首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seagrass ecosystems are attracting attention as potentially important tools for carbon (C) sequestration, comparable to those terrestrial and aquatic ecosystems already incorporated into climate change mitigation frameworks. Despite the relatively low C stocks in living biomass, the soil organic carbon pools beneath seagrass meadows can be substantial. We tested the relationship between soil C storage and seagrass community biomass, productivity, and species composition by revisiting meadows experimentally altered by 30 years of consistent nutrient fertilization provided by roosting birds. While the benthos beneath experimental perches has maintained dense, Halodule wrightii-dominated communities compared to the sparse Thalassia testudinum-dominated communities at control sites, there were no significant differences in soil organic carbon stocks in the top 15 cm. Although there were differences in δ13C of the dominant seagrass species at control and treatment sites, there was no difference in soil δ13C between treatments. Averages for soil organic carbon content (2.57?±?0.08 %) and δ13C (?12.0?±?0.3?‰) were comparable to global averages for seagrass ecosystems; however, our findings question the relevance of local-scale seagrass species composition or density to soil organic carbon pools in some environmental contexts.  相似文献   

2.
Cyclonic storms are large-scale disturbances which cause extensive damage in coastal ecosystems. On 25 November 2013, Cyclone Lehar made a significant impact on the coastal areas of Andaman and Nicobar Islands. We observed the pre- and post-Lehar cyclonic effects on the seagrass meadows at Ross and Smith Island, North Andaman. The study indicates that the seagrass meadows are composed of Halodule uninervis, Halophila ovalis, Halodule pinnifolia and Thalassia hemperichii species. Seagrass beds of approximately 1.96 ha (approx. 63 %) were destroyed in the cyclone.  相似文献   

3.
The fringing environments of lower Chesapeake Bay include sandy shoals, seagrass meadows, intertidal mud flats, and marshes. A characterization of a fringing ecosystem was conducted to provide initialization and calibration data for the development of a simulation model. The model simulates primary production and material exchange in the littoral zone of lower Chesapeake Bay. Carbon (C) and nitrogen (N) properties of water and sediments from sand, seagrass, intertidal silt-mud, and intertidal marsh habitats of the Goodwin Islands (located within the Chesapeake Bay National Estuarine Research Reserve in Virginia, CBNERR-VA) were determined seasonally. Spatial and temporal differences in sediment microalgal biomass among the habitats were assessed along with annual variations in the distribution and abundance ofZostera marina L. andSpartina alterniflora Loisel. Phytoplankton biomass displayed some seasonality related to riverine discharge, but sediment microalgal biomass did not vary spatially or seasonally. Macrophytes in both subtidal and intertidal habitats exhibited seasonal biomass patterns that were consistent with other Atlantic estuarine ecosystems. Marsh sediment organic carbon and inorganic nitrogen differed significantly from that of the sand, seagrass, and silt habitats. The only biogeochemical variable that exhibited seasonality was low marsh NH4 +. The subtidal sediments were consistent temporally in their carbon and nitrogen content despite seasonal changes in seagrass abundance. Eelgrass has a comparatively low C:N ratio and is a potential N sink for the ecosystem. Changes in the composition or size of the vegetated habitats could have a dramatic influence over resource partitioning within the ecosystem. A spatial database (or geographic information system, GIS) of the Goodwin Islands site has been initiated to track long-term spatial habitat features and integrate model output and field data. This ecosystem characterization was conducted as part of efforts to link field data, geographic information, and the dynamic simulation of multiple habitats. The goal of these efforts is to examine ecological structure, function, and change in fringing environments of lower Chesapeake Bay.  相似文献   

