首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new Local Ocean Tide Model, has been produced for the Exclusive Economic Zone (EEZ) of Malaysia, which incorporates some of the latest TOPEX/POSEIDON data for the years 1992 to 1998. Local tide gauge data are used as a comparison, along with another leading Global Ocean Tide Model, Ori96. The leading diurnal and semidiurnal constituents M2, S2, N2, K1, O1, P1 and Q1 are reproduced using TOPEX/POSEIDON Sea Surface Heights (SSH) in a response analysis type least squares derivation following Munk and Cartwright (1966).  相似文献   

2.
Results of comparison exercises carried out between the state-of-the-art TOPEX/POSEIDON altimeter-derived ocean surface wind speed and ocean wave parameters (significant wave height and wave period) and those measured by a set of ocean data buoys in the North Indian Ocean are presented in this article. Altimeter-derived significant wave height values exhibited rms deviation as small as ±0.3 m, and surface wind speed of ±1.6 m/s. These results are found consistent with those found for the Pacific Ocean. For estimation of ocean wave period, the spectral moments-based semiempirical approach, earlier applied on GEOSAT data, was extended to TOPEX/POSEIDON. For this purpose, distributions of first four years of TOPEX/POSEIDON altimeter data and climatology over the North Indian Ocean were analyzed and a new set of coefficients generated for estimation of wave period. It is shown that wave periods thus estimated from TOPEX/POSEIDON data (for the subsequent two years), when compared with independent data set of ocean data buoys deployed in the North Indian Ocean, exhibit improved accuracy (rms ~ ±1.4 nos) over those determined earlier with GEOSAT data.  相似文献   

3.
Results of comparison exercises carried out between the state-of-the-art TOPEX/POSEIDON altimeter-derived ocean surface wind speed and ocean wave parameters (significant wave height and wave period) and those measured by a set of ocean data buoys in the North Indian Ocean are presented in this article. Altimeter-derived significant wave height values exhibited rms deviation as small as - 0.3 m, and surface wind speed of - 1.6 m/s. These results are found consistent with those found for the Pacific Ocean. For estimation of ocean wave period, the spectral moments-based semiempirical approach, earlier applied on GEOSAT data, was extended to TOPEX/POSEIDON. For this purpose, distributions of first four years of TOPEX/POSEIDON altimeter data and climatology over the North Indian Ocean were analyzed and a new set of coefficients generated for estimation of wave period. It is shown that wave periods thus estimated from TOPEX/POSEIDON data (for the subsequent two years), when compared with independent data set of ocean data buoys deployed in the North Indian Ocean, exhibit improved accuracy (rms ~ - 1.4 nos) over those determined earlier with GEOSAT data.  相似文献   

4.
利用JASON-1和TOPEX/POSEIDON卫星高度计在相互校正阶段的观测资料,对两者在中国海和西北太平洋测得的海面风速、有效波高、后向散射截面、海平面高度等参数进行一致性分析;利用j,v模型及主要分潮的调和常数,对中国陆架浅海的JASON-1海平面高度数据进行浅海潮汐修正,使用验潮站月平均水位资料对修正结果加以印证。结果显示,2颗高度计观测的海洋环境参数具有强相关性,JASON-1具备了完成延续TOPEX/POSEIDON数据集这一使命的条件。但是,2套系统对于同一海洋环境参数的观测还是存在不能忽略的差异,对这种差异进行了分析,并给出了修正模型。所使用的浅海潮汐修正方法有效地抑制了中国陆架浅海潮波对海平面高度反演的影响,所使用浅海水域的5个验潮站月平均水位资料与JASON-1高度计经过浅海潮汐修正后的海平面高度的相关系数为0.738,标准偏差为0.096m。通过进一步融合JASON-1和TOPEX/POSEIDON在并行飞行期间的海平面高度数据并与验潮站资料比较显示,两者的相关系数提高到0.83,标准偏差为0.067m。  相似文献   

5.
Sea surface slope computed from along-track Jason-1 and TOPEX/POSEIDON (T/P) altimeter data at ocean mesoscale wavelengths are compared to determine the equivalent 1 Hz instrument height noise of the Poseidon-2 and TOPEX altimeters. This geophysical evaluation shows that the Ku-band 1-Hz range noise for both instruments is better than 1.7 cm at 2 m significant wave heights (H1/3), exceeding error budget requirements for both missions. Furthermore, we show that the quality of these instruments allows optimal filtering of the 1-Hz along-track sea surface height data for sea surface slopes that can be used to calculate cross track geostrophic velocity anomalies at the baroclinic Rossby radius of deformation to better than 5 cm/sec precision along 87.5% of the satellite ground track between 2 and 60 degrees absolute latitude over the deep abyssal ocean (depths greater than 1000 m). This level of precision will facilitate scientific studies of surface geostrophic velocity variability using data from the Jason-1 and T/P Tandem Mission.  相似文献   

