首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
本文介绍了利用宽频带瑞雷波和勒夫波频散对欧亚大陆的地壳和上地幔进行层析成像系统研究的结果。多数周期的分辨率为 5°~ 7 5°。解释结果表明 ,塔里木盆地、四川盆地以及西藏高原的地壳显示低速异常 ;以乌拉尔山脉为界的东欧地台和西伯利亚地盾之下有延伸到上地幔的大陆根 ,它们以高速异常为特征 ,在几个较小的地盾或岩石圈地块之下也是高速异常的上地幔 ,如波罗的海地盾、塔里木地块、哈萨克地台、印度地盾、华南地块等。亚洲大陆东部边缘的上地幔具有突出的低速异常特征 ,西藏北部的上地幔是低速异常区。欧亚大陆地震面波层析成像(摘要)@Michael H.Ritzwoller @Anatoli L.Levshin  相似文献   

2.
普里兹湾位于南极洲东部大陆边缘,其深部地壳结构特征对认识白垩纪冈瓦纳古陆裂解和新生代大陆边缘形成具有重要意义.本文利用重磁、多道反射地震、声纳浮标折射地震和ODP钻井数据对普里兹湾海域的深部地壳结构进行了研究.研究结果显示,普里兹凹陷表现为典型的盆地负重力异常特征,其沉积基底较深,而在四夫人浅滩为高幅重力正异常,其沉积基底普遍抬升.在大陆架中部存在SW-NE向条带状基底的抬升,且呈朝NE向逐渐变深的趋势.在中大陆架外侧,均衡残余重力异常呈V字形负异常条带状分布,其两翼分别与四夫人浅滩和弗拉姆浅滩外的大陆坡相连.该异常带在大陆架中部向陆的偏移可能是由于古大陆架边缘的地形影响,推测其与普里兹冲积扇同属于洋陆过渡带向陆的部分,在重力模拟剖面表现为地壳向海逐渐减薄.普里兹冲积扇的地壳厚度较薄,平均为6 km,最薄处可达4.6 km,并且根据洋陆过渡带向海端的位置,推测可能属于接近洋壳厚度的过渡壳.重力异常分区的走向与兰伯特地堑在普里兹湾的构造走向基本一致,可能主要反映了二叠纪-三叠纪超级地幔柱对普里兹湾的裂谷作用的影响.该区域的自由空间重力异常和均衡残余异常均表现为超过100×10-5m/s2的高幅正异常特征,可能由位于大陆架边缘的巨厚沉积体负载在高强度岩石圈之上的区域挠曲均衡作用所导致,可能与该区域第二期裂谷期之后的沉积间断以及快速进积加厚的演化过程有关.普里兹湾磁力异常的走向与重力异常明显不同,大致可分为东北高幅正异常区和西南低幅异常区.重磁异常在走向上的差异反映高磁异常主要来源于岩浆作用形成的铁镁质火成岩的影响,并且岩浆作用的时代不同于基底隆升的时代,而可能形成于前寒武纪或者南极洲和印度板块裂谷期间(白垩纪).  相似文献   

3.
沿500km长的POLAR剖面,北波罗的地盾的大陆地壳由太古界和早元古界的一些地壳部分组成。在南部的Karelian区,上地壳是一些3.1—2.6Ga的太古界基底,上面覆盖着0—6km厚的中低粒度火山沉积物。这里,Central Lapland Complex的浅海盆地相岩石已经向北逆冲到karasjok-kittila绿岩带上。反复褶皱的覆盖岩层在穹窿和花岗岩顶点之间形成线形凹槽,47—48km厚的Karelian区的地壳属地盾型,被认为是盖层和花岗岩层下的最下冲断层位,它以低速层出现为特征。  相似文献   

4.
大陆碰撞动力学的三维数值模拟   总被引:10,自引:0,他引:10       下载免费PDF全文
用三维有限单元模型模拟了印度—亚洲大陆碰撞在板内的力学效应。结果表明,印度板块北东方向的推挤力作用在亚洲大陆内造成逆断层和走滑断层型的应力状态,以及北西走向的平行的弧形应力等值线。岩石圈下伏岩层的塑性变形导致地壳变形范围扩大,垂直位移的水平梯度减小,应力传递的水平距离显著增加。在相对坚硬的地盾型构造区边缘,出现应力梯度较高的特征。对比了刚体水平挤入和低角度俯冲这两种大陆聚合模型,计算结果表明低角度俯冲是较合理的模型  相似文献   