4.
Three quarters of the global human population will live in coastal areas in the coming decades and will continue to develop these areas as population density increases. Anthropogenic stressors from this coastal development may lead to fragmented habitats, altered food webs, changes in sediment characteristics, and loss of near-shore vegetated habitats. Seagrass systems are important vegetated estuarine habitats that are vulnerable to anthropogenic stressors, but provide valuable ecosystem functions. Key to maintaining these habitats that filter water, stabilize sediments, and provide refuge to juvenile animals is an understanding of the impacts of local coastal development. To assess development impacts in seagrass communities, we surveyed 20 seagrass beds in lower Chesapeake Bay, VA. We sampled primary producers, consumers, water quality, and sediment characteristics in seagrass beds, and characterized development along the adjacent shoreline using land cover data. Overall, we could not detect effects of local coastal development on these seagrass communities. Seagrass biomass varied only between sites, and was positively correlated with sediment organic matter. Epiphytic algal biomass and epibiont (epifauna and epiphyte) community composition varied between western and eastern regions of the bay. But, neither eelgrass (Zostera marina) leaf nitrogen (a proxy for integrated nitrogen loading), crustacean grazer biomass, epifaunal predator abundance, nor fish and crab abundance differed significantly among sites or regions. Overall, factors operating on different scales appear to drive primary producers, seagrass-associated faunal communities, and sediment properties in these important submerged vegetated habitats in lower Chesapeake Bay.  相似文献   

5.
6.
Widespread use of septic tanks in the Florida Keys increase the nutrient concentrations of limestone groundwaters that discharge into shallow nearshore waters, resulting in coastal eutrophication. This study characterizes watershed nutrient inputs, transformations, and effects along a land-sea gradient stratified into four ecosystems that occur with increasing distance from land: manmade canal systems (receiving waters of nutrient inputs), seagrass meadows, patch reefs, and offshore bank reefs. Soluble reactive phosphorus (SRP), the primary limiting nutrient, was significantly elevated in canal systems compared to the other ecosystems, while dissolved inorganic nitrogen (DIN; NH4 + and NO3 ?) a secondary limiting nutrient, was elevated both in canal systems and seagrass meadows. SRP and NH4 + concentrations decreased to low concentrations within approximately 1 km and 3 km from land, respectively. DIN and SRP accounted for their greatest contribution (up to 30%) of total N and P pools in canals, compared to dissolved organic nitrogen (DON) and dissolved organic phosphorus (DOP) that dominated (up to 68%) the total N and P pools at the offshore bank reefs. Particulate N and P fractions were also elevated (up to 48%) in canals and nearshore seagrass meadows, indicating rapid biological uptake of DIN and SRP into organic particles. Chlorophylla and turbidity were also elevated in canal systems and seagrass meadows; chlorophylla was maximal during summer when maximum watershed nutrient input occurs, whereas turbidity was maximal during winter due to seasonally maximum wind conditions and sediment resuspension. DO was negatively correlated with NH4 + and SRP; hypoxia (DO<2.5 mg l?1) frequently occurred in nutrient-enriched canal systems and seagrass meadows, especially during the warm summer months. These findings correlate with recent (<5 years) observations of increasing algal blooms, seagrass epiphytization and die-off, and loss of coral cover on patch and bank reef ecosystems, suggesting that nearshore waters of the Florida Keys have entered a stage of critical eutrophication.  相似文献   

7.
We examined the rhizosphere structure of 14 seagrass meadows (seven mixed, three Enhalus acoroides, two Zostera japonica, one Thalassia hemprichii, and one Halophila ovalis) in the Philippines and Vietnam and tested their effect on sediment redox potential by comparing the redox potential in vegetated vs unvegetated sediments. The effect of seagrass photosynthesis on sediment redox potential was tested in an E. acoroides meadow during a short-term (2-day) clipping experiment. In all the meadows, the centroidal depth (i.e., depth comprising 50%) of seagrass belowground biomass was within the top 15 cm sediment layer. Redox potentials in vegetated sediments tended to be higher than those in adjacent unvegetated ones; sediment redox potential anomaly ranged from −61 to 133 mV across the meadows. The centroidal depths of positive redox potential anomaly and seagrass root biomass were significantly correlated across the meadows investigated (type II regression analysis, slope = 0.90, lower confidence limit [CL] = 0.42 upper CL = 1.82, R 2 = 0.59, p < 0.01). Experimental removal of E. acoroides leaves resulted in a decrease in rhizosphere redox potential by 20 mV, further confirming the positive effect of seagrass roots and rhizomes on sediment redox potential and, thus, the general conditions for microbial processes in the coastal zone.  相似文献   

