首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Clay Minerals in Sediments of the Arctic Seas   总被引:2,自引:0,他引:2  
The distribution of clay minerals in recent sediments on the Arctic shelf off the Eurasian and North American continents is considered. Prominence is given to the East Siberian and Laptev seas. The illite belt established on the basis of the composition of clay minerals in seven Arctic seas stretches from the Beaufort Sea to the White Sea and reveals a mineralogical zonality. The belt can be devided into smectite and chlorite provinces. Factors governing the formation of the Arctic illite belt and features of the distribution of individual clay minerals are discussed. The identification of the illite belt in sediments on the Arctic shelf complements the system of planetary latitudinal zones of clay minerals formulated by previous researchers.  相似文献   

2.
The intent of this paper is to contribute to a larger discussion of the history of geographical thought and its consequences by gently drawing attention to the Arctic as a place where alternative visions of nature, home and horizon persist; by contrasting many of our unchallenged geographical assumptions with what might be the logical consequence had we started in a different place, under different conditions and with a different perspective. It is never easy to comprehend the perspective of another and it is unwise to presume that one has indeed done so. For this reason, while this paper explores the dichotomy between the geographic perspectives of the Arctic, particularly those of the Inuit who know it best, and those of the Western Europeans who have literally laid claim to the Arctic geography, it does not purport to be anthropological or ethnographical. Rather it is an attempt to sketch the intellectual landscapes implicit in the contrast between Inuit and European approaches to the Arctic.  相似文献   

3.
The modern views on the structure of the oceanic and continental crust are discussed. The presented geological-geophysical information on the deep structure of the Earth’s crust of the Lomonosov Ridge, Mendeleev Rise, and Alpha Ridge, which make up the province of the Central Arctic Uplifts in the Arctic Ocean, is based on CMP, seismic-reflection, and seismic-refraction data obtained by Russian and Western researchers along geotraverses across the Amerasia Basin. It is established that the crust thickness beneath the Central Arctic Uplifts ranges from 22 to 40 km. Comparison of the obtained velocity sections with standard crust sections of different morphostructures in the World Ocean that are underlain by the typical oceanic crust demonstrates their difference with respect to the crustal structure and to the thickness of the entire crust and its individual layers. Within the continental crust, the supercritical waves reflected from the upper mantle surface play the dominant role. Their amplitude exceeds that of head and refracted waves by one to two orders of magnitude. In contrast, the refracted and, probably, interferential head waves are dominant within the oceanic crust. The Moho discontinuity is the only first-order boundary. In the consolidated oceanic crust, such boundaries are not known. The similarity in the velocity characteristics of the crust of the Alpha Ridge and Mendeleev Rise, on the one hand, and the continental crust beneath the Lomonosov Ridge, on the other, gives grounds to state that the crust of the Mendeleev Rise and Alpha Ridge belongs to the continental type. The interference mosaic pattern of the anomalous magnetic field of the Central Arctic Uplifts is an additional argument in favor of this statement. Such patterns are typical of the continental crust with intense intraplate volcanism. Interpretation of seismic crustal sections of the Central Arctic Uplifts and their comparison with allowance for characteristic features of the continental and oceanic crust indicate that the Earth’s crust of the uplifts has the continental structure.  相似文献   

4.
北极快速增暖背景下冰冻圈变化及其影响研究综述   总被引:1,自引:1,他引:0  
北极具有独特的地理位置和战略地位,是当前全球变化研究的热点区域之一。北极增暖是全球平均值的两倍以上,被称为“北极放大”现象。在北极快速增暖背景下,冰冻圈尤其是海冰显著萎缩,对北极乃至中纬度天气气候产生深远影响。对北极快速增暖背景下冰冻圈主要要素(包括海冰、冰盖、冰川、积雪和冻土)时空变化特征及未来预估进行了综述,同时总结了海冰变化对北极气候系统(大气圈、水圈、岩石圈和生物圈)以及中纬度极端天气气候事件的影响。指出当前北极冰冻圈变化研究受观测资料缺乏及模式模拟不确定等问题限制,其机理及对中纬度天气气候影响机制仍存在争议。未来还需要加强北极地区的综合监测,提高模式对北极气候系统物理过程的模拟能力,进行多模式、多数据、多方法的集成研究。  相似文献   