5.
中国大陆中上地壳剪切波速结构   总被引:2,自引:2,他引:2       下载免费PDF全文
冯梅  安美建 《地震学报》2007,29(4):337-347
为使已获得的中国大陆中上地壳结构更为可靠,本文搜集了很多对浅部结构分辨率较好的短周期面波资料. 与传统面波层析成像反演方法不同,本文在第二步由面波频散得到剪切波速的过程中不再对每个结点进行一维波速模型分别反演,而是直接将所有结点上的区域化频散转换成三维波速结构的线性化约束,实现了直接的三维反演. 检测板测试结果显示该方法可以得到理想的反演结果. 本文得到的波速模型显示,中国大陆中上地壳的速度分布存在明显的横向变化和分区特征. 较低的波速异常很好地勾勒出我国主要的沉积盆地,波速异常在不同深度上的变化在一定程度上反映了各盆地结晶基底的深度. 以东经95deg;为界,特提斯构造域西部具有明显的低速异常,而东部基本没有低速异常. 基于油气资源多存在于沉积层中,而沉积层表现低速异常,我们推测特提斯构造域西部油气前景比东部好. 另外, 由于特提斯构造域西部低速非常明显,这可能也说明了其地壳温度较高. 兴安造山带的低速异常可能也说明了其地壳温度较高. 20 km深度上鄂尔多斯盆地西侧的弱低速带, 很好地勾勒出中国大陆近似沿105deg;经线的强震带的走势.   相似文献   

6.
约50Ma前印度板块与欧亚板块开始碰撞之后,青藏高原发生了令人瞩目的整体隆升,成为晚第三纪以来亚洲乃至全球最为重要的地质事件,并使青藏高原成为大陆岩石圈变形最为强烈的地区之一,是全球学者研究大陆动力学乃至地球动力学的焦点和热点地区。由于印度板块与欧亚板块的碰撞以及组成青藏高原各地块向东和东南的挤出运动,位于青藏高原东边缘大凉山地块及其附近地区具有明显的高原和盆地之间的过渡带特征,地壳变形严重,地壳厚度变化剧烈,并且是重力梯度带和航磁异常明显的地区,也是(GPS)资料显示的地壳运动方向由东向东南发生转变的关键地段。本区不仅蕴藏有丰富的金属矿等矿产资源,也是我国强烈地震最为频繁的地区之一。  相似文献   

7.
华北不同构造块体地壳结构及其对比研究   总被引:91,自引:44,他引:47       下载免费PDF全文
华北古大陆块体经多期构造运动的改造使地壳构造具有明显的分块特征. 利用华北地区近30条、共约两万公里的深地震测深资料及成果,进一步研究华北各次级块体内部地壳细结构,对比分析各块体的结构差异. 根据不同的地壳结构特征,华北地壳可分为三大类:西部鄂尔多斯盆地地壳结构简单,基底结构完整,为稳定古大陆地壳;华北中部隆起区太行山及北部阴山、燕山隆起区地壳结构相对简单,中部地壳和下地壳局部区域轻微速度逆转,可能与该区域地壳增厚隆升的壳内介质解耦形变有关;华北东部裂陷盆地地壳结构复杂, 基底下陷、破碎,壳内介质松散、速度低,Moho上隆、地壳减薄,横向结构差异明显,显示了新生地壳构造特征. 在此基础上,综合研究、探讨了华北地壳分块构造以及与之相关的动力学演化.  相似文献   

8.
全球地壳厚度等值线图(图6)显示了地壳厚度的双峰标度。海洋盆地的地壳厚度为6~7km(不包括4~5km的水层),而大陆部分的平均厚度为39.7km。在海洋一大陆边缘的典型地壳厚度是30km,并向大陆内部逐渐增厚到40~45km。厚度超过50km的地壳局限在几个地区,包括中国西部的青  相似文献   

