首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Flood hazard and risk assessment was conducted to identify the priority areas in the southwest region of Bangladesh for flood mitigation. Simulation of flood flow through the Gorai and Arial Khan river system and its floodplains was done by using a hydrodynamic model. After model calibration and verification, the model was used to simulate the flood flow of 100‐year return period for a duration of four months. The maximum flooding depths at different locations in the rivers and floodplains were determined. The process in determining long flooding durations at every grid point in the hydrodynamic model is laborious and time‐consuming. Therefore the flood durations were determined by using satellite images of the observed flood in 1988, which has a return period close to 100 years. Flood hazard assessment was done considering flooding depth and duration. By dividing the study area into smaller land units for hazard assessment, the hazard index and the hazard factor for each land unit for depth and duration of flooding were determined. From the hazard factors of the land units, a flood hazard map, which indicates the locations of different categories of hazard zones, was developed. It was found that 54% of the study area was in the medium hazard zone, 26% in the higher hazard zone and 20% in the lower hazard zone. Due to lack of sufficient flood damage data, flood damage vulnerability is simply considered proportional to population density. The flood risk factor of each land unit was determined as the product of the flood hazard factor and the vulnerability factor. Knowing the flood risk factors for the land units, a flood risk map was developed based on the risk factors. These maps are very useful for the inhabitants and floodplain management authorities to minimize flood damage and loss of human lives. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
Abstract

This paper presents a viable approach for flood management strategy in a river basin based on the European Floods Directive. A reliable flood management plan has two components: (a) a proper flood management strategy, and (b) the determination of the flood-hazard areas. A method to evaluate the benefits of a flood warning system is presented herein, as well as a method to estimate the flood-hazard areas. Six factors were considered in order to estimate the spatial distribution of the hazardous areas: flow accumulation, slope, land use, rainfall intensity, geology and elevation. The study area was divided into five regions characterized by different degrees of flood hazard ranging from very low to very high. The produced map of flood-hazard areas identifies the areas and settlements at high risk of flooding. The proposed methodology can be applied to any river basin and here was applied to the Koiliaris River basin in Greece.

Citation Kourgialas, N. N. & Karatzas, G. P. (2011) Flood management and a GIS modelling method to assess flood-hazard areas—a case study. Hydrol. Sci. J. 56(2), 212–225.  相似文献   

3.
Abstract

This study contributes to the comprehensive assessment of flood hazard and risk for the Phrae flood plain of the Yom River basin in northern Thailand. The study was carried out using a hydrologic–hydrodynamic model in conjunction with a geographic information system (GIS). The model was calibrated and verified using the observed rainfall and river flood data during flood seasons in 1994 and 2001, respectively. Flooding scenarios were evaluated in terms of flooding depth for events of 25-, 50-, 100- and 200-year return periods. An impact-based hazard estimation technique was applied to assess the degree of hazard across the flood plain. The results showed that 78% of the Phrae flood-plain area of 476 km2 in the upper Yom River basin lies in the hazard zone of the 100-year return-period flood. Risk analyses were performed by incorporating flood hazard and the vulnerability of elements at risk. Based on relative magnitude of risk, flood-prone areas were divided into low-, moderate-, high- and severe-risk zones. For the 100-year return-period flood, the risk-free area was found to be 22% of the total flood plain, while areas under low, medium, high and severe risk were 33, 11, 28 and 6%, respectively. The outcomes are consistent with overall property damage recorded in the past. The study identifies risk areas for priority-based flood management, which is crucial when there is a limited budget to protect the entire risk zone simultaneously.

