using the two-dimensional, interactive chemical dynamical radiative model (SOCRATES) of NCAR. The results indicate that increases in stratospheric water vapor lead to stratospheric cooling, with the extent of cooling increasing with height, and that cooling in the middle stratosphere is stronger in Arctic regions. Analysis of the radiation process showed that infrared radiative cooling by water vapor is a pivotal factor in middle-lower stratospheric cooling. However, in the upper stratosphere (above 45 km), infrared radiation is not a factor in cooling; there, cooling is caused by the decreased solar radiative heating rate resulting from ozone decrease due to increased stratospheric water vapor. Dynamical cooling is important in the middle-upper stratosphere, and dynamical feedback to temperature change is more distinct in the Northern Hemisphere middle-high latitudes than in other regions and signiffcantly affects temperature and ozone in winter over Arctic regions. Increasing stratospheric water vapor will strengthen ozone depletion through the chemical process. However, ozone will increase in the middle stratosphere. The change in ozone due to increasing water vapor has an important effect on the stratospheric temperature change.  相似文献   

13.
The response of the warming magnitude over the Tibetan Plateau (TP; elevation ≥ 3000 m) to global climate change is not spatially uniform. Rather, it enhances with elevation, referred to as elevation-dependent warming (EDW). The degree of EDW over the TP is season-dependent, with the largest amplitude of 0.21°C km−1 observed during boreal winter. Several factors have been proposed in previous studies as possible drivers of TP EDW, but the relative importance of these factors has been less studied. To quantitatively identify the major drivers of TP EDW in winter over recent decades (1979–2018), the authors applied the radiative kernels diagnostic method with several datasets. The results robustly suggest that, the surface albedo feedback associated with changes in snow cover plays the leading role in TP EDW. Observations show that the snow cover has reduced significantly over regions with high elevation during the winters of the past four decades, leading to reductions in outgoing shortwave radiation and thus EDW.摘要青藏高原 (海拔≥ 3000 m 地区) 对全球气候变化的变暖响应是空间不均匀的, 其增温幅度会随着海拔升高而增大, 被称为海拔依赖性增温. 青藏高原海拔依赖性增温具有季节依赖性, 在冬季最为显著, 达0.21°C km−1. 在以往的研究中, 众多因素被认为是青藏高原海拔依赖性增温的可能驱动因素, 但关于这些因素相对重要性的研究较少. 基于多个数据集, 本文应用辐射核 (radiative kernel) 技术方法定量诊断了近几十年 (1979–2018年) 冬季不同物理过程对青藏高原海拔依赖性增温的贡献. 结果表明, 与积雪变化相关的地表反照率反馈在其中起主导作用. 观测数据分析显示, 在过去40年的冬季,高海拔地区的积雪覆盖率显著减少, 导致地表反射的短波辐射减少, 从而促进了海拔依赖性增温.  相似文献   

14.
Using a detailed, fully coupled chemistry climate model (CCM), the effect of increasing stratospheric H2O on ozone and temperature is investigated. Different CCM time-slice runs have been performed to investigate the chemical and radiative impacts of an assumed 2 ppmv increase in H2O. The chemical effects of this H2O increase lead to an overall decrease of the total column ozone (TCO) by ~1% in the tropics and by a maximum of 12% at southern high latitudes. At northern high latitudes, the TCO is increased by only up to 5% due to stronger transport in the Arctic. A 2-ppmv H2O increase in the model's radiation scheme causes a cooling of the tropical stratosphere of no more than 2 K, but a cooling of more than 4 K at high latitudes. Consequently, the TCO is increased by about 2%--6%. Increasing stratospheric H2O, therefore, cools the stratosphere both directly and indirectly, except in the polar regions where the temperature responds differently due to feedbacks between ozone and H2O changes. The combined chemical and radiative effects of increasing H2O may give rise to more cooling in the tropics and middle latitudes but less cooling in the polar stratosphere. The combined effects of H2O increases on ozone tend to offset each other, except in the Arctic stratosphere where both the radiative and chemical impacts give rise to increased ozone. The chemical and radiative effects of increasing H2O cause dynamical responses in the stratosphere with an evident hemispheric asymmetry. In terms of ozone recovery, increasing the stratospheric H2O is likely to accelerate the recovery in the northern high latitudes and delay it in the southern high latitudes. The modeled ozone recovery is more significant between 2000--2050 than between 2050--2100, driven mainly by the larger relative change in chlorine in the earlier period.  相似文献   

