首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Model performance evaluation for real-time flood forecasting has been conducted using various criteria. Although the coefficient of efficiency (CE) is most widely used, we demonstrate that a model achieving good model efficiency may actually be inferior to the naïve (or persistence) forecasting, if the flow series has a high lag-1 autocorrelation coefficient. We derived sample-dependent and AR model-dependent asymptotic relationships between the coefficient of efficiency and the coefficient of persistence (CP) which form the basis of a proposed CECP coupled model performance evaluation criterion. Considering the flow persistence and the model simplicity, the AR(2) model is suggested to be the benchmark model for performance evaluation of real-time flood forecasting models. We emphasize that performance evaluation of flood forecasting models using the proposed CECP coupled criterion should be carried out with respect to individual flood events. A single CE or CP value derived from a multi-event artifactual series by no means provides a multi-event overall evaluation and may actually disguise the real capability of the proposed model.  相似文献   

2.
We propose a scenario-based method for simulating and mapping the risk of surge floods for use by local authorities concerned with public safety and urban planning in coastal areas. Focusing on the triad of hazard, vulnerability and adaptation capability, we estimate the comprehensive risk and display its spatial distribution using the raster calculation tool in ArcGIS. The detailed methodology is introduced via a case study of Yuhuan, an island county in Zhejiang Province, China, which is frequently affected by typhoon storm surges. First, we designed 24 typhoon scenarios and modeled the flood process in each scenario using the hydrodynamic module of MIKE 21. Second, flood depth and area were used for hazard assessment; an authorized indicator system of land use categories and a survey of emergency shelters were used for vulnerability and adaptation capability assessment, respectively; and a quantified model was used for assessment of the comprehensive risk. Lastly, we used the GIS raster calculation tool for mapping the risk of storm surges in multiple typhoon scenarios. Our principal findings are as follows: (1) Seawalls are more likely to be overtopped or destroyed by more severe storm surges with increasing typhoon intensity. (2) Most of the residential areas with inadequate emergency shelters are highly vulnerable to flood events. (3) As projected in the risk mapping, if an exceptional typhoon with a central pressure of 915 or 925 hPa made a landfall in Yuhuan, a wide range of areas would be flooded and at high risk. (4) Determining optimal strategies based on identification of risk-inducing factors is the most effective way of promoting safe and sustainable development in coastal cities.  相似文献   

3.
The observation of extreme waves at FINO 1 during storm Britta on the 1st November 2006 has initiated a series of research studies regarding the mechanisms behind. The roles of stability and the presence of the open cell structures have been previously investigated but not conclusive. To improve our understanding of these processes, which are essential for a good forecast of similarly important events offshore, this study revisits the development of storm Britta using an atmospheric and wave coupled modeling system, wind and wave measurements from ten stations across the North Sea, cloud images and Synthetic Aperture Radar (SAR) data. It is found here that a standard state-of-the-art model is capable of capturing the important characteristics of a major storm like Britta, including the storm path, storm peak wind speed, the open cells, and peak significant wave height (H s ) for open sea. It was also demonstrated that the impact of the open cells has negligible contribution to the development of extreme H s observed at FINO 1. At the same time, stability alone is not sufficient in explaining the development of extreme H s . The controlling conditions for the development of Britta extreme H s observed at FINO 1 are the persistent strong winds and a long and undisturbed fetch over a long period.  相似文献   

4.
The problem of estimating the time derivatives of the horizontal components of the geomagnetic field and forecasting the probability of the occurrence of perturbations that exceed a given threshold level (the over-threshold perturbations) arises in the applications concerned with the geomagnetically induced currents (GICs). In this work, we consider the temporal and spatial structure of the Pi3 pulsations with quasi-periods of 102 to 103 s during which the auroral and subauroral stations of the IMAGE network record over-threshold values in the derivatives of the meridional (along the longitudinal circle) BX component and latitudinal (along the latitudinal circle) BY component. The extreme |dBX/dt| values mainly develop against the background of the Pi3 pulsations with a complex frequency content, whereas the extreme |dBY/dt| values appear when the buildup (decay) phases of the bay-like disturbance associated with the evolution of a substorm coincide with the respective phases of the field of pulsations. The conditions under which the derivatives |dBX/dt| and |dBY/dt| reach their over-threshold values are studied for subauroral latitudes by the technique of superposed epoch analysis. The extreme values of the derivatives most frequently occur during the main phase of moderate magnetic storms or beyond the storm—during high substorm activity under the conditions of a negative vertical component of the interplanetary magnetic field. The probability of the occurrence of over-threshold values increases at high amplitudes of the Pi3 pulsations and depends on their spectral content. The problem of analyzing and forecasting the over-threshold |dBY/dt| perturbations is complicated by the fact that the scale of the perturbations is small along the lines of latitude and large along the meridians. This can result in GIC excitation in the North–South oriented electric power lines by the geomagnetic perturbations localized within a narrow band in longitude which can be missed during the measurements.  相似文献   