Citation Tingsanchali, T. & Karim, F. (2010) Flood-hazard assessment and risk-based zoning of a tropical flood plain: case study of the Yom River, Thailand. Hydrol. Sci. J. 55(2), 145–161.  相似文献   

4.
The goal of the presented research was the derivation of flood hazard maps, using Monte Carlo simulation of flood propagation at an urban site in the UK, specifically an urban area of the city of Glasgow. A hydrodynamic model describing the propagation of flood waves, based on the De Saint Venant equations in two‐dimensional form capable of accounting for the topographic complexity of the area (preferential outflow paths, buildings, manholes, etc.) and for the characteristics of prevailing imperviousness typical of the urban areas, has been used to derive the hydrodynamic characteristics of flood events (i.e. water depths and flow velocities). The knowledge of the water depth distribution and of the current velocities derived from the propagation model along with the knowledge of the topographic characteristics of the urban area from digital map data allowed for the production of hazard maps based on properly defined hazard indexes. These indexes are evaluated in a probabilistic framework to overcome the classical problem of single deterministic prediction of flood extent for the design event and to introduce the concept of the likelihood of flooding at a given point as the sum of data uncertainty, model structural error and parameterization uncertainty. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
针对当前城市化所引起水系衰减、河流连通受阻以及由此所引起洪涝与水环境的问题,以秦淮河中、下游为例,选取1979和2006年两期流域遥感影像,分析了城市化影响下的下垫面变化特征;选取1980s和2009年的地形图对河流水系进行提取,借鉴景观生态学中河流廊道空间结构分析方法,通过不同时期水系分级,探讨了城市化对水系结构及其连通性的影响.结果表明:(1)城市化使得2006年城镇用地面积相比1979年增加84.54 km2,增加了9倍多,大量林草地、耕地以及水域转变成城镇用地;(2)河流长度在过去的30年里减少了41%,河道主干化趋势明显;河流发育呈现由多元到单一、由复杂到简单的趋势;(3)连通性参数连接率、实际结合度分别由原来的1.28、0.43下降到0.79、0.26,河流的连通性呈下降趋势.该研究将为城市化地区河流水系保护提供支持与参考.  相似文献   

6.
Flooding hazard evaluation is the basis of flooding risk assessment which has significances to natural environment, human life and social economy. This study develops a spatial framework integrating naïve Bayes (NB) and geographic information system (GIS) to assess flooding hazard at regional scale. The methodology was demonstrated in the Bowen Basin in Australia as a case study. The inputs into the framework are five indices: elevation, slope, soil water retention, drainage proximity and density. They were derived from spatial data processed in ArcGIS. NB as a simplified and efficient type of Bayesian methods was used, with the assistance of remotely sensed flood inundation extent in the sampling process, to infer flooding probability on a cell-by-cell basis over the study area. A likelihood-based flooding hazard map was output from the GIS-based framework. The results reveal elevation and slope have more significant impacts on evaluation than other input indices. Area of high likelihood of flooding hazard is mainly located in the west and the southwest where there is a high water channel density, and along the water channels in the east of the study area. High likelihood of flooding hazard covers 45 % of the total area, medium likelihood accounts for about 12 %, low and very low likelihood represents 19 and 24 %, respectively. The results provide baseline information to identify and assess flooding hazard when making adaptation strategies and implementing mitigation measures in future. The framework and methodology developed in the study offer an integrated approach in evaluation of flooding hazard with spatial distributions and indicative uncertainties. It can also be applied to other hazard assessments.  相似文献   

7.
Comprehensive flood risk assessment requires enhanced understanding of the coevolution of the river and its floodplain occupation. Paleoflood analysis to determine flood prone areas in combination with numerical simulations to estimate flood hazard and a historical analysis of urban development to consider the evolution of exposure to floods is a possible way forward. The well‐documented 2006 extreme flood in the Biobío River system and the impacted metropolitan area of Concepción, Chile (~1 million inhabitants) was used as a complex scenario to test the reliability of the proposed method. Results showed that flood prone areas determined with hydro‐geomorphological methods are consistent with those computed with numerical models based on detailed digital elevation models. The flood generation via superficial flow pathways resulting in inundated areas could explain that rivers tend to reactivate paleochannels in extreme conditions. Urban development progressively increased the city's exposure to floods from 0 ha in 1,751 to 1,363 ha in 2006 evidencing a lack of appropriate flood risk management. The 100‐year peak discharge resulted in a high flood risk for about 5% of the total urbanized area of Concepción, and higher discharges are likely to reactivate a paleochannel that crosses the current city centre. We conclude that the proposed paleo hydro‐geomorphology, hydraulic, and urban planning multimethod approach is a necessary tool to enhance understanding of flood risk in complex scenarios to improve flood risk management.  相似文献   