9.
青藏高原东部的Pn波层析成像研究   总被引:2,自引:0,他引:2       下载免费PDF全文
利用INDEPTH/ASCENT台阵和其它布设在青藏高原的流动宽频带地震仪数据,反演了青藏高原东部和周边区域的上地幔顶层Pn波速度以及台站延迟.研究区域的平均Pn波速度是8.1 km/s,略高于中国大陆的平均Pn波速度.低速区主要分布在羌塘地块的西部和松潘-甘孜地块,高温异常的岩石圈上地幔很可能是导致这一低速区的原因.班公-怒江缝合带东端区域的Pn波速度达到8.35 km/s,这一高速区可能与向北俯冲的印度板块(东端)有关.另一Pn波高速区分布在祁连山和昆仑山之间,主要由柴达木盆地和共和盆地及其周边地区,两个并不完全连续的高速异常区组成,它可能对应于特提斯洋闭合时北部增生的克拉通地体;在后来的欧亚板块与印度板块的碰撞中,这一地体有可能阻挡了青藏高原向北的生长.相对密集的台站提供了高分辨率的速度结构横向分布和地壳厚度变化.台站延迟显示青藏高原北部和东部的地壳存在显著的减薄--松潘-甘孜地块东北缘的地壳厚度仅为约50 km,而羌塘地块东部唐古拉山地壳最厚,达到75 km,这可能是由于印度-欧亚板块碰撞引起的羌塘地块内部变形增厚所致.  相似文献   

10.
印度地台西北部的Cambay裂谷盆地与该盆地外围区相比较具有高布格重力异常值。地震结果表明,存在一层很厚的沉积物,它将产生有50—60mGal的重力低。沿着盆地的地质走向的深地震测深结果表明,在23—25km深度上速度为7.3km/s,接着是31—33km深度的莫霍面。穿过Cambay盆地的地震结构的二维密度模拟表明,地壳在盆地下方较薄,并且与高密度的下地壳有关。比较一下穿越Cambay盆地的重力异常和穿越古生代Aravalli/Delhi走向的重力异常,认为两区内的地壳者在变薄。这两区的两边莫霍面迅速加深。  相似文献   

11.
Crustal structures around the Yamato Basin in the southeastern Sea of Japan, inferred from recent ocean bottom seismography (OBS) and active-source seismological studies, are reviewed to elucidate various stages of crustal modification involved from rifting in the crust of the surrounding continental arc to the production of oceanic crust in the Yamato Basin of the back-arc basin. The northern, central, and southern areas of the Yamato Basin have crustal thicknesses of approximately 12–16 km, and lowermost crusts with P-wave velocities greater than 7.2 km/s. Very few units have P-wave velocities in the range 5.4–6.0 km/s, which corresponds to the continental upper crust. These findings, combined with previous geochemical analysis of basalt samples, are interpreted to indicate that a thick oceanic crust has been formed in these areas of the basin, and that this oceanic crust has been underplated by mantle-derived magma. In the central Yamato Basin, the original continental crust has been fully breached and oceanic crust has been formed. Conversely, the presence of a unit corresponding to the continental upper crust and the absence of a high-velocity part in the lower crust implies that the southwestern edge of the Yamato Basin has a rifted crust without significant intrusion. The Oki Trough has a crust that is 17–19 km thick with a high-velocity lower crust and a unit corresponding to the continental upper crust. The formation of the Oki Trough resulted from rifting with magmatic intrusion and/or underplating. We interpret these variations in the crustal characteristics of the Yamato Basin area as reflecting various instances of crustal modification by thinning and magmatic intrusion due to back-arc extension, resulting in the production of a thick oceanic crust in the basin.  相似文献   

12.
印度-欧亚碰撞与洋-陆碰撞的差异   总被引:1,自引:0,他引:1       下载免费PDF全文
观测的证据充分表明,印度——欧亚的缝合带雅鲁藏布江上存在自南向北的地壳俯冲带,它穿过莫霍面,深度大约达到100 km. 喜马拉雅中可能存在多重的地壳俯冲. 它们有别于海洋碰撞时所产生的整个岩石圈俯冲. 作者观测到雅鲁藏布江以北上地幔的板片构造,它可以解释为印度向欧亚俯冲时上地幔岩石圈的痕迹. 它们说明与洋——陆的俯冲不同,印度向欧亚俯冲时,地壳与上地幔岩石圈出现拆层现象. 综合现有的地壳上地幔构造,显示在不同地质年代中,印度与欧亚之间产生自南向北以及自北向南相反方向的俯冲,而且俯冲带周围出现某些速度异常区.   相似文献   

13.
Ample observational evidence shows that there is a northward crustal subduction zone underneath the Yarlung Zangbo suture between India and Eurasia. It penetrates Moho to a depth of about 100 km. There are probably multiple such crustal subductions under the Himalayas. They are different from lithosphere subduction during oceanic collisions. The detected slabs in the upper mantle north of the Yarlung Zangbo suture can be interpreted as remains of the Indian Plate’s mantle lithosphere. In contrary to ocean-continent subduction, the mantle lithosphere is delaminated from the crust as the Indian Plate subducts underneath Eurasia. Existing structural images of the crust and upper mantle of the Tibetan Plateau reveal that there were both northward and southward subductions over different geological periods, causing some seismic velocity anomalies around those subduction zones.  相似文献   