5.
We have analyzed the behavior of the F2 layer parameters during nighttime periods of enhanced electron concentration by the results of vertical sounding of the ionosphere carried out with five-minute periodicity in Almaty (76°55′ E, 43°15′ N) in 2001–2012. The results are obtained within the frameworks of the unified concept of different types of ionospheric plasma disturbances manifested as variations in the height and half-thickness of the layer accompanied by an increase and decrease of N m F2 at the moments of maximum compression and expansion of the layer. A good correlation is found between height h Am , which corresponds to the maximum increase, and layer peak height h m F, while h Am is always less than h m F. The difference between h Am and h m F linearly increases with increasing h m F. Whereas the difference is ~38 km for h m F = 280 km, it is ~54 km for h m F = 380 km. Additionally, the correlation is good between the increase in the electron concentration in the layer maximum ΔN m and the maximum enhancement at the fixed height ΔN; the electron concentration enhancement in the layer maximum is about two to three times lower than its maximum enhancement at the fixed height.  相似文献   

6.
Many studies on global climate have forecast major changes in the amounts and spatial patterns of precipitation that may significantly affect temperate grasslands in arid and semi-arid regions. As a part of ChinaFLUX, eddy covariance flux measurements were made at a semi-arid Leymus chinensis steppe in Inner Mongolia, China during 2003–2004 to quantify the response of carbon exchange to environmental changes. Results showed that gross ecosystem production (F GEP) and ecosystem respiration (R eco) of the steppe were significantly depressed by water stress due to lack of precipitation during the growing season. Temperature was the dominant factor affecting F GEP and R eco in 2003, whereas soil moisture imposed a significant influence on both R eco and F GEP in 2004. Under wet conditions, R eco showed an exponentially increasing trend with temperature (Q 10 = 2.0), but an apparent reduction in the value of R eco and its temperature sensitivity were observed during the periods of water stress (Q 10=1.6). Both heat and water stress can cause decrease in F GEP. The seasonality of ecosystem carbon exchange was strongly correlated with the variation of precipitation. With less precipitation in 2003, the steppe sequestrated carbon in June and July, and went into a senescence in early August due to water stress. As compared to 2003, the severe drought during the spring of 2004 delayed the growth of the steppe until late June, and the steppe became a CO2 sink from early July until mid-September, with ample precipitation in August. The semi-arid steppe released a total of 9.7 g C·m?2 from May 16 to the end of September 2003, whereas the net carbon budget during the same period in 2004 was close to zero. Long-term measurements over various grasslands are needed to quantify carbon balance in temperate grasslands.  相似文献   

7.
Accurate and precise estimation of return levels is often a key goal of any extreme value analysis. For example, in the UK the British Standards Institution (BSI) incorporate estimates of ‘once-in-50-year wind gust speeds’—or 50-year return levels—into their design codes for new structures; similarly, the Dutch Delta Commission use estimates of the 10,000-year return level for sea-surge to aid the construction of flood defence systems. In this paper, we briefly highlight the shortcomings of standard methods for estimating return levels, including the commonly-adopted block maxima and peaks over thresholds approach, before presenting an estimation framework which we show can substantially increase the precision of return level estimates. Our work allows explicit quantification of seasonal effects, as well as exploiting recent developments in the estimation of the extremal index for handling extremal clustering. From frequentist ideas, we turn to the Bayesian paradigm as a natural approach for building complex hierarchical or spatial models for extremes. Through simulations we show that the return level posterior mean does not have an exceedance probability in line with the intended encounter risk; we also argue that the Bayesian posterior predictive value gives the most satisfactory representation of a return level for use in practice, accounting for uncertainty in parameter estimation and future observations. Thus, where feasible, we propose a Bayesian estimation strategy for optimal return level inference.  相似文献   