8.
Cellular‐based approaches for flood inundation modelling have been extensively calibrated and evaluated for the prediction of flood flows on rural river reaches. However, there has only been limited application of these approaches to urban environments, where the need for flood management is greatest. Practical application of two‐dimensional (2D) flood inundation models is often limited by computation time and processing power on standard desktop PCs when attempting to resolve flows on the high‐resolution grids necessary to replicate urban features. Consequently, it is necessary to evaluate the effectiveness of coarse grids to represent flood flows through urban environments. To examine these effects, LISFLOOD‐FP, a 2D storage cell model, is applied to hypothetical flooding scenarios in Greenfields, Glasgow. Grid resampling techniques in GIS software packages are evaluated and a bilinear gridding technique appears to provide the most accurate and physically intuitive results. A gridding method maintaining sharp elevation changes at building interfaces and neighbouring land is presented and estimates of the discretization noise associated with the coarse resolution grids suggest little improvement over current gridding methods. The variation in model results from the friction sensitivity analysis suggests a non‐stationary response to Manning's n with changing model resolution. Model results suggests that a coarse resolution model for urban applications is limited by the representation of urban media in coarse model grids. Furthermore, critical length scales related to building dimensions and building separation distances exist in urban areas that determine maximum possible grid resolutions for hydraulic models of urban flooding. Copyright ©, 2008 John Wiley & Sons, Ltd.  相似文献   

9.
The Itajaí River basin is one of the areas most affected by flood-related disasters in Brazil. Flood hazard maps based on digital elevation models (DEM) are an important alternative in the absence of detailed hydrological data and for application in large areas. We developed a flood hazard mapping methodology by combining flow frequency analysis with the Height Above the Nearest Drainage (HAND) model – f2HAND – and applied it in three municipalities in the Itajaí River basin. The f2HAND performance was evaluated through comparison with observed 2011 flood extent maps. Model performance and sensitivity were tested for different DEM resolutions, return periods and streamflow data from stations located upstream and downstream on the main river. The flood hazard mapping with our combined approach matched 92% of the 2011 flood event. We found that the f2HAND model has low sensitivity to DEM resolution and high sensitivity to area threshold of channel initiation.  相似文献   

10.
林芷欣  许有鹏  代晓颖  王强  袁甲 《湖泊科学》2018,30(6):1722-1731
针对城市化对平原河网水系结构的影响所引起的洪涝灾害频发等一系列水文问题,以我国典型平原河网地区苏州市为例,根据不同城市化程度分为主城区、市辖区、其他市县区,基于1991、2001和2015年三期遥感影像与1960s、1980s和2010s三个时期的水系数据,应用RS/GIS等技术,构建水系结构参数指标,重点探讨了城市化对河网水系结构及功能的影响.结果表明:城镇用地迅速增长,主要以牺牲水田、水域等土地利用方式为代价,到2015年全区城镇用地面积所占比重已达到41.35%,土地利用类型的变化规律与城市化进程的差异性保持一致;水系结构变化主要受城市化影响,且基本与城市化进程呈现同步性.近50年来,全区的水面率、河网密度、支流发育系数、主干河流面积长度比、河网复杂度和河网结构稳定度分别减少了19.63%、6.91%、7.34%、1.06%、5.49%和7.87%,城市化水平与各指数均呈负相关关系;人类活动不仅直接影响河流功能,也间接地通过改变平原河网的水系结构导致其功能发生改变,如河网调蓄能力下降、河流生态功能受损等.该研究为城市化地区河流水系保护及防洪减灾提供参考与理论支撑.  相似文献   

