首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
针对长江中下游三个大水年1991、1998和2016年,利用NCEP/NCAR大气环流再分析资料和CMAP降水资料,对比了夏季降水的季节内特征,分析了引起降水季节内变化的大气环流季节内振荡ISO演变及源地。小波分析表明,三年季节内降水周期差异明显,分别为20~30 d、20~40 d和10~20 d。随之,以东亚季风区季节内振荡指数及热带外Rossby波活动通量,诊断了引起三年季节内活动异常的热带和中纬度ISO变率特点。结果显示影响三年季节内降水的ISO差异较大。1991年受到来自印度洋10~30 d和中纬度高层Rossby波10~30 d的ISO共同影响,造成周期为20~30 d的低频降水;1998年ISO来源路径单一,受中北太平洋30~60 d和10~30 d的ISO西传叠加作用,降水表现为20~40 d的振荡;引起2016年季节内降水异常的ISO源地较多,既有来自印度洋向东北传播30~60 d的ISO,又有来自太平洋向西北传播10~30 d的ISO,还有来自热带外10~30 d的ISO,三者在长江中下游汇合,引起降水10~20 d的振荡。研究结果对认识长江中下游夏季集中降水的形成有重要意义。   相似文献   

2.
利用NCAR/NCEP-1再分析资料、NOAA的OLR资料以及GPCP降水资料等,通过功率谱分析、超前滞后回归等方法,对夏季南海周边105 °E、125 °E以及150 °E三支越赤道气流进行了多尺度特征分析,重点探讨三支越赤道气流季节内振荡与热带大气环流异常及南海周边降水的联系。结果表明,在季节内时间尺度上,105 °E与125 °E越赤道气流均具有10~20 d以及30~60 d低频振荡显著周期,而150 °E越赤道气流则以10~20 d周期为主。在年际尺度上,105 °E、125 °E、150 °E越赤道气流分别具有2~4年、2~3年、2~6年振荡周期。无论是季内还是年际变化,皆以105 °E与125 °E这两支越赤道气流之间关系较密切。南亚-南海-西太平洋地区对流层低层10~20 d振荡的气旋(对流加强)和反气旋(对流减弱)的环流活动变化,决定着105 °E及125 °E越赤道气流的10~20 d振荡的演变。这两支越赤道气流之30~60 d振荡所伴随的异常变化与热带夏季季节内振荡(BSISO)的演变过程非常相似,而150 °E越赤道气流之30~60 d振荡所伴随的异常低频环流则与南半球热带辐合带关系密切。105 °E及125 °E越赤道气流的季节内振荡及年际异常均与南海周边降水异常密切相关。   相似文献   

3.
热带低层大气30~60天低频动能的年际变化与ENSO循环   总被引:17,自引:7,他引:10  
龙振夏  李崇银 《大气科学》2001,25(6):798-808
利用NCEP再分析资料,通过统计相关及合成分析研究了热带大气季节内振荡(ISO)的年际变化与ENSO循环之间的关系.结果表明,热带大气季节内振荡(也称30~60天低频振荡)的年际变化在热带中西太平洋地区最强.在ElNino成熟之前的春夏季,热带西太平洋的30~60天振荡异常活跃,其动能明显增加且逐渐东移;在E1Nino成熟以后,热带西太平洋大气30~60天低频振荡迅速减弱.与这种加强的30~60天振荡相伴随,在赤道北侧为异常的气旋式环流,赤道地区出现偏西风异常.相反,在LaNina成熟之前的春夏季,热带西太平洋大气30~60天振荡偏弱.进一步的分析还发现,东亚冬季风的年际变化是引起热带大气30~60天振荡的年际变化的主要机制:强东亚冬季风导致热带西太平洋积云对流加强,从而引起热带西太平洋大气30~60天振荡加强;相反,对应于弱的东亚冬季风,热带西太平洋地区积云对流偏弱,大气30~60天振荡偏弱.作者的资料分析还证实,热带大气30~60天低频振荡的年际变化,作为一种外强迫,对ElNino的形成起着十分重要的作用.  相似文献   