5.
The soil cover of the Arctic zone of Russia is ~330 million hectares. Permafrost restricts the thickness of the active layer but does not prevent the formation of significant diversity of soils and soil complexes, including Al–Fe humic and peat soils, gleysols, and others. The available data on soil resources are sufficient for organization and participation of Russia in scientific–practical international programs. At the same time, specific soil related targets and project tasks may require additional study of soils of the Arctic region.  相似文献   

6.
The Arctic Ocean Estuary   总被引:1,自引:0,他引:1  
Large freshwater contributions to the Arctic Ocean from a variety of sources combine in what is, by global standards, a remarkably small ocean basin. Indeed, the Arctic Ocean receives ∼11% of global river discharge while accounting for only ∼1% of global ocean volume. As a consequence, estuarine gradients are a defining feature not only near-shore, but throughout the Arctic Ocean. Sea-ice dynamics also play a pivotal role in the salinity regime, adding salt to the underlying water during ice formation and releasing fresh water during ice thaw. Our understanding of physical–chemical–biological interactions within this complex system is rapidly advancing. However, much of the estuarine research to date has focused on summer, open water conditions. Furthermore, our current conceptual model for Arctic estuaries is primarily based on studies of a few major river inflows. Future advancement of estuarine research in the Arctic requires concerted seasonal coverage as well as a commitment to working within a broader range of systems. With clear signals of climate change occurring in the Arctic and greater changes anticipated in the future, there is good reason to accelerate estuarine research efforts in the region. In particular, elucidating estuarine dynamics across the near-shore to ocean-wide domains is vital for understanding potential climate impacts on local ecosystems as well as broader climate feedbacks associated with storage and release of fresh water and carbon.  相似文献   

7.
A numerical ice-sheet model was used to reconstruct the Late Weichselian glaciation of the Eurasian High Arctic, between Franz Josef Land and Severnaya Zemlya. An ice sheet was developed over the entire Eurasian High Arctic so that ice flow from the central Barents and Kara seas toward the northern Russian Arctic could be accounted for. An inverse approach to modeling was utilized, where ice-sheet results were forced to be compatible with geological information indicating ice-free conditions over the Taymyr Peninsula during the Late Weichselian. The model indicates complete glaciation of the Barents and Kara seas and predicts a “maximum-sized” ice sheet for the Late Weichselian Russian High Arctic. In this scenario, full-glacial conditions are characterized by a 1500-m-thick ice mass over the Barents Sea, from which ice flowed to the north and west within several bathymetric troughs as large ice streams. In contrast to this reconstruction, a “minimum” model of glaciation involves restricted glaciation in the Kara Sea, where the ice thickness is only 300 m in the south and which is free of ice in the north across Severnaya Zemlya. Our maximum reconstruction is compatible with geological information that indicates complete glaciation of the Barents Sea. However, geological data from Severnaya Zemlya suggest our minimum model is more relevant further east. This, in turn, implies a strong paleoclimatic gradient to colder and drier conditions eastward across the Eurasian Arctic during the Late Weichselian.  相似文献   

8.
Methane(CH4) is an important greenhouse gas, CH4 concentrations in atmosphere hve increased by 2-3 times since the Industrial Revolution. Considering the huge CH4 storage in the Arctic Ocean, the fast increasing flux and their consequences are attracting more and more attention. This paper summarized the advances in the study of CH4 in the Arctic Ocean, especially the distribution pattern and air-sea flux and its biogeochemical cycle in the Arctic Ocean. It also presented the research prospect for the future.  相似文献   

9.
宁宝英 《冰川冻土》2021,43(1):107-123
在全球气候持续变暖背景下,北极地区冻土退化、冰川退缩、海冰减少等导致了一系列的生态环境问题,同时也使得资源勘探开发与国际新航道开通成为可能,北极地区的重要性日益凸显.依据2009—2019年6月期间有关北极研究的408篇ESI高影响论文,对发文量、主要作者、研究机构、国家、研究方向等字段进行分析,从自然科学角度,宏观而...  相似文献   