8.
Average spectral acceleration, AvgSA, is defined as the geometric mean of spectral acceleration values over a range of periods and it is a ground motion intensity measure used for structural response prediction. One of its advantages stands on the assumption that its distribution is computable from the available GMPEs for spectral acceleration, GMPE-SA, (called here indirect method) without the need for deriving new specific GMPEs for AvgSA, GMPE-AvgSA, (called here direct method). To what extent this assumption is valid, however, has never been verified. As such, we derived an empirical GMPE-AvgSA based on RESORCE ground motion dataset and we compared its predicted values with those from a GMPE-SA via the indirect approach. As expected, the results show that the indirect approach yields median AvgSA estimates that are identical to those of the direct approach. However, the estimates of AvgSA variance of the two methods are identical only if both the GMPE-SA and their empirical correlation coefficients among different SA ordinates are derived from the same record dataset.  相似文献   

9.
We investigated ground response for Baku (Azerbaijan) from two earthquakes of magnitude M6.3 occurred in Caspian Sea (characterized as a near event) and M7.5 in Shamakhi (characterized as a remote extreme event). S-wave velocity with the average shear wave velocity over the topmost 30 m of soil is obtained by experimental method from the V P values measured for the soils. The downtown part of Baku city is characterized by low VS30 values (< 250 m/s), related to sand, water-saturated sand, gravel-pebble, and limestone with clay. High surface PGA of 240 gal for the M7.5 event and of about 190 gal for the M6.3 event, and hence a high ground motion amplification, is observed in the shoreline area, through downtown, in the north-west, and in the east parts of Baku city with soft clays, loamy sands, gravel, sediments.  相似文献   

10.
Statistical tests have been used to adjust the Zemmouri seismic data using a distribution function. The Pareto law has been used and the probabilities of various expected earthquakes were computed. A mathematical expression giving the quantiles was established. The extreme values limiting law confirmed the accuracy of the adjustment method. Using the moment magnitude scale, a probabilistic model was made to predict the occurrences of strong earthquakes. The seismic structure has been characterized by the slope of the recurrence plot γ, fractal dimension D, concentration parameter Ksr, Hurst exponents Hr and Ht. The values of D, γ, Ksr, Hr, and Ht diminished many months before the principal seismic shock (M = 6.9) of the studied seismoactive zone has occurred. Three stages of the deformation of the geophysical medium are manifested in the variation of the coefficient G% of the clustering of minor seismic events.  相似文献   

11.
Seismic observations exhibit the presence of abnormal b-values prior to numerous earthquakes. The time interval from the appearance of abnormal b-values to the occurrence of mainshock is called the precursor time. There are two kinds of precursor times in use: the first one denoted by T is the time interval from the moment when the b-value starts to increase from the normal one to the abnormal one to the occurrence time of the forthcoming mainshock, and the second one denoted by T p is the time interval from the moment when the abnormal b-value reaches the peak one to the occurrence time of the forthcoming mainshock. Let T* be the waiting time from the moment when the abnormal b-value returned to the normal one to the occurrence time of the forthcoming mainshock. The precursor time, T (usually in days), has been found to be related to the magnitude, M, of the mainshock expected in a linear form as log(T)?=?q?+?rM where q and r are the coefficient and slope, respectively. In this study, the values of T, T p , and T* of 45 earthquakes with 3?≤?M?≤?9 occurred in various tectonic regions are compiled from or measured from the temporal variations in b-values given in numerous source materials. The relationships of T and T p , respectively, versus M are inferred from compiled data. The difference between the values of T and T p decreases with increasing M. In addition, the plots of T*/T versus M, T* versus T, and T* versus T-T* will be made and related equations between two quantities will be inferred from given data.  相似文献   

12.
Seismic site coefficients (F s ) for Imphal city have been estimated based on 700 synthetically generated earthquake time histories through stochastic finite fault method, considering various combinations of magnitudes and fault distances that may affect Imphal city. Seismic hazard curves and Uniform Hazard Response Spectra (UHRS) are presented for Imphal city. F s have been estimated based on site response analyses through SHAKE-91 for a period range of engineering interest (PGA to 3.0 s), for 5% damping. F s were multiplied by UHRS values to obtain surface level spectral acceleration with 2 and 10% probability of exceedance in 50 year (~2500 and ~500 year) return period. Comparison between predicted mean surface level response spectra and IS-1893 code shows that spectral acceleration value is higher for longer periods (i.e., >1.0 s), for ~500 year return period, and lower for periods shorter than 0.2 s for ~2500 year return period.  相似文献   