11.
Sewer inlet structures are vital components of urban drainage systems and their operational conditions can largely affect the overall performance of the system. However, their hydraulic behaviour and the way in which it is affected by clogging is often overlooked in urban drainage models, thus leading to misrepresentation of system performance and, in particular, of flooding occurrence. In the present paper, a novel methodology is proposed to stochastically model stormwater urban drainage systems, taking the impact of sewer inlet operational conditions (e.g. clogging due to debris accumulation) on urban pluvial flooding into account. The proposed methodology comprises three main steps: (i) identification of sewer inlets most prone to clogging based upon a spatial analysis of their proximity to trees and evaluation of sewer inlet locations; (ii) Monte Carlo simulation of the capacity of inlets prone to clogging and subsequent simulation of flooding for each sewer inlet capacity scenario, and (iii) delineation of stochastic flood hazard maps. The proposed methodology was demonstrated using as case study design storms as well as two real storm events observed in the city of Coimbra (Portugal), which reportedly led to flooding in different areas of the catchment. The results show that sewer inlet capacity can indeed have a large impact on the occurrence of urban pluvial flooding and that it is essential to account for variations in sewer inlet capacity in urban drainage models. Overall, the stochastic methodology proposed in this study constitutes a useful tool for dealing with uncertainties in sewer inlet operational conditions and, as compared to more traditional deterministic approaches, it allows a more comprehensive assessment of urban pluvial flood hazard, which in turn enables better-informed flood risk assessment and management decisions.  相似文献   

12.
Delineation of flood risk hotspots can be considered as one of the first steps in an integrated methodology for urban flood risk management and mitigation. This paper presents a step-by-step methodology in a GIS-based framework for identifying flooding risk hotspots for residential buildings. This is done by overlaying a map of potentially flood-prone areas [estimated through the topographic wetness index (TWI)], a map of residential areas [extracted from a city-wide assessment of urban morphology types (UMT)], and a geo-spatial census dataset. The novelty of this paper consists in the fact that the flood-prone areas (the TWI thresholds) are identified through a maximum likelihood method (MLE) based both on inundation profiles calculated for a specific return period (TR), and on information about the extent of historical flooding in the area of interest. Furthermore, Bayesian parameter updating is employed in order to estimate the TWI threshold by employing the historical extent as prior information and the inundation map for calculating the likelihood function. For different statistics of the TWI threshold, the map of potentially flood-prone areas is overlaid with the map of residential urban morphology units in order to delineate the residential flooding risk urban hotspots. Overlaying the delineated urban hotspots with geo-spatial census datasets, the number of people affected by flooding is estimated. These kind of screening procedures are particularly useful for locations where there is a lack of detailed data or where it is difficult to perform accurate flood risk assessment. In fact, an application of the proposed procedure is demonstrated for the identification of urban flooding risk hotspots in the city of Ouagadougou, capital of Burkina Faso, a city for which the observed spatial extent of a major flood event in 2009 and a calculated inundation map for a return period of 300 years are both available.  相似文献   

13.
Flood hazard maps at trans‐national scale have potential for a large number of applications ranging from climate change studies, reinsurance products, aid to emergency operations for major flood crisis, among others. However, at continental scales, only few products are available, due to the difficulty of retrieving large consistent data sets. Moreover, these are produced at relatively coarse grid resolution, which limits their applications to qualitative assessments. At finer resolution, maps are often limited to country boundaries, due to limited data sharing at trans‐national level. The creation of a European flood hazard map would currently imply a collection of scattered regional maps, often lacking mutual consistency due to the variety of adopted approaches and quality of the underlying input data. In this work, we derive a pan‐European flood hazard map at 100 m resolution. The proposed approach is based on expanding a literature cascade model through a physically based approach. A combination of distributed hydrological and hydraulic models was set up for the European domain. Then, an observed meteorological data set is used to derive a long‐term streamflow simulation and subsequently coherent design flood hydrographs for a return period of 100 years along the pan‐European river network. Flood hydrographs are used to simulate areas at risk of flooding and output maps are merged into a pan‐European flood hazard map. The quality of this map is evaluated for selected areas in Germany and United Kingdom against national/regional hazard maps. Despite inherent limitations and model resolution issues, simulated maps are in good agreement with reference maps (hit rate between 59% and 78%, critical success index between 43% and 65%), suggesting strong potential for a number of applications at the European scale. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
The reliability of a levee system is a crucial factor in flood risk management. In this study we present a probabilistic methodology to assess the effects of levee cover strength on levee failure probability, triggering time, flood propagation and consequent impacts on population and assets. A method for determining fragility curves is used in combination with the results of a one-dimensional hydrodynamic model to estimate the conditional probability of levee failure in each river section. Then, a levee breach model is applied to calculate the possible flood hydrographs, and for each breach scenario a two-dimensional hydrodynamic model is used to estimate flood hazard (flood extent and timing, maximum water depths) and flood impacts (economic damage and affected population) in the areas at risk along the river reach. We show an application for levee overtopping and different flood scenarios for a 98 km reach of the lower Po River in Italy. The results show how different design solutions for the levee cover can influence the probability of levee failure and the consequent flood scenarios. In particular, good grass cover strength can significantly delay levee failure and reduce maximum flood depths in the flood-prone areas, thus helping the implementation of flood risk management actions.
EDITOR D. Koutsoyiannis