14.
重-磁-震联合反演是获取地壳结构的重要方法.此次研究,我们主要基于全球最新的水深、重磁异常、沉积物厚度等数据,结合实测地震数据和前人研究成果,分析了中国海-西太平洋地区的莫霍面展布特征,并利用重磁震联合反演方法获得了跨越中国海-西太平洋典型剖面的地壳结构和异常体分布,揭示了陆壳到洋壳的典型变化规律.结果表明,从浙江地区到马里亚纳俯冲带,地壳结构大致呈现由厚到薄、由老到新、由复杂到简单的特征.浙江地区(扬子块体和华夏块体)地壳结构复杂,三层结构明显,地壳内断裂带发育,并伴有广泛的岩浆侵入;东海地区莫霍面起伏剧烈,地壳厚度变化较大,冲绳海槽地壳明显减薄,是其过渡壳性质的体现;西菲律宾海盆、九州-帕劳海脊、帕里西维拉海盆、马里亚纳俯冲带等构造单元地壳结构相对简单,二层结构明显.其中,西菲律宾海盆和帕里西维拉海盆地壳内部磁异常变化较为剧烈,海盆扩张过程中形成的磁异常体分布广泛,地壳厚度(5~8 km)明显小于陆壳;九州-帕劳海脊地壳厚度可达~20 km,缺失中地壳,表现为岛弧地壳结构;同源的西马里亚纳岛弧和东马里亚纳火山弧地壳结构相似,浅层磁异常体分布广泛,西马里亚纳岛弧地壳厚度(~17 km)略小于东马里亚纳火山弧(~20 km),体现了裂离的不对称性;马里亚纳海槽具有正常的洋壳结构(~7 km),但扩张中心未发生明显破裂.对比各构造单元地壳结构的异同点,我们进一步认识到,陆壳与洋壳之间不是孤立的,陆壳可能会演化出洋壳的结构或组分,板块的演化总是处于动态循环过程中.此研究加深了我们对中国海-西太平洋深部构造特征的整体理解,促进了我们对大陆边缘演化与板块相互作用的认识,深化了我国管辖海域及邻近地区的基础地质调查.  相似文献   

15.
Introduction Major tectonic activities occur in collisions zones between plates or intra-plate continental blocks. Therefore, it is significant to investigate collision processes. We know that orogenic and seismic belts in plate margins are closely relate…  相似文献   

16.
洋中脊及邻区洋盆的洋壳厚度能很好地反映区域岩浆补给特征,对于研究洋中脊内部及周缘岩浆活动和构造演化过程具有很好的指示意义.西北印度洋中脊作为典型的慢速扩张洋中脊,其扩张过程与周缘构造活动具有很强的时空关系.本文利用剩余地幔布格重力异常反演了西北印度洋洋壳厚度,由此分析区域内洋壳厚度分布和岩浆补给特征.研究发现,西北印度洋洋壳平均厚度为7.8 km,受区域构造背景影响厚度变化较大.根据洋壳厚度的统计学分布特征,将区域内洋壳分为三种类型:薄洋壳(小于4.5 km)、正常洋壳(4.5~6.5 km)和厚洋壳(大于6.5 km),根据西北印度洋中脊周缘(~40 Ma内)洋壳厚度变化特征可将洋中脊划分为5段,发现洋中脊洋壳厚度受区域构造活动和地幔温度所控制,其中薄洋壳主要受转换断层影响造成区域洋壳厚度减薄,而厚洋壳主要受地幔温度和地幔柱作用影响,并在S4洋中脊段显示出较强的热点与洋中脊相互作用,同时微陆块的裂解和漂移也可能是导致洋壳厚度差异的原因之一.  相似文献   