8.
From 1989 to 2007, a severe decline in Zostera noltii meadows was reported in the Arcachon Bay, with an accelerated regression after 2005. We investigated the inter-annual variability of the biogeochemistry of the sediment in an area affected by seagrass decline. In late summer and in winter of the years 2006, 2010, and 2011, sediment cores were collected at low tide on vegetated and adjacent non-vegetated sediments located in the eastern part of the Arcachon Bay. The geochemical analyses of sediment solid-phase organic carbon, reactive P and Fe, and the pore water concentrations of Fe2+, DIP, and NH4 + are presented. The changes in the chemistry of sediment and pore water between 2006 and 2010 are interpreted as a consequence of the decrease in the Z. noltii biomass between 2006 and 2010. The absence of significant seasonal variations in biomass throughout the growth period (March–September) in 2011 is most likely related to the regression of Z. noltii meadow that strongly affects the study area. In contrast to the healthy meadow in 2006, the declining meadow favored the dissolution of sedimentary particulate phosphorus in winter. In late summer, the low biomass of seagrass resulted in a net release of ammonium in the pore water of the upper 20 cm of sediment. This study clearly shows that seagrass decay may enhance nutrient release in sediments, resulting in a significant supply of phosphorus to the water column of a magnitude comparable to annual inputs to the lagoon from the rivers and the tidal pump.  相似文献   

9.

Four meadows of turtle grass (Thalassia testudinum Banks ex Konig) in Sarasota Bay, Florida were sampled on a bimonthly basis from June 1992 to July 1993 to determine spatial and temporal variation in short shoot density, biomass, productivity, and epiphyte loads. Concurrent with the seagrass sampling, quarterly water-quality monitoring was undertaken at ≥3 sites in the vicinity of each studied seagrass meadow. Three months after termination of the seagrass sampling effort, a biweekly water-quality monitoring program was instituted at two of the seagrass sampling sites. In addition, a nitrogen loading model was calibrated for the various watersheds influencing the seagrass meadows. Substantial spatial and temporal differences in turtle grass parameters but smaller spatial variation in water quality parameters are indicated by data from both the concurrent quarterly monitoring program and the biweekly monitoring program instituted after termination of the seagrass study. Turtle grass biomass and productivity were negatively correlated with watershed nitrogen loads, while water quality parameters did not clearly reflect differences in watershed nutrient inputs. We suggest that traditional water-quality monitoring programs can fail to detect the onset or continuance of nutrient-induced declines in seagrass health. Consequently, seagrass meadows should be monitored directly as a part of any effort to determine status and/or trends in the health of estuarine environments. *** DIRECT SUPPORT *** A01BY074 00029