4.
利用1981—2002年美国国家气象中心(National Meteorological Center,NMC)逐日海表温度(sea surface temperature,SST)、10 m高处风场(V)及逐月混合层厚度(mixed layer depth,mld)资料,研究了太平洋区域海表温度季内振荡的气候及异常特征,重点探讨了北太平洋区域海表温度季内振荡的维持机制。研究发现,太平洋区域海表温度存在3个季内振荡强度气候高值区,即热带东太平洋(终年存在)、西北太平洋(北半球春、夏、秋存在)、西南太平洋(南半球夏季前后存在),它们出现在气候混合层厚度最小的区域和季节。海表温度季内振荡强度年际异常与混合层厚度年际异常存在显著负相关,在物理上,这种关系比它与海表温度异常的关系更直接。北太平洋区域5—9月地面风场与海表温度季节内振荡的基本耦合模态揭示出以漂流和感热输送为动力的一个负反馈过程,它存在于薄混合层海区,这是该海区强海表温度季内振荡的维持机制。  相似文献   

5.
孟加拉湾西南季风与南海热带季风季节内振荡特征的比较   总被引:4,自引:2,他引:2  
李汀  琚建华 《气象学报》2013,71(3):492-504
采用美国国家环境预报中心的向外长波辐射和风场资料及日本气象厅的降水资料,用30-60d滤波后的夏季风指数在孟加拉湾和南海的区域平均值分别代表孟加拉湾西南季风和南海热带季风季节内振荡,对两支季风的季节内振荡特征进行比较分析,发现孟加拉湾西南季风的季节内振荡和南海热带季风的季节内振荡在夏季风期间(5-10月)都有约3次半的波动.夏季风期间,在阿拉伯海-西太平洋纬带上,夏季风的季节内振荡有4次从阿拉伯海的东传和3次从西太平洋的西传,其中7月后东传可直达西太平洋.孟加拉湾和南海在夏季风期间都有4次季节内振荡的经向传播,但孟加拉湾在约15°N以南为季节内振荡从热带东印度洋的北传,在约15°N以北则为副热带季风季节内振荡的南传;而在南海则是4次季节内振荡从热带的北传.在以孟加拉湾西南季风季节内振荡和南海热带季风季节内振荡分别划分的6个位相中,都存在1-3位相和4-6位相中低频对流、环流形势相反的特征,这是由热带东印度洋季节内振荡的东传和北传所致.热带印度洋季节内振荡沿西南-东北向经过约14d传到孟加拉湾,激发了孟加拉湾西南季风季节内振荡的东传,经过约6d到达南海,激发了南海热带季风季节内振荡的北传,经过约25d到达华南,形成热带印度洋季节内振荡向华南的经纬向接力传播(45d).孟加拉湾西南季风季节内振荡所影响的降水主要是在20°N以南的热带雨带随低频对流的东移而东移;而南海热带季风季节内振荡所影响的降水除了这种热带雨带随低频对流的东移外,还有在20°N以北的东亚副热带地区存在雨带随南海低频对流的北移而北移.  相似文献   

6.
热带季节内振荡时空特征的诊断研究   总被引:24,自引:4,他引:24  
董敏  张兴强  何金海 《气象学报》2004,62(6):821-830
文中应用谱分析、小波分析等方法及较长时段的资料进一步总结了热带季节内振荡的一些基本气候特征。热带季节内振荡主要活跃在 3个地区 ,最强的是西太平洋地区 ,其次是印度洋地区 ,第三是东太平洋沿岸的赤道以北地区。热带季节内振荡有明显的季节变化 ,西太平洋地区和印度洋地区的季节内振荡 1a中有两次极大值 ,冬季主要活跃在南半球 (10°S附近 ) ,而夏季则活跃在北半球 (10°N附近 ) ,春、秋季热带季节内振荡则明显减弱。东赤道太平洋北侧的季节内振荡只在夏季活跃 ,而冬季则很弱 ,且不随季节而南北移动。对于大气的大尺度要素 ,例如u风场 ,热带季节内振荡的能量主要集中在 1波。而对于像降水这样尺度较小的要素 ,热带季节内振荡的能量则相对较分散 ,尽管它仍然在 1波有最大的能量 ,但 2~ 4波也具有较接近的能量。热带季节内振荡以东移的波动为主。热带季节内振荡存在着年际甚至更长时间的变化。 2 0世纪 70年代末期季节内振荡的幅度有一明显的突变。  相似文献   

7.
热带西太平洋海表温度(SST)具有明显的季节内(30天-60天)变化,它与热带对流活动有着同一时间尺度的耦合关系,位相相差10天-20天.在向东传播的30天-60天振荡以东地区SST异常偏高,海气反馈系统显示出非常明显的30天-60天振荡.同时,也发现具有30天-60天时间尺度位相差海气耦合,在1981年北半球夏季期间在热带西太平洋表现较弱,这一年正是1982年-1983年厄尔尼诺南方涛动(ENSO)事件的前一年.  相似文献   