15.
China has been frequently suffering from haze pollution in the past several decades. As one of the most emission-intensive regions, the North China Plain (NCP) features severe haze pollution with multiscale variations. Using more than 30 years of visibility measurements and PM2.5 observations, a subseasonal seesaw phenomenon of haze in autumn and early winter over the NCP is revealed in this study. It is found that when September and October are less (more) polluted than the climatology, haze tends to be enhanced (reduced) in November and December. The abrupt turn of anomalous haze is found to be associated with the circulation reversal of regional and large-scale atmospheric circulations. Months with poor air quality exhibit higher relative humidity, lower boundary layer height, lower near-surface wind speed, and southerly anomalies of low-level winds, which are all unfavorable for the vertical and horizontal dispersion and transport of air pollutants, thus leading to enhanced haze pollution over the NCP region on the subseasonal scale. Further exploration indicates that the reversal of circulation patterns is closely connected to the propagation of midlatitude wave trains active on the subseasonal time scale, which is plausibly associated with the East Atlantic/West Russia teleconnection synchronizing with the transition of the North Atlantic SST. The seesaw relation discussed in this paper provides greater insight into the prediction of the multiscale variability of haze, as well as the possibility of efficient short-term mitigation of haze to meet annual air quality targets in North China.摘要中国近几十年来频受雾霾污染问题困扰, 其中华北平原作为排放最密集的区域之一, 常遭遇不同尺度的严重雾霾污染. 本文利用30余年的能见度和颗粒物 (PM2.5) 观测数据, 发现了华北平原地区在秋季和早冬时雾霾污染在次季节尺度上“跷跷板式”反向变化的关系. 研究发现, 当9–10月污染较轻 (重) 时, 11–12月的污染倾向于加重 (减轻) . 这种突然的变化与局地和大尺度环流的反向变化有关. 污染较重的月份常伴随有更高的相对湿度, 更低的边界层高度和近地面风速以及低层的南风异常, 均不利于污染的垂直和水平扩散和传输, 从而导致了次季节尺度上霾污染的加重. 进一步的研究发现环流场的突然转向与在次季节尺度上活跃的中纬度波列的传播密切相关, 而此波列可能主要与大西洋海温转变及引起的EA/WR遥相关型有关. 这一次季节反向变化为霾污染多尺度变率预测提供了新的理解, 同时为华北地区年度空气质量达标的短期目标提供了具有可行性的参考方法.  相似文献   

16.
西伯利亚地区异常的升温可能会给生态系统带来灾难性的影响.本文从气候角度分析西伯利亚地区初夏升温的特征以及北极海冰减小的可能贡献.观测和再分析资料表明,1979-2020年间西伯利亚地区6月地表气温有很强的升温趋势(0.9℃/10年),明显高于同纬度地区平均的升温趋势(0.46℃/10年).升温从地表延伸至300hPa左...  相似文献   

17.
The effect of the stratospheric ozone depletion on the thermal and dynamical structure of the middle atmosphere is assessed using two 5-member ensembles of transient GCM simulations; one including linear trends in ozone, the other not, for the 1980–1999 period. Simulated temperatures and observations are in good agreement in terms of mean values, autocorrelations and cross correlations. Annual-mean and seasonal temperature trends have been calculated using the same statistical analysis. Simulations show that ozone trends are responsible for reduced wave activity in the Arctic lower stratosphere in February and March, confirming both the role of dynamics in controlling March temperatures and a recently proposed mechanism whereby Arctic ozone depletion causes the reduction in wave activity entering the lower stratosphere. Changes in wave activity are consistent with an intensification of the polar vortex at the time of ozone depletion and with a weakened Brewer–Dobson circulation: A decrease of the dynamical warming/cooling associated with the descending/ascending branch of the wintertime mean residual circulation at high/low latitudes has been obtained through the analysis of temperature observations (1980–1999). Ozone is responsible of about one third of the decrease of this dynamical cooling at high latitudes. An increase in the residual mean circulation is seen in the observations for the 1965–1980 period.  相似文献   