ASSOCIATE EDITOR A. Viglione  相似文献   

15.
Tools for accurately predicting environmental risks, such as the location and spatial extent of potential inundation, are not widely available. A dependence on calibration and a lack of available flood data have prevented the widespread application of existing hydrodynamic methods for predicting the extent of inundation. We use the height above the nearest drainage (HAND) terrain model to develop a simple static approach for mapping the potential extent of inundation that does not depend on flood observations and extends beyond methods for mapping low‐lying areas. While relying on the contour concept, the method utilizes drainage‐normalized topography and flowpaths to delineate the relative vertical distances (drop) to the nearest river. The HAND‐delineated relative drop is an effective distributed predictor of flood potential, which is directly related to the river stage height. We validated the new HAND contour approach using a flood event in Southern Brazil for which high‐resolution maps were available. The results indicated that the flood hazard‐mapping method accurately predicted the inundation extent of the channel carrying the flood wave and the channels influenced by flooding. For channels positioned outside of the flood‐wave area, the method overestimated the actual flood extent. As an original static assessment of floodwaters across the landscape, the HAND contour method could be used to map flood hazards in areas with poor information and could promote the development of new methods for predicting hydrological hazards. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
Flood hazard maps used to inform and build resilience in remote communities in the Terai region of southern Nepal are based on outdated and static digital elevation models (DEMs), which do not reflect dynamic river configuration or hydrology. Episodic changes in river course, sediment dynamics, and the distribution of flow down large bifurcation nodes can modify the extent of flooding in this region, but these processes are rarely considered in flood hazard assessment. Here, we develop a 2D hydrodynamic flood model of the Karnali River in the Terai region of west Nepal. A number of scenarios are tested examining different DEMs, variable bed elevations to simulate bed aggradation and incision, and updating bed elevations at a large bifurcation node to reflect field observations. By changing the age of the DEM used in the model, a 9.5% increase in inundation extent was observed for a 20-year flood discharge. Reducing horizontal DEM resolution alone resulted in a <1% change. Uniformly varying the bed elevation led to a 36% change in inundation extent. Finally, changes in bed elevation at the main bifurcation to reflect observed conditions resulted in the diversion of the majority of flow into the west branch, consistent with measured discharge ratios between the two branches, and a 32% change in inundation extent. Although the total flood inundation area was reduced (−4%), there was increased inundation along the west bank. Our results suggest that regular field measurements of bed elevation and updated DEMs following large sediment-generating events, and at topographically sensitive areas such as large river bifurcations, could help improve model inputs in future flood prediction models. This is particularly important following flood events carrying large sediment loads out of mountainous regions that could promote bed aggradation and channel switching across densely populated alluvial river systems and floodplains further downstream. © 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd  相似文献   