  相似文献   

10.
Oceania supplies ∼40% of the global riverine flux of organic carbon, approximately half of which is injected onto broad continental shelves and processed in shallow deltaic systems. The Gulf of Papua, on the south coast of the large island of New Guinea, is one such deltaic clinoform complex. It receives ∼4 Mt yr−1 particulate terrestrial organic carbon with initial particle Corg loading ∼0.7 mg m−2. Corg loading is reduced to ∼0.3 mg m−2 in the topset-upper foreset zones of the delta despite additional inputs of mangrove and planktonic detritus, and high net sediment accumulation rates of 1-4 cm yr−1. Carbon isotopic analyses (δ13C, Δ14C) of ΣCO2 and Corg demonstrate rapid (<100 yr) remineralization of both terrestrial (δ13C <−28.6) and marine Corg13C ∼−20.5) ranging in average age from modern (bomb) (Δ14C ∼60) to ∼1000 yr (Δ14C ∼−140). Efficient and rapid remineralization in the topset-upper foreset zone is promoted by frequent physical reworking, bioturbation, exposure, and reoxidation of deposits. The seafloor in these regions, particularly <20 m, apparently functions as a periodically mixed, suboxic batch reactor dominated by microbial biomass. Although terrestrial sources can be the primary metabolic substrates at inshore sites, relatively young marine Corg often preferentially dominates pore water ΣCO2 relative to bulk Corg in the upper foreset. Thus a small quantity of young, rapidly recycled marine organic material is often superimposed on a generally older, less reactive terrestrial background. Whereas the pore water ΣCO2 reflects both rapidly cycled marine and terrestrial sources, terrestrial material dominates the slower overall net loss of Corg from particles in the topset-upper foreset zone (i.e. recycled marine Corg leaves little residue). Preferential utilization of Corg subpools and diagenetic fractionation of C isotopes supports the reactive continuum model as a conceptual basis for net decomposition kinetics. Early diagenetic fractionation of C isotopes relative to the bulk sedimentary Corg composition can produce changes in 14C activity independent of radioactive decay. In the Gulf of Papua topset-upper foreset, Δ14C of pore water ΣCO2 averaged ∼ 300‰ greater than Corg sediment between ∼1-3 m depth in deposits. Diagenetic fractionation and decomposition aging of sedimentary Corg compromises simple application of 14C for determination of sediment accumulation rates in diagenetically reactive deposits.  相似文献   

11.
With the aim of evaluating temporal changes in sedimentation and organic carbon (Corg) supplied over the last ~100 years, a sediment core was collected at Soledad Lagoon, a costal ecosystem surrounded by mangroves, located in the Cispatá Estuary (Caribbean coast of Colombia). The core sediments were characterized by low concentrations of calcium carbonate (0.2–2.9%), organic matter (3–8%), total nitrogen (0.11–0.38%), and total phosphorus (0.19–0.65 mg g−1). Fe and Al concentrations ranged from 4% to 5%, and Mn from 356 to 1,047 μg g−1. The 210Pb-derived sediment and mass accumulation rates were 1.54 ± 0.18 mm year−1 and 0.08 ± 0.01 g cm−2 year−1, respectively. The sediment core did not provide evidence of human impact, such as enhancement of primary production or nutrient enrichment, which may result from recent land uses changes or climate change. The Corg fluxes estimated for Soledad Lagoon core lay in the higher side of carbon fluxes to coastal ecosystems (314–409 g m−2 year−1) and the relatively high Corg preservation observed (~45%) indicate that these lagoon sediments has been a net and efficient sink of Corg during the last century, which corroborate the importance of mangrove areas as important sites for carbon burial and therefore, long-term sequestration of Corg.  相似文献   

12.
Seagrass beds form an important part of the coastal ecosystem in many parts of the world but are very sensitive to anthropogenic nutrient increases. In the last decades, stable isotopes have been used as tracers of anthropogenic nutrient sources and to distinguish these impacts from natural environmental change, as well as in the identification of food sources in isotopic food web reconstruction. Thus, it is important to establish the extent of natural variations on the stable isotope composition of seagrass, validating their ability to act as both tracers of nutrients and food sources. Around the world, depending on the seagrass species and ecosystem, values of seagrass N normally vary from 0 to 8?‰ δ15N. In this study, highly unusual seagrass N isotope values were observed on the east coast of Qatar, with significant spatial variation over a scale of a few metres, and with δ15N values ranging from +2.95 to ?12.39?‰ within a single bay during March 2012. This pattern of variation was consistent over a period of a year although there was a seasonal effect on the seagrass δ15N values. Seagrass, water column and sediment nutrient profiles were not correlated with seagrass δ15N values and neither were longer-term indicators of nutrient limitation such as seagrass biomass and height. Sediment δ15N values were correlated with Halodule uninervis δ15N values and this, together with the small spatial scale of variation, suggest that localised sediment processes may be responsible for the extreme isotopic values. Consistent differences in sediment to plant 15N discrimination between seagrass species also suggest that species-specific nutrient uptake mechanisms contribute to the observed δ15N values. This study reports some of the most extreme, negative δ15N values ever noted for seagrass (as low as ?12.4?‰) and some of the most highly spatially variable (values varied over 15.4?‰ in a relatively small area of only 655 ha). These results are widely relevant, as they demonstrate the need for adequate spatial and temporal sampling when working with N stable isotopes to identify food sources in food web studies or as tracers of anthropogenic nutrients.  相似文献   