8.
热带对流和环流季内振荡强度与海表温度关系对比研究   总被引:2,自引:1,他引:1  
利用外逸长波辐射(OLR)、风场和海表温度(SST)资料, 研究了热带大气季节内振荡(ISO)强度的季节变化特征, 发现热带印度洋和热带西太平洋区域是OLR和风场季内振荡最主要的共同活跃区。对比分析了OLR和风场季内振荡强度与海表温度异常之间的年际异常关系, 发现OLR季内振荡强度异常与海表温度异常之间存在显著局地正相关关系, 即在热带中东太平洋区域、热带西北太平洋区域和热带西南太平洋区域, 当海表温度正(负)异常时, OLR季内振荡增强(减弱),特别在冬春季节这一关系更清楚。除个别区域外, 风场季内振荡强度异常与海表温度异常不存在类似OLR的局地关系。OLR和风场季内振荡强度异常与海表温度异常之间局地和非局地关系的差异, 体现了两种要素特性的本质差异。但两种要素季内振荡强度在El Niño事件发展过程中的变化基本一致, 即在气候场中季内振荡活跃的区域, 事件发生之前季内振荡会增强, 并逐渐向东传播, 事件发生之后这些区域振荡减弱。  相似文献   

9.
副热带北太平洋大气季节内振荡时空特征的诊断研究   总被引:5,自引:1,他引:4  
韩荣青  李维京  董敏 《气象学报》2010,68(4):520-528
用时空谱分析和小波变换方法,对1958—2002年NCEP/NCAR再分析资料经、纬向风速和位势高度的年时间序列进行了波谱分析,并重点研究了北太平洋副热带区域经向风30—60天振荡(ISO)的时空特征。研究结果表明,北半球经向风与纬向风和位势高度的30—60天振荡特征迥然不同,代表风场经向低频扰动的经向风ISO在副热带和中高纬度最为活跃,而在热带地区的活动十分微弱;北半球副热带850 hPa高度场和纬向风在10—90天内(季节内)振荡的主要能量集中在纬圈波数为1、周期为30—60天的波动上,而850 hPa经向风季节内振荡的主要能量集中在纬圈波数为4—6、周期为30—60天以及70—90天的波动上,上述3个物理量30—60天振荡向西传播的能量都强于向东传播的能量。一年当中,东亚到北太平洋的副热带地区,经向风ISO在东亚—西北太平洋与东北太平洋两个区域的活动最强,且在这两个区域存在明显的季节振荡,即东北太平洋的ISO在冬季最强在夏季最弱,而东亚—西北太平洋区域的ISO在夏季最强冬季最弱。850 hPa经向风ISO的年际和年代际变化分析表明,在东亚副热带区域其活动1958—1975年较强,1976—1990年明显减弱,而1991—2000年最强;其在ENSO发生期间有较为明显的异常活动,但其强弱变化没有显著的定势,然而2—7年的带通滤波分析表明西北太平洋ISO的年际活动含有较显著的ENSO信号,9年的低通滤波分析表明,年代际时间尺度上,西北太平洋ISO的活动与ENSO循环有较为显著的反相关特征,而东北太平洋区域ISO与ENSO循环有较为显著的正相关关系。  相似文献   

10.
季节内振荡影响西太平洋副热带高压两次北跳的机制   总被引:1,自引:0,他引:1  
苏同华  薛峰  陈敏艳  董啸 《大气科学》2017,41(3):437-460
夏季期间,西太平洋副热带高压(简称副高)存在两次明显的北跳,其中第一次北跳导致华南前汛期结束、江淮梅雨建立,而第二次北跳则意味着江淮梅雨结束、华北雨季开始。本文基于观测资料和再分析数据,利用快速傅里叶变换和合成分析方法,深入探讨不同时间尺度季节内振荡对气候态和异常年副高两次北跳的影响机制。结果表明:在季节内尺度上,平常年和异常年影响副高两次北跳的季节内振荡的主导周期不同。气候态上,以10~20天和准60天为主;第一次北跳异常年和第二次北跳偏早年,以30~60天为主;第二次北跳偏晚年,则呈现出10~20天和30~60天两个主导周期。不论气候态还是异常年,东亚—热带西北太平洋地区低频振荡在年循环背景下均呈现出明显的北传特征,这是导致副高发生两次北跳的重要原因之一。而印度季风区低频振荡在东北向传播过程中所引起的西风东伸是造成副高第一次北跳更为明显的原因。源自澳大利亚高压的冷空气入侵所激发的暖池对流的准双周振荡则是造成气候态和偏晚年副高第二次北跳更为显著的原因。由于前期春季西北印度洋海温出现异常,造成局地低频振荡发生位相迁移,进而导致副高第一次北跳发生异常。而副高第二次北跳异常则是因为ENSO改变了暖池地区季节内振荡的尺度和振幅所造成的。  相似文献   