17.
Abstract

Flood hazard maps were developed using remote sensing (RS) data for the historical event of the 1988 flood with data of elevation height, and geological and physiographic divisions. Flood damage depends on the hydraulic factors which include characteristics of the flood such as the depth of flooding, rate of the rise in water level, propagation of a flood wave, duration and frequency of flooding, sediment load, and timing. In this study flood depth and “flood-affected frequency” within one flood event were considered for the evaluation of flood hazard assessment, where the depth and frequency of the flooding were assumed to be the major determinant in estimating the total damage function. Different combinations of thematic maps among physiography, geology, land cover and elevation were evaluated for flood hazard maps and a best combination for the event of the 1988 flood was proposed. Finally, the flood hazard map for Bangladesh and a flood risk map for the administrative districts of Bangladesh were proposed.  相似文献   

18.
The reliability of a procedure for investigation of flooding into an ungauged river reach close to an urban area is investigated. The approach is based on the application of a semi‐distributed rainfall–runoff model for a gauged basin, including the flood‐prone area, and that furnishes the inlet flow conditions for a two‐dimensional hydraulic model, whose computational domain is the urban area. The flood event, which occurred in October 1998 in the Upper Tiber river basin and caused significant damage in the town of Pieve S. Stefano, was used to test the approach. The built‐up area, often inundated, is included in the gauged basin of the Montedoglio dam (275 km2), for which the rainfall–runoff model was adapted and calibrated through three flood events without over‐bank flow. With the selected set of parameters, the hydrological model was found reasonably accurate in simulating the discharge hydrograph of the three events, whereas the flood event of October 1998 was simulated poorly, with an error in peak discharge and time to peak of −58% and 20%, respectively. This discrepancy was ascribed to the combined effect of the rainfall spatial variability and a partial obstruction of the bridge located in Pieve S. Stefano. In fact, taking account of the last hypothesis, the hydraulic model reproduced with a fair accuracy the observed flooded urban area. Moreover, incorporating into the hydrological model the flow resulting from a sudden cleaning of the obstruction, which was simulated by a ‘shock‐capturing’ one‐dimensional hydraulic model, the discharge hydrograph at the basin outlet was well represented if the rainfall was supposed to have occurred in the region near the main channel. This was simulated by reducing considerably the dynamic parameter, the lag time, of the instantaneous unit hydrograph for each homogeneous element into which the basin is divided. The error in peak discharge and time to peak decreased by a few percent. A sensitivity analysis of both the flooding volume involved in the shock wave and the lag time showed that this latter parameter requires a careful evaluation. Moreover, the analysis of the hydrograph peak prediction due to error in rainfall input showed that the error in peak discharge was lower than that of the same input error quantity. Therefore, the obtained results allowed us to support the hypothesis on the causes which triggered the complex event occurring in October 1998, and pointed out that the proposed procedure can be conveniently adopted for flood risk evaluation in ungauged river basins where a built‐up area is located. The need for a more detailed analysis regarding the processes of runoff generation and flood routing is also highlighted. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

19.
我国东南沿海中小流域洪水模拟研究   总被引:1,自引:1,他引:0  
我国东南沿海多为独流入海的中小流域,河流短小,流域调节能力弱.该区洪水历时较短,但危害较大,加之近年来区内经济的迅速发展,洪水造成损失日趋加剧,因此开展此区洪水特性和防洪减灾研究意义重大.本文以中国东南沿海曹娥江流域为典型,根据中小流域洪水的特点,在初步分析流域降雨径流的成因和洪水演进规律的基础上,开展了流域洪水模拟研究, 选择建立了流域降雨径流模型以及洪水演进模型,重点探讨了利用遥感信息和GIS相结合确定水文模型参数的方法和途径,经实验流域资料检验分析,其模拟结果计算精度满足要求.该研究将有助于该区流域降雨径流特性及洪水演变规律的深入研究,同时为东南沿海中小流域洪水模拟预测和防洪减灾研究提供了经验和模式.  相似文献   

20.
长江中游洞庭湖地区江湖整治刍议   总被引:2,自引:0,他引:2  
根据1998年洪水之后长江中游洞庭庭湖地区大量实地科学考察资料,结合已有的长期科研积累,对长江中游洞庭湖地区的江湖整治和灾后重建等问题了初步分析,并取得若干认识。主要包括长江中游地区洪水威胁日趋严重的原因;“退田还源  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号