13.
We build copula function-based joint distribution models for the annual maximum flood peaks of the Yangtze River and Poyang Lake, to analyze the coincidence probabilities, using scenarios that combine with the impoundment of three Gorges, define influencing indexes and relative contribution rates on flood coincidence at varying frequencies. The study shows the probabilities for coincidence of floods with 1000, 100, and 10-year return periods in both Yangtze main stem and Poyang Lake are respectively 0.02, 0.19 and 2.87%, with higher coincidence probabilities for shorter return periods; when 1000-year flood occurs in the Yangtze, the probabilities for Poyang Lake to encounter flood of the 1000, 100, or 10-year magnitude are higher than 16.08, 42.48 or 74.77% respectively; Poyang–Yangtze flood coincidence is affected by operation of the hydraulic engineering. The lowering of flood peaks caused by the Three Gorges impoundment and regulation of the lake have respectively reduced the probabilities of Poyang–Yangtze flood coincidence by about 7.0 and 1.97%, with average relative contribution rates ? 33.82 and ? 17.1%; influenced by hydrological projects in Poyang basin, variations in Poyang’s inflow flood have displayed an average contribution rate of 20.4% for the negative effect on extreme (P < 5% or P > 90%) flood coincidence, while having a positive contribution rate of 38.2% on floods of other return periods. The results can help increase our understanding of flood coincidence, and support flood control efforts in Poyang Lake; its analytical approach may also be useful to other applications of copula functions.  相似文献   

14.
The time variations in three parameters during the last decades are considered. R(foF2) is the correlation coefficient between the nighttime and daytime values of foF2 for the same day. Stable trends are found for the minimum (R(foF2)(max)) and maximum (R(foF2)(min)) values of R(foF2) during a year. The foF2(night)/foF2(day) ratio demonstrates both, negative and positive trends, and the trend sign depends on the inclination I and declination D of the magnetic field. The correlation coefficient r(h, fo) between foF2 and the 100 hP level in the stratosphere demonstrates a decrease (in the years of maximum and minimum solar activity) from the 1980s to the 1990s. The trends in all three groups of data are considered under the assumption of long-term changes in the circulation in the upper atmosphere.  相似文献   

15.
An explanation is given to the fact that the cumulative number of damage cases is a decreasing function of the form Y?2/3. This is because the inundated area S depends on precipitation volume V as S ~ V2/3. Such dependence is confirmed by the data on the area of mushroom-shaped plumes at river mouths in the sites of river influx into the ocean.  相似文献   

16.
Actual evapotranspiration(ET_a) over the Tibetan Plateau(TP) is an important component of the water cycle,and greatly influences the water budgets of the TP lake basins.Quantitative estimation of ET_a within lake basins is fundamental to physically understanding ET_a changes,and thus will improve the understanding of the hydro logical processes and energy balance throughout the lake basins.In this study,the spatiotemporal dynamic changes of ET_α within the Lake Selin Co(the TP's largest lake) and its surrounding small lakes and land area during 2003-2012 are examined at the basin scale.This was carried out using the well-established Water and Energy Budget-based Distributed Hydrological Model(WEB-DHM) for the land area,the Penman method for the water area when unfrozen,and a simple sublimation estimation approach for the water area when frozen.The relationships between ET_a changes and controlling factors are also discussed.Results indicate that the simulated land ET_a from the WEB-DHM reasonably agrees with the estimated ET_a values from the nonlinear complementary relationship model using appropriately calibrated parameter values at a point scale.Land ET_a displayed a non-significant increase of 7.03 mm year~(-1),and largely depends on precipitation.For the water area,the combined effects of reduced wind speed and net radiation offset the effect of rising temperature and vapor pressure deficit,and contributed to a non-significant decrease in evaporation of 4.17 mm year~(-1).Sensitivity analysis shows that vapor pressure deficit and wind speed are the most sensitive variables to the changes of evaporation from the water area.  相似文献   

17.
The effects of temperatures and salinities on germination of two halophytes, Kalidium capsicum and Suaeda physophora in northwestern China, were tested, and their seed size and seed production were compared. It was found that seed of Suaeda physophora germinate under 10°C, even about 0°C, and at a wide temperature range of 10–30°C. It showed about 50% germination in the concentration up to 0.7 mol/L NaCl; optimum germination temperature of Kalidium capsicum was between 20°C and 30°C. The concentration of less than 0.3 mol/L NaCl inhibited absolutely its germination. Germination recovery was observed when salinities were reduced and total germination percentage exceeded 90%. Seeds of Kalidium capsicum showed no loss of viability while Suaeda physophora an annual loss of viability of 75% at room temperature. Mean weight of seeds of Suaeda physophora was about 8.5 times of Kalidium capsicum, whereas the number of seeds of the latter was more than 20 times of the former. Suaeda physophora was observed to be dependent on periodic precipitation in germination and seedling growth. It suggests the evident trace of the species with zonation pattern. On the other hand, the germination of Kalidium capsicum was affected by unpredictable rain and inundation. This species might be a type without zonation patterns in halophytes. It was concluded that both species are halophytes, but they are established successfully by different adaptation strategies in the early stage of life history.  相似文献   