10.
During geodynamic reconstruction of the Late Mezozoic-Cenozoic evolution of the Arctic Ocean, a problem arises: did this ocean originate as a legacy structure of ancient basins, or did it evolve independently? Solution of this problem requires finding indicators of older oceanic basins within the limits of the Arctic Region. The Arctic Region has structural-material complexes of several ancient oceans, namely, Mesoproterozoic, Late Neoproterozoic, Paleozoic (Caledonian and Hercynian), Middle Paleozoic-Late Jurassic, and those of the Arctic Ocean, including the Late Jurassic-Early Cretaceous Canadian, the Late Cretaceous-Paleocene Podvodnikov-Makarov, and the Cenozoic Eurasian basins. The appearances of all these oceans were determined by a complex of global geodynamical factors, which were principally changed in time, and, as a result of this, location and configuration of newly opened oceans, as well as ones of adjacent continents, which varied from stage to stage. By the end of the Paleozoic, fragments of the crust corresponding to Precambrian and Caledonian oceans were transported during plate-tectonic motions from southern and near equatorial latitudes to moderately high and arctic ones, and, finally, became parts of the Pangea II supercontinent. The Arctic Ocean that appeared after the Pangea II breakup (being a part of the Atlantic Ocean) has no direct either genetic or spatial relation with more ancient oceans.  相似文献   

11.
Tectonics and petroleum potential of the underexplored East Arctic area have been investigated as part of an IPY (International Polar Year) project. The present-day scenery of the area began forming with opening of the Amerasia Ocean (Canada and Podvodnikov—Makarov Basins) in the Late Jurassic—Early Cretaceous and with Cretaceous—Cenozoic rifting related to spreading in the Eurasia Basin. The opening of oceans produced pull-apart and rift basins along continental slopes and shelves of the present-day Arctic fringing seas, which lie on a basement consisting of fragments of the Hyperborean craton and Early Paleozoic to Middle Cretaceous orogens. By analogy with basins of the Arctic and Atlantic passive margins, the Cretaceous—Cenozoic shelf and continental slope basins may be expected to have high petroleum potential, with oil and gas accumulations in their sediments and basement.  相似文献   

12.
Microplastics (MPs) pollution has become a serious environmental issue of growing global concern due to the increasing plastic production and usage. Under climate warming, the cryosphere, defined as the part of Earth’s layer characterized by the low temperatures and the presence of frozen water, has been experiencing significant changes. The Arctic cryosphere (e.g., sea ice, snow cover, Greenland ice sheet, permafrost) can store and release pollutants into environments, making Arctic an important temporal sink and source of MPs. Here, we summarized the distributions of MPs in Arctic snow, sea ice, seawater, rivers, and sediments, to illustrate their potential sources, transport pathways, storage and release, and possible effects in this sentinel region. Items concentrations of MPs in snow and ice varied about 1–6 orders of magnitude in different regions, which were mostly attributed to the different sampling and measurement methods, and potential sources of MPs. MPs concentrations from Arctic seawater, river/lake water, and sediments also fluctuated largely, ranging from several items of per unit to >40,000 items m?3, 100 items m?3, and 10,000 items kg?1 dw, respectively. Arctic land snow cover can be a temporal storage of MPs, with MPs deposition flux of about (4.9–14.26) × 108 items km?2 yr?1. MPs transported by rivers to Arctic ocean was estimated to be approximately 8–48 ton/yr, with discharge flux of MPs at about (1.65–9.35) × 108 items/s. Average storage of MPs in sea ice was estimated to be about 6.1×1018 items, with annual release of about 5.1×1018 items. Atmospheric transport of MPs from long-distance terrestrial sources contributed significantly to MPs deposition in Arctic land snow cover, sea ice and oceanic surface waters. Arctic Great Rivers can flow MPs into the Arctic Ocean. Sea ice can temporally store, transport and then release MPs in the surrounded environment. Ocean currents from the Atlantic brought high concentrations of MPs into the Arctic. However, there existed large uncertainties of estimation on the storage and release of MPs in Arctic cryosphere owing to the hypothesis of average MPs concentrations. Meanwhile, representatives of MPs data across the large Arctic region should be mutually verified with in situ observations and modeling. Therefore, we suggested that systematic monitoring MPs in the Arctic cryosphere, potential threats on Arctic ecosystems, and the carbon cycle under increasing Arctic warming, are urgently needed to be studied in future.  相似文献   