11.
Wu  Renguang  Cao  Xi 《Climate Dynamics》2017,48(11-12):3529-3546
Climate Dynamics - The present study contrasts interannual variations in the intensity of boreal summer 10–20-day and 30–60-day intraseasonal oscillations (ISOs) over the tropical...  相似文献   

12.
S. Ma  X. Rodó  Y. Song  B. A. Cash 《Climate Dynamics》2012,39(3-4):557-574
The Indian summer monsoon rainfall (ISMR) over the Western Ghats (WG) and the Bay of Bengal (BoB) is marked by the intraseasonal oscillations (ISOs) with preferred 10–20-day and 30–50-day bands. On the basis of pentad Climate Prediction Center Merged Analysis Precipitation and daily sea level pressure and winds at 850?hPa derived from European Center for Medium-range Weather Forecast reanalysis, we present the structure and evolution of the ISOs linked to the ISMR variations over the WG and the BoB and the associated anomalies of the atmospheric circulation using the approaches of wavelet analysis, bandpass filtering and composite analysis. This study reveals that the activities of both the intertropical convergence zone (ITCZ) and the western Pacific subtropical high (WPSH) contribute strongly to the structure and propagation of the ISOs on intraseasonal time scales. Northward development and propagation of the ITCZ plays a critical role in the northward-propagating ISOs, but not in the westward-propagating BoB 10–20-day ISOs. The latter ISOs may be linked, instead, to the activity of synoptic-scale weather systems to the east over the western tropical Pacific. The enhanced ITCZ in the tropical Indian Ocean plays a strong role in the sudden strengthening of the WPSH during the transition from the break to active phase of the 30–50-day ISOs. We find that the strong WPSH in the Asian summer monsoon season, with generally northward advance and eastward withdrawal, promotes the formation of a northwest to southeast tilted anomalous rainfall belt over the East Asian tropical summer monsoon region and the western tropical Pacific in the 30–50-day low-frequency band. Positive (Negative) elongated rainfall anomalies with an unbroken northwest-southeast tilt, strong easterly (westerly) anomalies in the tropical Pacific, and northward advance and eastward movement of strong (weak) WPSH are favorable for maintaining the eastward propagation of the 30–50-day ISOs in the Pacific. Daily high-resolution sea surface temperature obtained from the National Oceanic and Atmospheric Administration is used to explain the propagation features of the 10–20-day ISOs in the Indian Ocean.  相似文献   

13.
We assess the ability of individual models (single-model ensembles) and the multi-model ensemble (MME) in the European Union-funded ENSEMBLES project to simulate the intraseasonal oscillations (ISOs; specifically in 10–20-day and 30–50-day frequency bands) of the Indian summer monsoon rainfall (ISMR) over the Western Ghats (WG) and the Bay of Bengal (BoB), respectively. This assessment is made on the basis of the dynamical linkages identified from the analysis of observations in a companion study to this work. In general, all models show reasonable skill in simulating the active and break cycles of the 30–50-day ISOs over the Indian summer monsoon region. This skill is closely associated with the proper reproduction of both the northward propagation of the intertropical convergence zone (ITCZ) and the variations of monsoon circulation in this band. However, the models do not manage to correctly simulate the eastward propagation of the 30–50-day ISOs in the western/central tropical Pacific and the eastward extension of the ITCZ in a northwest to southeast tilt. This limitation is closely associated with a limited capacity of models to accurately reproduce the magnitudes of intraseasonal anomalies of both the ITCZ in the Asian tropical summer monsoon regions and trade winds in the tropical Pacific. Poor reproduction of the activity of the western Pacific subtropical high on intraseasonal time scales also amplify this limitation. Conversely, the models make good reproduction of the WG 10–20-day ISOs. This success is closely related to good performance of the models in the representation of the northward propagation of the ITCZ, which is partially promoted by local air–sea interactions in the Indian Ocean in this higher-frequency band. Although the feature of westward propagation is generally represented in the simulated BoB 10–20-day ISOs, the air–sea interactions in the Indian Ocean are spuriously active in the models. This leads to active WG rainfall, which is not present in the observed BoB 10–20-day ISOs. Further analysis indicates that the intraseasonal variability of the ISMR is generally underrepresented in the simulations. Skill of the MME in seasonal ISMR forecasting is strongly dependent on individual model performance. Therefore, in order to improve the model skill with respect to seasonal ISMR forecasting, we suggest it is necessary to better represent the robust dynamical links between the ISOs and the relevant circulation variations, as well as the proportion of intraseasonal variability in the individual models.  相似文献   