13.
Surface sediment samples were collected from the Squamish River Delta, British Columbia, in order to determine the role of sediment surface area in the preservation of organic matter (OM) in a paralic sedimentary environment. The Squamish Delta is an actively prograding delta, located at the head of Howe Sound.Bulk total organic carbon (TOC) values across the Squamish Delta are low, ranging from 0.1 to 1.0 wt.%. The carbon/total nitrogen ratio (Corg/N) ranges from 6 to 17, which is attributed to changes in OM type and facies variations. The <25-μm fraction has TOC concentrations up to 2.0 wt.%, and a Corg/N ratio that ranges from 14 to 16. The 53–106-μm fraction has higher TOC concentrations and Corg/N ratios relative to the 25–53-μm fraction. The Corg/N ratio ranges from 9 to 18 in the 53–106-μm fraction and 5.5–10.5 in the 25–53-μm fraction. Surface area values for bulk sediments are low (0.5–3.0 m2/g) due to the large proportion of silt size material. Good correlation between surface area and TOC in bulk samples suggests that OM is adsorbed to mineral surfaces. Similar relationships between surface area and TOC were observed in size-fractionated samples. Mineralogy and elemental composition did not correlate with TOC concentration.The relationships between surface area, TOC and total nitrogen (TN) can be linked to the hydrodynamic and sedimentological conditions of the Squamish Delta. As a result, the Squamish Delta is a useful modern analogue for the formation of petroleum source rocks in ancient deltaic environments, where TOC concentrations are often significantly lower than those in source rocks formed in other geological settings.  相似文献   

14.
Tidally driven flows, waves, and suspended sediment concentrations were monitored seasonally within a Zostera marina seagrass (eelgrass) meadow located in a shallow (1–2 m depth) coastal bay. Eelgrass meadows were found to reduce velocities approximately 60 % in the summer and 40 % in the winter compared to an adjacent unvegetated site. Additionally, the seagrass meadow served to dampen wave heights for all seasons except during winter when seagrass meadow development was at a minimum. Although wave heights were attenuated across the meadow, orbital motions caused by waves were able to effectively penetrate through the canopy, inducing wave-enhanced bottom shear stress (τ b ). Within the seagrass meadow, τ b was greater than the critical stress threshold (=0.04 Pa) necessary to induce sediment suspension 80–85 % of the sampling period in the winter and spring, but only 55 % of the time in the summer. At the unvegetated site, τ b was above the critical threshold greater than 90 % of the time across all seasons. During low seagrass coverage in the winter, near-bed turbulence levels were enhanced, likely caused by stem–wake interaction with the sparse canopy. Reduction in τ b within the seagrass meadow during the summer correlated to a 60 % reduction in suspended sediment concentrations but in winter, suspended sediment was enhanced compared to the unvegetated site. With minimal seagrass coverage, τ b and wave statistics were similar to unvegetated regions; however, during high seagrass coverage, sediment stabilization increased light availability for photosynthesis and created a positive feedback for seagrass growth.  相似文献   