13.
Review on Researches of Legacy POPs and Emerging POPs in the Arctic Regions   总被引:3,自引:0,他引:3  
The specific geographic location and natural conditions of the Arctic region play a significant role in the global climate change. As a result of perennial low temperature, simple ecological structure, and fragile ecosystem and weak stability in the Arctic, Persistent Organic Pollutants (POPs) accumulating from the region of middle and low latitudes may cause tremendous pressure in the arctic ecological environment. Therefore, the research of POPs in the Arctic region is not only conducive to more in-depth understanding of POPs distribution and transformation process in the global range, but to reasonably assess the harm of human activities on the arctic ecological environment. Thus, in the past 40 years, especially after nine new kinds of emerging organic contaminants being added to the list of Stockholm Convention in 2009, more and more scientific community and general public have pay attention to the research of POPs in the Arctic region. At present, the understanding of legacy POPs in the Arctic is limited, and the research of emerging POPs is in the initial stage. This paper aimed to summarize some conclusions and implications of the research, and focused on the occurrence level, historical evolution, bioaccumulation and source of POPs in atmosphere, waters, sediments and organisms in the Arctic region. Finally, the future changes and key scientific problems of POPs in the Arctic region were proposed.  相似文献   

14.
Hafnium isotopes in Arctic Ocean water   总被引:1,自引:0,他引:1  
The first isotopic compositions of dissolved hafnium in seawater from across the Arctic Ocean are reported. Most samples from the four sub-basins of the Arctic Ocean have values within error of an average of εHf = +0.8. Combined Hf-Nd isotope compositions do not fall on the well-established positive correlation for mantle and crustal rocks. Instead, Arctic waters have Hf that is more radiogenic than that typically found in rocks with similar Nd isotope compositions, a feature previously found in ferromanganese crusts and waters from the Pacific Ocean. Arctic seawater samples generally fall on the lower part of the ferromanganese crust array, reflecting influences of inputs from Arctic rivers and interactions of shelf waters with underlying sediments. Arctic rivers have much higher Hf concentrations (7-30 pM) than Arctic seawater (0.36-4.2 pM). Water from the Mackenzie River has the least radiogenic Hf, with εHf = −7.1 ± 1.7, and plots furthest away from the ferromanganese crust array, while waters from the Ob, Yenisey, and Lena Rivers have values that are indistinguishable from most Arctic waters. In the Amundsen, Makarov, and Canada basins, Hf concentrations are highest at the surface and lowest in the deeper waters, reflecting the influences of riverine inputs and of waters that have flowed over the extensive Siberian continental shelves and have Nd and Hf characteristics that reflect water-sediment interactions. This is in contrast to the relatively low near surface Hf concentrations reported for locations elsewhere. The Pacific water layer in the Canada Basin exhibits the highest value of εHf = +6.8 ± 1.8, reflecting the Hf isotopic composition of waters entering the Arctic from the Pacific Ocean. Mixing relationships indicate that a substantial fraction of the Hf in the Mackenzie River is lost during estuarine mixing; the behaviour of Hf from other rivers is less constrained.  相似文献   

15.
The paper concerns issues of geology and metallogeny of the Russian Arctic, namely, (i) limits of the Russian oceanic Arctic in the context of the continental origin of territories under jurisdictional dispute; (ii) geology and tectonic history of the region; (iii) distribution of mineral deposits; (iv) outlook for diamond, PGE, Ni, rare metals, gold, and bauxite resources development.Advanced diamond exploration and development can be expected proceeding from geology of new potentially diamondiferous areas, the Phanerozoic history and composition of lithospheric mantle beneath the Siberian craton which were controlled by the Siberian superplume at the Permian–Triassic boundary, and from new exploration approaches adapted to the prospecting conditions of Arctic Siberia.According to the available knowledge of Ni and PGE mineralization in the Noril’sk region, it is reasonable to develop depleted ores and tailings (mining dumps at the Noril’sk and Talnakh deposits). However, the key solution consists in new large discoveries within the Dzheltula and Kharaelakh volcanic and plutonic complexes.Gold production enhancement may be associated with black shale-hosted Au-As mineralization in the northeastern Russian Arctic, but the problem is in the lack of efficient and environmentally safe dressing technologies for these ores.Most of rare metals in the area (Nb, Sc, Y, and other elements) are stored in the giant Tomtor field, which has a complex structure and history. A special technology designed for the Tomtor ores ensures more than 60% extraction of ore components.Good prospects for the bauxite potential are expected from the Timan district where bauxite may occur in Vendian and Early Carboniferous formations.It is suggested to include the development of the Russian Arctic as a priority target in the national economic strategy.  相似文献   