18.
The dominant patterns of the winter (December–February) surface air temperature anomalies (SATAs) over Central Asia (CA) are investigated in this study. The first two leading modes revealed by empirical orthogonal function (EOF) analysis represent the patterns by explaining 74% of the total variance. The positive phase of EOF1 is characterized by a monopole pattern, corresponding to cold SATAs over CA, while the positive phase of EOF2 shows a meridional dipole pattern with warm and cold SATAs over northern and southern CA. EOF1 is mainly modulated by the negative phase of the Arctic Oscillation (AO) in the troposphere, and the negative AO phase may be caused by the downward propagation of the precursory anomalies of the stratospheric polar vortex. EOF2 is mainly influenced by the Ural blocking pattern and the winter North Atlantic Oscillation (NAO). The SATAs associated with EOF2 can be attributed to a dipole-like pattern of geopotential height anomalies over CA. The dipole-like pattern is mainly caused by the Ural blocking pattern, and the NAO can also contribute to the northern part of the dipole.摘要本文利用经验正交函数分解方法 (Empirical orthogonal function, EOF) , 针对1979–2019年冬季 (12月–2月) 中亚地区地面气温异常进行了研究. 结果表明, 中亚地区冬季地面气温异常的前两个EOF模态解释方差总占比可达74%. 其中, 第一模态 (EOF1) 正位相为一致型变化, 对应中亚地区气温冷异常; 第二模态 (EOF2) 正位相则为南北偶极型变化, 对应于中亚地区南冷北暖型气温异常. EOF1可能受到冬季北极涛动 (Arctic Oscillation, AO) 负位相的调制, 而AO的负位相则可能来自于前期平流层极涡正位势高度异常下传. EOF2则可能受到乌拉尔山阻塞及冬季北大西洋涛动 (North Atlantic Oscillation, NAO) 的共同调制. 乌拉尔山阻塞可引起中亚区域南北偶极型气温异常, 而冬季NAO可对该偶极型气温异常的北侧产生贡献.  相似文献   

19.
Fast and accurate identification of unknown pollution sources plays a crucial role in the emergency response and source control of air pollution. In this work, the applicability of a previously proposed two-step inversion method is investigated with sensitivity experiments and real data from the first release of the European Tracer Experiment (ETEX-1). The two-step inversion method is based on the principle of least squares and carries out additional model correction through the residual iterative process. To evaluate its performance, its retrieval results are compared with those of two other existing algorithms. It is shown that for those cases with richer measurements, all three methods are less sensitive to errors, while for cases where measurements are sparse, their retrieval accuracy will rapidly decrease as errors increase. From the results of sensitivity experiments, the new method provides higher estimation accuracy and a more stable performance than the other two methods. The new method presents the smallest maximum location error of 18.20 km when the amplitude of the measurement error increases to 100%, and 22.67 km when errors in the wind fields increase to 200%. Moreover, when applied to ETEX-1 data, the new method also exhibits good performance, with a location error of 4.71 km, which is the best estimation with respect to source location.摘要快速并且准确地识别未知污染源, 在大气污染应急响应和源头控制过程中起着至关重要的作用. 本文利用敏感性试验及欧洲示踪物测场试验(ETEX-1)数据研究了新提出的两步反演算法的实用性, 并将其反演结果与现有的两种算法进行了对比分析. 敏感试验表明, 在观测数据较为丰富的情况下, 三种算法对观测误差和风场误差的敏感性均较低; 而当观测数据较为稀疏时, 所有算法的估计精度都将随着误差的增加而下降, 但与其他两种算法相比, 两步反演算法具有更高的估计精度以及更稳定的估计性能. 此外, 欧洲示踪物测场试验的源项估计结果也表明, 在三个算法中, 两步反演算法具有最小的位置估计误差.  相似文献   

20.
During the Asian summer monsoon (ASM) season, the process of stratosphere–troposphere exchange significantly affects the concentration and spatial distribution of chemical constituents in the upper troposphere and lower stratosphere (UTLS). However, the effect of the intensity of the Asian summer monsoon anticyclone (ASMA) on the horizontal distribution of chemical species within and around the ASMA, especially on the daily time scale, remains unclear. Here, the authors use the MERRA-2 reanalysis dataset and Aura Microwave Limb Sounder observations to study the impact of ASMA intensity on chemical distributions at 100 hPa during the ASM season. The intraseasonal variation of ASMA is classified into a strong period (SP) and weak period (WP), which refer to the periods when the intensity of ASMA remains strong and weak, respectively. The relatively low ozone (O3) region is found to be larger at 100 hPa during SPs, while its mixing ratio is lower than during WPs in summer. In June, analysis shows that the O3 horizontal distribution is mainly related to the intensity of AMSA, especially during SPs in June, while deep convections also impact the O3 horizontal distribution in July and August. These results indicate that the intraseasonal variation of the ASMA intensity coupled to deep convection can significantly affect the chemical distribution in the UTLS region during the ASM season.摘要亚洲夏季风期, 平流层–对流层物质交换过程能显著影响上对流层下平流层化学成分的浓度变化和空间分布. 然而, 亚洲夏季风反气旋强度的季节内变化对其内部和周围地区化学成分水平分布的影响尚不清楚. 本文将亚洲夏季风反气旋划分为季节内强周期和弱周期, 发现当亚洲夏季风反气旋更强时, 100 hPa O3低值区的面积更大, O3浓度更低. 但是这种影响主要体现在6月份, 7, 8月的O3水平分布还受东南亚地区深对流的影响. 这些结果表明亚洲夏季风反气旋强度和深对流的季节内变化可以显著影响亚洲夏季风期上对流层下平流层的化学分布.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号