6.
All major ocean tide constituents are aliased into signals with periods less than 90 days from TOPEX/POSEIDON altimetry, except the K1 constituent. The aliased K1 has a period of 173 days. Consequently, it might be confounded with height variations caused by the semiannual cycle having a period of 183 days.The correlation between K1 and the semiannual signal has been investigated both locally and globally using combinations of T/P, ERS-1 and GEOSAT observations. Subsequently, two empirical methods have been investigated to improve the mapping of K1 from multiple satellites.At high latitudes, where the presence of crossing tracks cannot separate K1 from the semiannual signal from TOPEX/POSEIDON, the importance of including ERS-1 and GEOSAT observations was demonstrated. A comparison with 29 pelagic and coastal tide gauges in the Southern Ocean south of 50°S gave 5.59 (M2), 2.27 (S2) and 5.04 (K1) cm RMS agreement for FES95.1 ocean tide model. The same comparison for the best empirical estimated constituents based on TOPEX/POSEIDON + ERS-1 + GEOSAT gave 4.32, 2.21, and 4.29 cm for M2, S2 and K1, respectively.  相似文献   

7.
This article describes an "absolute" calibration of TOPEX/POSEIDON (T/P) altimeter bias using UK tide gauges equipped with Global Positioning System (GPS) receivers. The method is an extension of earlier work using the Newhaven tide gauge in the English Channel. However, the present analysis extends the research to a number of gauges around the UK and incorporates several improvements. The time-averaged TOPEX and POSEIDON biases are obtained with a precision of approximately 2 and 3 cm, respectively. The research complements work on bias determination by other groups in the T/P Science Working Team and can, in principle, be applied at other locations for which precise, local geoid-differences are available. The relatively sparse POSEIDON data set has been used as a test of our ability to perform an absolute calibration of upcoming Jason-1 altimetry as soon as possible after launch.  相似文献   

8.
Tidal Correction of Altimetric Data in the Japan Sea   总被引:2,自引:0,他引:2  
Satellite altimetric data have been very useful in the study of variation in the eddy field of the ocean. In order to investigate the variation in the eddy field, we have to remove tidal signals from altimetric data. However, global tidal models do not have sufficient accuracy in marginal seas such as the Japan Sea. In this study, we carried out harmonic analysis of temporal fluctuations of sea surface height data in the Japan Sea measured by TOPEX/POSEIDON. We could eliminate the tidal signals from altimetric data of TOPEX/POSEIDON and also from ERS-2 altimetric data with use of the harmonic constants derived from TOPEX/POSEIDON and tide gauge data along the coast. We draw co-tidal and co-range charts in the Japan Sea using the result of the harmonic analysis of TOPEX/POSEIDON altimetric data and tide gauge data along the coast. The results obtained turn out to be very useful for the tidal correction of altimetric data from satellite in the Japan Sea.  相似文献   

9.
This article describes an "absolute" calibration of TOPEX/POSEIDON (T/P) altimeter bias using UK tide gauges equipped with Global Positioning System (GPS) receivers. The method is an extension of earlier work using the Newhaven tide gauge in the English Channel. However, the present analysis extends the research to a number of gauges around the UK and incorporates several improvements. The time-averaged TOPEX and POSEIDON biases are obtained with a precision of approximately 2 and 3 cm, respectively. The research complements work on bias determination by other groups in the T/P Science Working Team and can, in principle, be applied at other locations for which precise, local geoid-differences are available. The relatively sparse POSEIDON data set has been used as a test of our ability to perform an absolute calibration of upcoming Jason-1 altimetry as soon as possible after launch.  相似文献   

10.
Jason, the successor to the TOPEX/POSEIDON (T/P) mission, has been designed to continue seamlessly the decade-long altimetric sea level record initiated by T/P. Intersatellite calibration has determined the relative bias to an accuracy of 1.6 mm rms. Tide gauge calibration of the T/P record during its original mission shows a drift of -0.1 ± 0.4 mm/year. The tide gauge calibration of 20 months of nominal Jason data indicates a drift of -5.7 ± 1.0 mm/year, which may be attributable to errors in the orbit ephemeris and the Jason Microwave Radiometer. The analysis of T/P and Jason altimeter data over the past decade has resulted in a determination of global mean sea level change of +2.8 ± 0.4 mm/year.  相似文献   