16.
The Vendian (Baikalian), Late Devonian (Ellesmerian), and Mid-Cretaceous (Brookian) orogenies were three cardinal events in the history of formation and transformation of the continental crust in the eastern Arctic region. The epi-Baikalian Hyperborean Craton was formed by the end of the Vendian (660–550 Ma), when the Archean-Proterozoic Hyperborean continental block was built up by the Baikalian orogenic belt and concomitant collision granitoids. As judged from the localization of deepwater facies, the Early Paleozoic ocean occupied the western part of the Canadian Arctic Archipelago, western Alaska, and the southern framework of the Canada and Podvodnikov basins and was connected with the Iapetus ocean. The closure of the Early Paleozoic Arctic basins is recorded in two surfaces of structural unconformities corresponding to the pre-Middle Devonian Scandian orogenic phase and the Late Devonian Ellesmerian Orogeny; each tectonic phase was accompanied by dislocations and metamorphism. The Ellesmerian collision was crucial in the Caledonian tectogenesis. The widespread Late Devonian-Mississippian rifting probably was a reflection of postorogenic relaxation. As a result, the vast epi-Caledonian continental plate named Euramerica, or Laurussia, was formed at the Devonian-Carboniferous boundary. The East Arctic segment of this plate is considered in this paper. In the Devonian, the Angayucham ocean, which was connected with the Paleoasian and Uralian oceans [62], separated this plate from the Siberian continent. The South Anyui Basin most likely was a part of this Paleozoic oceanic space. The shelf sedimentation on the epi-Caledonian plate in the Carboniferous and Permian was followed by subsidence and initial rifting in the Triassic and Jurassic, which further gave way to the late Neocomian-early Albian spreading in the Canada Basin that detached the Chukchi Peninsula-Alaska microplate from the continental plate [25]. The collision of this microplate with the Siberian continent led to the closure of the South Anyui-Angayucham ocean and the development of the Mid-Cretaceous New Siberian-Chukchi-Brooks Orogenic System that comprised the back Chukchi Zone as a hinterland and the frontal New Siberian-Wrangel-Herald-Lisburne-Brooks Thrust Zone as a foreland; the basins coeval with thrusting adjoined the foreland. Collision started in the Late Jurassic; however, the peak of the orogenic stage fell on the interval 125–112 Ma, when ophiolites had been obducted on the margin of the Chukchi Peninsula-Alaska microplate along with folding and thrusting accompanied by an increase in the crust’s thickness, amphibolite-facies metamorphism, and growth of granite-gneiss domes. The magmatic diapir of the De Long Arch that grew within the continental plate in the Mid-Cretaceous reflected a global pulse of the lower mantle upwelling that coincided with the maximum opening of the Canada Basin. The present-day appearance of the eastern Arctic region arose in the Late Mesozoic and Cenozoic owing to the opening of the Amerasia and Eurasia oceans. Sedimentary basins of various ages and origins—including the Late Devonian-Early Carboniferous grabens, the spatially coinciding Late Jurassic-Early Cretaceous rifts related to the opening of the Canada Basin, the syncollision basins in front of the growing orogen, and the Cretaceous-Cenozoic basins coeval with strike-slip faulting and rifting at the final stages of orogenic compression and during the opening of the Eurasia ocean were telescoped on sea shelves.  相似文献   

17.
In this paper the characteristics of surface radiative fluxes and cloud-radiative forcing are reviewed with a focus on the Arctic. Three aspects are addressed, including (i) changes in radiation flux over the global surface; (ii) characteristics of surface fluxes in the Arctic; and (iii) characteristics of cloud-radiative forcing in the Arctic. The clouds not only significantly reduce the peak summer radiative heating of the surface but also reduce the wintertime radiative cooling at the surface in higher latitudes. The downward longwave fluxes dominates the incident radiative fluxes in the Arctic during most of the year. Incoming shortwave fluxes are negligible during late fall, winter and early spring, and even during the midsummer the incoming shortwave fluxes are only slightly greater than the downward longwave fluxes. The total net surface radiative flux is negative for most of the year and only positive during midsummer in the Arctic. The global net cloud-radiative forcing is negative, but the cloud-radiative forcing is positive in the Arctic, showing a warming effect, except for a short period in mid-summer. Positive cloud-radiative forcing in the Arctic is attributed to the presence of snow and ice with high albedo and the absence of solar radiation during the polar night.  相似文献   