14.
本文利用8个CMIP5模式的日资料,预估了RCP4.5和RCP8.5情景下全球增温达1.5℃和2.0℃时西北太平洋夏季30~60天和10~20天季节内振荡(ISO)强度的变化情况.大多数模式都认为,无论增温水平或情景如何,预估结果均显示从中南半岛南部到菲律宾以东的带状区域内ISO强度增加,并且关键气象要素背景的变化会对...  相似文献   

15.
Using the humidity profiles from the Atmospheric Infrared Sounder (AIRS) dataset, rainfall from the Tropical Rainfall Measuring Mission (TRMM) Global Precipitation Index (GPI), and surface winds from QuickSCAT (QSCAT) as well as SST from the Advanced Microwave Scanning Radiometer for NASA's Earth Observing System (AMSR-E), we analyzed the structure of summer intraseasonal oscillation (ISO) over the western North Pacific region in 2003--2004. We find that the signal of 20--90-day oscillations in the western North Pacific originates from the equatorial Indian Ocean, and propagates eastward to Philippine Sea and then moves northwestward to South China. The AIRS humidity data reveal that the boundary-layer moisture leads the mid-troposphere moisture during the ISO propagation. The positive SST anomaly may play an important role to moistening the boundary-layer, which preconditions the ISO propagation.Therefore, the intraseasonal SST anomaly could positively feed back to the atmosphere through moistening the boundary-layer,destabilizing the troposphere, and contributing to the northwestward propagation of the ISO in western North Pacific. On the other hand, the salient feature that the boundary-layer moisture anomaly leads mid-troposphere moisture does not exist in ECMWF/TOGA analysis.  相似文献   

16.
The present study reveals cross-season connections of rainfall variability in the South China Sea (SCS) region between winter and summer. Rainfall anomalies over northern South China Sea in boreal summer tend to be preceded by the same sign rainfall anomalies over southern South China Sea in boreal winter (denoted as in-phase relation) and succeeded by opposite sign rainfall anomalies over southern South China Sea in the following winter (denoted as out-of-phase relation). Analysis shows that the in-phase relation from winter to summer occurs more often in El Niño/La Niña decaying years and the out-of-phase relation from summer to winter appears more frequently in El Niño/La Niña developing years. In the summer during the El Niño/La Niña decaying years, cold/warm and warm/cold sea surface temperature (SST) anomalies develop in tropical central North Pacific and the North Indian Ocean, respectively, forming an east–west contrast pattern. The in-phase relation is associated with the influence of anomalous heating/cooling over the equatorial central Pacific during the mature phase of El Niño/La Niña events that suppresses/enhances precipitation over southern South China Sea and the impact of the above east–west SST anomaly pattern that reduces/increases precipitation over northern South China Sea during the following summer. The impact of the east–west contrast SST anomaly pattern is confirmed by numerical experiments with specified SST anomalies. In the El Niño/La Niña developing years, regional air-sea interactions induce cold/warm SST anomalies in the equatorial western North Pacific. The out-of-phase relation is associated with a Rossby wave type response to anomalous heating/cooling over the equatorial central Pacific during summer and the combined effect of warm/cold SST anomalies in the equatorial central Pacific and cold/warm SST anomalies in the western North Pacific during the mature phase of El Niño/La Niña events.  相似文献   