18.
The position of the auroral oval poleward and equatorward boundary projections on the equatorial plane in the nightside MLT sector during magnetically quiet periods (|AL| < 200 nT, |Dst| < 10 nT) has been determined. The oval boundary positions were determined according to the precipitation model developed at Polar Geophysical Institute (http://apm.pgia.ru/). The isotropy of the averaged plasma pressure and the experimentally confirmed balance of pressures during the nighttime have been taken into account. The morphological mapping method has been used to map the oval poleward and equatorward edges without the use of any magnetic field model on the assumption that the condition of magnetostatic equilibrium is valid. Ion pressures at ionospheric altitudes and in the equatorial plane have been compared. It has been shown that the auroral oval equatorward boundary in the midnight sector is localized at geocentric distances of ~7 RE, which is in good agreement with the position of the energetic particle injection boundary in the equatorial plane. The oval poleward edge is localized at the ~10 RE geocentric distance, which is in good agreement with the position of the equatorward boundary of the region with a high turbulence level in the Earth’s magnetosphere plasma sheet.  相似文献   

19.
The Aki-Utsu method of Gutenberg-Richter (G-R) b value estimation is often misapplied so that estimations not using the G-R histogram are often meaningless because they are not based on adequate samples. We propose a method to estimate the likelihood Pr(b?b m , N, M 1, M 2) that an observed b m estimate, based on a sample of N magnitudes within an [M 1????≤?ΔM/2,?M 2?+?ΔM/2) range, where ΔM?=?0.1 is the usual rounding applied to magnitudes, is due to a “true” source b value, b, and use these likelihoods to estimate source b ranges corresponding to various confidence levels. As an example of application of the method, we estimate the b values before and after the occurrence of a 7.4-magnitude earthquake in the Mexican subduction zone, and find a difference of 0.82 between them with 100% confidence that the b values are different.  相似文献   

20.
The forecasting of evaporative loss (E) is vital for water resource management and understanding of hydrological process for farming practices, ecosystem management and hydrologic engineering. This study has developed three machine learning algorithms, namely the relevance vector machine (RVM), extreme learning machine (ELM) and multivariate adaptive regression spline (MARS) for the prediction of E using five predictor variables, incident solar radiation (S), maximum temperature (T max), minimum temperature (T min), atmospheric vapor pressure (VP) and precipitation (P). The RVM model is based on the Bayesian formulation of a linear model with appropriate prior that results in sparse representations. The ELM model is computationally efficient algorithm based on Single Layer Feedforward Neural Network with hidden neurons that randomly choose input weights and the MARS model is built on flexible regression algorithm that generally divides solution space into intervals of predictor variables and fits splines (basis functions) to each interval. By utilizing random sampling process, the predictor data were partitioned into the training phase (70 % of data) and testing phase (remainder 30 %). The equations for the prediction of monthly E were formulated. The RVM model was devised using the radial basis function, while the ELM model comprised of 5 inputs and 10 hidden neurons and used the radial basis activation function, and the MARS model utilized 15 basis functions. The decomposition of variance among the predictor dataset of the MARS model yielded the largest magnitude of the Generalized Cross Validation statistic (≈0.03) when the T max was used as an input, followed by the relatively lower value (≈0.028, 0.019) for inputs defined by the S and VP. This confirmed that the prediction of E utilized the largest contributions of the predictive features from the T max, verified emphatically by sensitivity analysis test. The model performance statistics yielded correlation coefficients of 0.979 (RVM), 0.977 (ELM) and 0.974 (MARS), Root-Mean-Square-Errors of 9.306, 9.714 and 10.457 and Mean-Absolute-Error of 0.034, 0.035 and 0.038. Despite the small differences in the overall prediction skill, the RVM model appeared to be more accurate in prediction of E. It is therefore advocated that the RVM model can be employed as a promising machine learning tool for the prediction of evaporative loss.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号