18.
The particularities of the current tectonic structure of the Russian part of the Arctic region are discussed with the division into the Barents–Kara and Laptev–Chukchi continental margins. We demonstrate new geological data for the key structures of the Arctic, which are analyzed with consideration of new geophysical data (gravitational and magnetic), including first seismic tomography models for the Arctic. Special attention is given to the New Siberian Islands block, which includes the De Long Islands, where field work took place in 2011. Based on the analysis of the tectonic structure of key units, of new geological and geophysical information and our paleomagnetic data for these units, we considered a series of paleogeodynamic reconstructions for the arctic structures from Late Precambrian to Late Paleozoic. This paper develops the ideas of L.P. Zonenshain and L.M. Natapov on the Precambrian Arctida paleocontinent. We consider its evolution during the Late Precambrian and the entire Paleozoic and conclude that the blocks that parted in the Late Precambrian (Svalbard, Kara, New Siberian, etc.) formed a Late Paleozoic subcontinent, Arctida II, which again “sutured” the continental masses of Laurentia, Siberia, and Baltica, this time, within Pangea.  相似文献   

19.
从第三极到北极: 积雪变化研究进展   总被引:5,自引:5,他引:0  
在全球气候变化背景下, 第三极和北极地区积雪是地表最活跃的自然要素之一, 其动态变化对气候环境和人类生活产生重要影响。通过回顾第三极和北极积雪研究进展, 阐述了降雪、 积雪范围、 积雪日数、 积雪深度和雪水当量在第三极和北极地区的时空分布特征和变化趋势。结果表明: 近50年, 特别是进入21世纪以来, 第三极和北极地区降雪比率均呈下降趋势; 积雪范围、 积雪日数、 积雪深度、 雪水当量总体均呈减小趋势, 融雪首日有所提前。同时就积雪变化对生态系统与气候系统的影响进行了论述, 评估了积雪的反馈作用。通过总结第三极和北极积雪变化研究进展, 凝练研究中存在的不足和未来发展趋势, 为提升积雪对气候变化及经济社会发展影响的认识提供重要科学支撑。  相似文献   

20.
北极海冰减退引起的北极放大机理与全球气候效应   总被引:5,自引:1,他引:4  
自20世纪70年代以来,全球气温持续增高,对北极产生了深刻的影响。21世纪以来,北极的气温变化是全球平均水平的2倍,被称为"北极放大"现象。北极海冰覆盖范围呈不断减小的趋势,2012年北极海冰已经不足原来的40%,如此大幅度的减退是过去1 450年以来独有的现象。科学家预测,不久的将来,将会出现夏季无冰的北冰洋。全球变暖背景下北极内部发生的正反馈过程是北极放大现象的关键,不仅使极区的气候发生显著变化,而且对全球气候产生非常显著的影响,导致很多极端天气气候现象的发生。北极科学的重要使命之一是揭示这些正反馈过程背后的机理。北极放大有关的重大科学问题主要与气—冰—海相互作用有关,海冰是北极放大中最活跃的因素,要明确海冰结构的变化,充分考虑融池、侧向融化、积雪和海冰漂移等因素,将海冰热力学特性的改变定量表达出来。海洋是北极变化获取能量的关键因素,是太阳能的转换器和储存器,要认识海洋热通量背后的能量分配问题,即能量储存与释放的联系机理,认识淡水和跃层结构变化对海气耦合的影响。全面认识北极气候系统的变化是研究北极放大的最终目的,要揭示气—冰—海相互作用过程、北极海洋与大气之间反馈的机理、北极变化过程中的气旋和阻塞过程、北极云雾对北极变化的影响。在对北极海冰、海洋和气候深入研究的基础上,重点研究极地涡旋罗斯贝波的核心作用,以及罗斯贝波变异的物理过程,深入研究北极变化对我国气候影响的主要渠道、关键过程和机理。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号