15.
Organic carbon from sediments collected in Texas seagrass meadows was enriched in 13C by an average of 6.6% relative to organic carbon from offshore sediments. Within the South Texas hay system examined. δ13C values became increasingly more typical of offshore sediments with increasing distance from seagrass meadows. This permits the use of carbon isotope data as a measure of the relative contributions of seagrasses and plankton to sedimentary organic matter.  相似文献   

16.
In many areas of the North American mid-Atlantic coast, seagrass beds are either in decline or have disappeared due, in part, to high turbidity that reduces the light reaching the plant surface. Because of this reduction in the areal extent of seagrass beds there has been a concomitant diminishment in dampening of water movement (waves and currents) and sediment stabilization. Due to ongoing declines in stocks of suspension-feeding eastern oysters (Crassostrea virginica) in the same region, their feeding activity, which normally serves to improve water clarity, has been sharply reduced. We developed and parameterized a simple model to calculate how changes in the balance between sediment sources (wave-induced resuspension) and sinks (bivalve filtration, sedimentation within seagrass beds) regulate turbidity. Changes in turbidity were used to predict the light available for seagrass photosynthesis and the amount of carbon available for shoot growth. We parameterized this model using published observations and data collected specifically for this purpose. The model predicted that when sediments were resuspended, the presence of even quite modest levels of eastern oysters (25 g dry tissue weight m?2) distributed uniformly throughout the modeled domain, reduced suspended sediment concentrations by nearly an order of magnitude. This increased water clarity, the depth to which seagrasses were predicted to grow. Because hard clams (Mercenaria mercenaria) had a much lower weight-specific filtration rate than eastern oysters; their influence on reducing turbidity was much less than oysters. Seagrasses, once established with sufficiently high densities (>1,000 shoots m?2), damped waves, thereby reducing sediment resuspension and improving light conditions. This stabilizing effect was minor compared to the influence of uniformly distributed eastern oysters on water clarity. Our model predicted that restoration of eastern oysters has the potential to reduce turbidity in shallow estuaries, such as Chesapeake Bay, and facilitate ongoing efforts to restore seagrasses. This model included several simplifiying assumptions, including that oysters were uniformly distributed rather than aggregated into offshore reefs and that oyster feces were not resuspended.  相似文献   

17.
Seagrass beds have declined in Chesapeake Bay, USA as well as worldwide over the past century. Increased seston concentrations, which decrease light penetration, are likely one of the main causes of the decline in Chesapeake Bay. It has been hypothesized that dense populations of suspension-feeding bivalves, such as eastern oysters (Crassostrea virginica), may filter sufficient seston from the water to reduce light attenuation and enhance seagrass growth. Furthermore, eastern oyster populations can form large three-dimensional reef-like structures that may act like breakwaters by attenuating waves, thus decreasing sediment resuspension. We developed a quasi-three-dimensional Seagrass-Waves-Oysters-Light-Seston (SWOLS) model to investigate whether oyster reefs and breakwaters could improve seagrass growth by reducing seston concentrations. Seagrass growth potential (SGP), a parameter controlled by resuspension-induced turbidity, was calculated in simulations in which wave height, oyster abundance, and reef/breakwater configuration were varied. Wave height was the dominant factor influencing SGP, with higher waves increasing sediment resuspension and decreasing SGP. Submerged breakwaters parallel with the shoreline improved SGP in the presence of 0.2 and 0.4 m waves when sediment resuspension was dominated by wave action, while submerged groins perpendicular to the shoreline improved SGP under lower wave heights (0.05 and 0.1 m) when resuspension was dominated by along-shore tidal currents. Oyster-feeding activity did not affect SGP, due to the oysters’ distance from the seagrass bed and reduced oyster filtration rates under either low or high sediment concentrations. Although the current implementation of the SWOLS model has simplified geometry, the model does demonstrate that the interaction between oyster filtration and along-shore circulation, and between man-made structures and wave heights, should be considered when managing seagrass habitats, planning seagrass restoration projects, and choosing the most suitable methods to protect shorelines from erosion.  相似文献   