11.
A global ocean tide model (NAO.99b model) representing major 16 constituents with a spatial resolution of 0.5° has been estimated by assimilating about 5 years of TOPEX/POSEIDON altimeter data into barotropic hydrodynamical model. The new solution is characterized by reduced errors in shallow waters compared to the other two models recently developed; CSR4.0 model (improved version of Eanes and Bettadpur, 1994) and GOT99.2b model (Ray, 1999), which are demonstrated in comparison with tide gauge data and collinear residual reduction test. This property mainly benefits from fine-scale along-track tidal analysis of TOPEX/POSEIDON data. A high-resolution (1/12°) regional ocean tide model around Japan (NAO.99Jb model) by assimilating both TOPEX/POSEIDON data and 219 coastal tide gauge data is also developed. A comparison with 80 independent coastal tide gauge data shows the better performance of NAO.99Jb model in the coastal region compared with the other global models. Tidal dissipation around Japan has been investigated for M2 and K1 constituents by using NAO.99Jb model. The result suggests that the tidal energy is mainly dissipated by bottom friction in localized area in shallow seas; the M2 ocean tidal energy is mainly dissipated in the Yellow Sea and the East China Sea at the mean rate of 155 GW, while the K1 energy is mainly dissipated in the Sea of Okhotsk at the mean rate of 89 GW. TOPEX/POSEIDON data, however, detects broadly distributed surface manifestation of M2 internal tide, which observationally suggests that the tidal energy is also dissipated by the energy conversion into baroclinic tide.  相似文献   

12.
利用1992年10月22日-2001年7月17日扣除年循环的T/P和ERS-1/-2的卫星融合高度计资料,应用二维Radon变换方法,对太平洋和大西洋的洋盆东部、西部的大洋Rossby波的纬向传播速度进行了分析与对比,并将二者分别与经典线性理论值比较,得出洋盆西部的Rossby波普遍比洋盆东部传播要快;中纬度海域大洋Rossby波的传播速度观测值与理论值的比率小于前人结果;并且在热带及副热带海域,大洋Rossby波的传播速度的观测值要低于理论值的结论。  相似文献   

13.
基于卫星测高数据的潮汐分析是建立海潮模型的基本方法之一,主要包括调和分析方法和正交响应分析方法。利用上述两种方法对中国海和西太平洋海域的Topex/Poseidon(TP)、Jason-1(J1)和Jason-2(J2)卫星测高数据进行了潮汐分析,并将两种方法的计算结果进行对比研究。结果表明,观测时间序列的长度对潮汐信息提取的准确度有较大影响。满足分离任意两个分潮会合周期的卫星测高观测时间序列下,两种方法的准确度基本相同。短时段的数据受混叠效应影响明显,正交响应分析较调和分析准确度更高。  相似文献   

14.
The difference-ratio relations are introduced to separate tidal constituents that are aliaseddue to the sampling interval and sampling span of the TOPEX/POSEIDON altimeter. It is found that some tidal constituents such as K_1 and SSA, though aliased at along track points, are not aliased at crossover points Ixrausf the data at crossover points are double those at along track points. So the harmonic analysis method can be employed directly for the analysis of time series at crossover points. Then the difference-ratio relations from crossover points are introduced to analyze the time series at along track points. The TOPEX/POSEIDON data in the Northwest Pacific are analyzed with this method. The results from this method agree well with tidal constants from tidal gauges.  相似文献   

15.
Recently, the TOPEX/POSEIDON Science Working Team has recommended the FES95.2.1 and CSR3.0 ocean tide models for reprocessing the TOPEX/POSEIDON Geophysical Data Records. Without doubt, the performance of these models, especially in the deep oceans, is excellent. However, from a comparison of these hydrodynamically consistent models with the purely empirical DW3.2 and DEOS96.1 models, it appears that FES95.2.1 and CSR3.0 are affected by basin boundary related errors which are caused by the basin-wise solution procedure of the FES ocean tide model series. In their turn, the empirical DW3.2 and DEOS96.1 models seem to suffer from significant errors in the Antarctic seas due to the seasonal growth and decay of Antarctic sea ice. Also, bathymetry-induced differences were found between the hydrodynamically consistent models and the empirical models. Concerning these differences, TOPEX/POSEIDON and ERS-1 crossover statistics unfortunately do not provide conclusive results on which models are in error.  相似文献   