17.
The daily outgoing longwave radiation (OLR) field in boreal summer shows significant power spectrum peaks on quasi-biweekly (10–20-day) and intraseasonal (20-80-day) timescales over the Indo-western Pacific warm pool, especially over the South China Sea and Bay of Bengal. The quasi-biweekly oscillation (QBWO) originates from off-equatorial western North Pacific, and is characterized by a northwest-southeast oriented wave train pattern, propagating northwestward. The intraseasonal oscillation (ISO), on the other hand, originates from the equatorial Indian Ocean and propagates eastward and northward. Why the equatorial mode possesses a 20–80-day periodicity while the off-equatorial mode favors a 10–20-day periodicity is investigated through idealized numerical experiments with a 2.5-layer atmospheric model. In the off-equatorial region, the model simulates, under a realistic three-dimensional summer mean flow, the most unstable mode that has a wave train pattern with a typical zonal wavelength of 6000 km and a period of 10–20 days, propagating northwestward. This is in contrast to the equatorial region, where a Madden-Julian oscillation (MJO) like mode with a planetary (wavenumber-1) zonal scale and a period ranging from 20 to 80 days is simulated. Sensitivity experiments with different initial conditions indicate that the QBWO is an intrinsic mode of the atmosphere in boreal summer in the off-equatorial Indo-western Pacific region under the summer mean state, while the MJO is the most unstable mode in the equatorial region.  相似文献   

18.
This study investigates the structure and propagation of intraseasonal sea surface temperature(SST) variability in the South China Sea(SCS) on the 30–60-day timescale during boreal summer(May–September). TRMM-based SST, GODAS oceanic reanalysis and ERA-Interim atmospheric reanalysis datasets from 1998 to 2013 are used to examine quantitatively the atmospheric thermodynamic and oceanic dynamic mechanisms responsible for its formation. Power spectra show that the 30–60-day SST variability is predominant, accounting for 60% of the variance of the 10–90-day variability over most of the SCS. Composite analyses demonstrate that the 30–60-day SST variability is characterized by the alternate occurrence of basin-wide positive and negative SST anomalies in the SCS, with positive(negative) SST anomalies accompanied by anomalous northeasterlies(southwesterlies). The transition and expansion of SST anomalies are driven by the monsoonal trough–ridge seesaw pattern that migrates northward from the equator to the northern SCS. Quantitative diagnosis of the composite mixed-layer heat budgets shows that, within a strong 30–60-day cycle, the atmospheric thermal forcing is indeed a dominant factor, with the mixed-layer net heat flux(MNHF) contributing around 60% of the total SST tendency, while vertical entrainment contributes more than 30%. However, the entrainment-induced SST tendency is sometimes as large as the MNHF-induced component, implying that ocean processes are sometimes as important as surface fluxes in generating the30–60-day SST variability in the SCS.  相似文献   

19.
Using Atmospheric Infrared Sounder (AIRS) humidity profiles, rainfall from the Tropical Rainfall Mea- suring Mission (TRMM) Global Precipitation Index (GPI), Quick Scatterometer (QSCAT) satellite-observed surface winds, and SST from the Advanced Microwave Scanning Radiometer for NASA's Earth Observing System (AMSR E), we analyzed the structure of the summer quasi-biweekly mode (QBM) over the western Pacific in 2003-2004. We find that the signal of 10-20-day oscillations in the western Pacific originates fro...  相似文献   

20.
Boreal summer intraseasonal oscillation(BSISO) of lower tropospheric ozone is observed in the Indian summer monsoon(ISM) region on the basis of ERA-Interim reanalysis data and ozonesonde data from the World Ozone and Ultraviolet Radiation Data Centre. The 30–60-day intraseasonal variation of lower-tropospheric ozone shows a northwest–southeast pattern with northeastward propagation in the ISM region. The most significant ozone variations are observed in the Maritime Continent and western North Pacific. In the tropics, ozone anomalies extend from the surface to 300 hPa; however, in extratropical areas, it is mainly observed under 500 hPa. Precipitation caused by BSISO plays a dominant role in modulating the BSISO of lower-tropospheric ozone in the tropics, causing negative/positive ozone anomalies in phases 1–3/5–6. As the BSISO propagates northeastward to the western North Pacific, horizontal transport becomes relatively more important, increasing/reducing tropospheric ozone via anticyclonic/cyclonic anomalies over the western North Pacific in phases 3–4/7–8.As two extreme conditions of the ISM, most of its active/break events occur in BSISO phases 4–7/1–8 when suppressed/enhanced convection appears over the equatorial eastern Indian Ocean and enhanced/suppressed convection appears over India, the Bay of Bengal, and the South China Sea. As a result, the BSISO of tropospheric ozone shows significant positive/negative anomalies over the Maritime Continent, as well as negative/positive anomalies over India, the Bay of Bengal,and the South China Sea in active/break spells of the ISM. This BSISO of tropospheric ozone is more remarkable in break spells than in active spells of the ISM, due to the stronger amplitude of BSISO in the former.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号