18.
测定了新疆罗布泊地区湖相沉积物CK-2钻孔样品的总有机碳含量(TOC)及其同位素组成、碳酸盐含量和C/N比值等环境代用指标,以及石膏矿物的质谱-铀系年龄。测试结果表明,20~9kaB.P.期间沉积物δ13Corg.在-23.4‰~-16.1‰之间波动且阶段性明显,与TOC呈现良好的相关关系,整体变化趋势同南极Dome C冰芯中记录的全球大气CO2浓度一致;C/N比值表明有机碳来源主要是陆生高等植物。因此大气CO2浓度变化是影响20~9kaB.P.期间罗布泊湖相沉积物δ13Corg.值变化的主导因素,周围山体上C3/C4植物相对生物量的变化则是另一重要因素。依据δ13Corg.的变化序列将此时间段湖区古环境的演化分成6个阶段:20.0~14.1kaB.P.期间受到末次盛冰期的影响,气温偏低,湖水丰沛;14.1~13.3kaB.P.是一个气候不稳定期,冷暖波动较频繁,但以暖为趋势;13.3~12.8kaB.P.期间经历了一段冷期,于12.8kaB.P.结束了末次冰期,随后气候开始转暖至11.8kaB.P.;其后气温再次变冷并维持到10kaB.P.;最后从10kaB.P.进入全新世暖期。δ13Corg.序列明显向偏负方向变化,表明该地区变暖的趋势相当明显。罗布泊地区日益干旱化是全球气候变化的结果,尤其是受到全球CO2浓度的不断升高所制约。  相似文献   

19.
A close relation of the organic carbon (Corg) content with major has been established for rocks of the Upper Jurassic–Lower Cretaceous Bazhenov Formation. Applying the method of multiple linear regression, it has been demonstrated that the Corgcontent in rocks of the Bazhenov Formation is stringently controlled by its bulk chemical composition. This inference is consistent with the existing ideas regarding a close interrelation between the following main components of rocks: organic carbon and authigenic quartz formed on remains of Radiolaria; pyrite formed in a highly reducing medium of Corg-rich sediments; and terrigenous clayey material diluting the authigenic siliceous–carbonaceous–pyritic matrix. These components chiefly determine the spectrum of major elements in the Bazhenov Formation. The establishment of the close relation between the Corgcontent and the group of major elements refutes the suggestion of some authors that siliceous material was supplied to nonlithified sediments of the Bazhenov sea by hydrothermal solutions, because this mechanism would have inevitably upset geochemical relations between elements in the studied rocks.  相似文献   

20.
To compare natural variability and trends in a developed estuary with human-influenced patterns, stable isotope ratios (δ13C and δ15N) were measured in sediments from five piston cores collected in Chesapeake Bay. Mixing of terrestrial and algal carbon sources primarily controls patterns of δ13Corg profiles, so this proxy shows changes in estuary productivity and in delivery of terrestrial carbon to the bay. Analyses of δ15N show periods when oxygen depletion allowed intense denitrification and nutrient recycling to develop in the seasonally stratified water column, in addition to recycling taking place in surficial sediments. These conditions produced 15N-enriched (heavy) nitrogen in algal biomass, and ultimately in sediment. A pronounced increasing trend in δ15N of +4‰ started in about A.D. 1750 to 1800 at all core sites, indicating greater eutrophication in the bay and summer oxygen depletion since that time. The timing of the change correlates with the advent of widespread land clearing and tillage in the watershed, and associated increases in erosion and sedimentation. Isotope data show that the region has experienced up to 13 wet-dry cycles in the last 2700 yr. Relative sea-level rise and basin infilling have produced a net freshening trend overprinted with cyclic climatic variability. Isotope data also constrain the relative position of the spring productivity maximum in Chesapeake Bay and distinguish local anomalies from sustained changes impacting large regions of the bay. This approach to reconstructing environmental history should be generally applicable to studies of other estuaries and coastal embayments impacted by watershed development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号