16.
TOPEX/POSEIDON(T/P)卫星高度计数据信息中存在周期成分混淆问题.对其中的一类混淆引入差比关系方法对混淆的分潮进行分离.卫星轨道交叉点资料包括升轨和降轨资料,资料量比沿轨点资料多1倍,经分析发现:在已有为期6a多的观测资料时间序列中,在沿轨处混淆的分潮如K1和SSA在交叉点处不再混淆,可以直接分离.因此首先对交叉点资料进行调和分析.然后由交叉点的分析结果得到分潮间的差比关系,处理到相近的沿轨点处,从而得到沿轨点的调和常数.用引入差比关系方法,对西北太平洋海区6a多的T/P卫星高度计资料进行了潮汐分析,并与沿岸及岛屿验潮站资料进行了比较,所得结果较满意.  相似文献   

17.
Monthly mesoscale eddy kinetic energy (EKE) per unit mass has been computed for four years, 1993-1996, from TOPEX altimeter data in the Indian Ocean. It ranges from 50 cm2/s2 to 2,700 cm2/s2 (about 4,000 cm2/s2 near the Somali region in a few months). In the Arabian Sea and the Bay of Bengal, regions of high energies associated with various current systems under the influence of monsoonal winds have been delineated. Monthly variation of EKE near the Somali region has been studied. In this region the maximum EKE per unit mass has been observed during August every year, with variations in magnitude from year to year. The mesoscale eddy kinetic energy computed from TOPEX altimeter-derived SSH during 1993-1996 is highest near the Somali region during the SW monsoon, due to formation of mesoscale eddies and also because of upwelling. In the Bay of Bengal, high eddy kinetic energy is seen toward the western side during nonmonsoonal months due to the western boundary current. In the South Indian Ocean, it is high at a few places in some of the months. A large part of the Indian Ocean exhibits low eddy kinetic energy (less than 300 cm2/s2) year-round.  相似文献   

18.
《Marine Geodesy》2013,36(3-4):355-366
Sea surface slope computed from along-track Jason-1 and TOPEX/POSEIDON (T/P) altimeter data at ocean mesoscale wavelengths are compared to determine the equivalent 1 Hz instrument height noise of the Poseidon-2 and TOPEX altimeters. This geophysical evaluation shows that the Ku-band 1-Hz range noise for both instruments is better than 1.7 cm at 2 m significant wave heights (H1/3), exceeding error budget requirements for both missions. Furthermore, we show that the quality of these instruments allows optimal filtering of the 1-Hz along-track sea surface height data for sea surface slopes that can be used to calculate cross track geostrophic velocity anomalies at the baroclinic Rossby radius of deformation to better than 5 cm/sec precision along 87.5% of the satellite ground track between 2 and 60 degrees absolute latitude over the deep abyssal ocean (depths greater than 1000 m). This level of precision will facilitate scientific studies of surface geostrophic velocity variability using data from the Jason-1 and T/P Tandem Mission.  相似文献   

19.
The effect of mesoscale eddy variability on the Japan/East Sea mean circulation is examined from satellite altimeter data and results from the Naval Research Laboratory Layered Ocean Model (NLOM). Sea surface height variations from the Geosat-Exact Repeat Mission and TOPEX/POSEIDON altimeter satellites imply geostrophic velocities. At the satellite crossover points, the total velocity and the Reynolds stress due to geostrophic mesoscale turbulence are calculated. After spatial interpolation the momentum flux and effect on geostrophic balance indicates that the eddy variability aids in the transport of the Polar Front and the separation of the East Korean Warm Current (EKWC). The NLOM results elucidate the impact of eddy variability on the EKWC separation from the Korean coast. Eddy variability is suppressed by either increasing the model viscosity or decreasing the model resolution. The simulations with decreased eddy variability indicate a northward overshoot of the EKWC. Only the model simulation with sufficient eddy variability depicts the EKWC separating from the Korean coast at the observed latitude. The NLOM simulations indicate mesoscale influence through upper ocean-topographic coupling. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

20.
南海TOPEX海面高度资料的混合同化试验   总被引:16,自引:10,他引:16  
应用普林斯顿海洋模式(POM),对冬季南海由TOPEX/Poseidon得到的卫星遥感海面高度资料进行混合(blending)同化试验。混合同化的权重系数由以下两者决定:南海POM模式对冬季风强迫产生响应的海面高度场之标准方差;对应期间TOPEX海面高度资料的标准方差。同化结果表明,混合同化方法不失为一种简单而又有效的同化方案。同化得到的南海环流结构与未同化的模式响应场比较可以发现:海面高度资料的同化试验能够有效地修正南海环流的若干大尺度特征,特别是对冬季黑潮入侵南海东北部的动力过程,同化结果有了更准确的描述。同时,另一个重要的修正表现在:同化试验中瞬变的中等尺度涡旋得到加强,体现了南海海洋天气尺度涡被资料同化所“唤醒”(trigger)。这种“唤醒”不仅明显地反映在表层环流场中,对南海次表层动力、热盐结构也有一定的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号