17.
Ladakh (India) provides a complete geological section through the northwestern part of the Himalayas from Kashmir to Tibet. Within this section the magmatic, metamorphic and geotectonic evolution of the northern Himalayan orogeny has been studied using petrographic, geochemical and isotope analytical techniques.The beginning of the Himalayan cycle was marked by large basaltic extrusions (Panjal Trap) of Permian to Lower Triassic age at the “northern” margin of the Gondwana continent (Indian Shield). These continental type tholeiitic basalts were followed by a more alkaline volcanism within the Triassic to Jurassic Lamayuru unit of the Gondwana continental margin.Lower Jurassic to Cretaceous oceanic crust and sediments (ophiolitic mélange s.s.) accompany the Triassic to Cretaceous flysch deposits within the Indus-Tsangpo suture zone, the major structural divide between the Indian Shield (High Himalaya) and the Tibetan Platform. So far, no relic of Paleozoic oceanic crust has been found.Subduction of the Tethyan oceanic crust during Upper Jurassic and Cretaceous time produced an island arc represented by tholeiitic and calc-alkaline volcanic rock series (Dras volcanics) and related intrusives accompanied by volcaniclastic flysch deposits towards the Tibetan continental margin.Subsequent to the subduction of oceanic crust, large volumes of calc-alkaline plutons (Trans-Himalayan or Kangdese plutons) intruded the Tibetan continental margin over a distance of 2000 km and partly the Dras island arc in the Ladakh region.The collision of the Indian Shield and Tibetan Platform started during the middle to upper Eocene and caused large-scale, still active intracrustal thrusting as well as the piling up of the Himalayan nappes. The tectonically highest of these nappes is built up of oceanic crust and huge slices of peridotitic oceanic mantle (Spongtang klippe).In the High Himalayas the tectonic activity was accompanied and outlasted by a Barrovian-type metamorphism that affected Triassic sediments of the Kashmir-Nun-Kun synclinorium up to kyanite/staurolite grade and the deeper-seated units up to sillimanite grade. Cooling ages of micas are around 20 m.y. (muscovite) and 13 m.y. (biotite). Towards the Indus-Tsangpo suture zone metamorphism decreases with no obvious discontinuity through greenschist, prehnite-pumpellyite to zeolite grade. Remnants of possibly an Eo-Himalayan blueschist metamorphism have been found within thrust zones accompanying ophiolitic mélange in the suture zone.  相似文献   

18.
南海北部陆缘东部的地壳结构   总被引:56,自引:7,他引:49       下载免费PDF全文
本文利用中、美联合调查南海海洋地质项目所采集的双船地震扩展排列剖面资料,研究了南海北部陆缘的地壳结构.其特征为:从陆架到深海平原,地壳呈阶梯状减薄,地壳厚度分别为26-28km,23-24km,13-15km,以及南海洋盆中5-7km厚的洋壳,反映了地壳在新生代早期是幕式拉张的.地壳底部存在高速地壳层,地震波速度为7.1-7.4km/s.它是在地壳被拉张后,上地幔熔融物质上涌到地壳底部冷却而形成的.  相似文献   

19.
西南印度洋岩浆补给特征研究:来自洋壳厚度的证据   总被引:1,自引:0,他引:1       下载免费PDF全文
西南印度洋中脊为典型的超慢速扩张洋中脊,其岩浆补给具有不均匀分布的特征.洋壳厚度是洋中脊和热点岩浆补给的综合反映,因此反演洋壳厚度是研究大尺度洋中脊和洋盆岩浆补给过程的一种有效方法.本文通过对全球公开的自由空气重力异常、水深、沉积物厚度和洋壳年龄数据处理得到剩余地幔布格重力异常,并反演西南印度洋地区洋壳厚度,定量地分析了西南印度洋的洋壳厚度分布及其岩浆补给特征.研究发现,西南印度洋洋壳平均厚度7.5 km,但变化较大,标准差可达3.5 km,洋壳厚度的频率分布具有双峰式的混合偏态分布特征.通过分离双峰统计的结果,将西南印度洋洋壳厚度分为0~4.8 km的薄洋壳、4.8~9.8 km的正常洋壳和9.8~24 km的厚洋壳三种类型,洋中脊地区按洋壳厚度变化特征可划分为7个洋脊段.西南印度洋地区薄洋壳受转换断层控制明显,转换断层位移量越大,引起的洋壳减薄厚度越大,减薄范围与转换断层位移量不存在明显相关性.厚洋壳主要受控于该区众多的热点活动,其中布维热点、马里昂热点和克洛泽热点的影响范围分别约340 km,550 km和900 km.Andrew Bain转换断层北部外角形成厚的洋壳,具有与快速扩张洋中脊相似的转换断层厚洋壳特征.  相似文献   

20.
南海中部和北部地壳性质的探讨   总被引:5,自引:1,他引:5       下载免费PDF全文
本文主要根据1980年中、美联合调查南海时所获得的声纳浮标测量结果,探讨中国南海中部和北部各个地貌单元上的地壳结构、性质以及新生代的发展简史。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号