首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
床面上泥沙颗粒的起动测量一直是泥沙运动规律研究的难题。为此,提出了一种基于B超成像技术的泥沙起动流速测量方法。在模型试验水槽中,该方法利用B超仪获取水下地形及其附近粒子的运行图像,通过图像处理技术分析统计床面附近运动粒子的成像光斑个数,并分析其与流速之间的关系。结果表明,B超成像光斑个数在泥沙起动过程中存在一个突变过程,且该突变过程与泥沙起动运动相对应,可用来判定泥沙起动及其对应的起动流速,并利用该流速下的床面地形变化验证了该方法的正确性。该方法具有无扰动无干扰、适合于清水和浑水、易于实现自动化测量的特点。  相似文献   

2.
A discrete element method is applied to a three‐dimensional analysis related to sediment entrainment on a micro‐scale. Sediment entrainment is the process by which a fluid medium accelerates particles from rest and advects them upward until they are either transported as bedload or suspended by the flow. Modelling of the entrainment process is a critically important aspect for studies of erosion, pollutant resuspension and transport, and formation of bedforms in environmental flows. Previous discrete element method studies of sediment entrainment have assumed the flow within the particle bed to be negligible and have only allowed for the motion of the topmost particles. At the same time, micro‐scale experimental studies indicate that there is a small slip of the fluid flow at the top of the bed, indicating the presence of non‐vanishing fluid velocity within the topmost bed layers. The current study demonstrates that the onset of particle incipient motion, which immediately precedes particle entrainment, is highly sensitive to this small fluid flow within the topmost bed layers. Using an exponential decay profile for the inner‐bed fluid flow, the discrete element method calculations are repeated with different fluid penetration depths within the bed for several small particle Reynolds numbers. For cases with slip velocity corresponding to that observed in previous experiments with natural sediment, the predicted particle velocity is found to be a few percent of the fluid velocity at the top of the viscous wall layer, which is a reasonable range of velocities for observation of incipient particle motion. This method for prescribing the fluid flow within the particle bed allows for the current discrete element method to be extended in future studies to the analysis of sediment entrainment under the influence of events such as turbulent bursting. Additionally, predictions for the slip velocities and fluid flow profile within the bed suggest the need for further experimental studies to provide the data necessary for additional improvement of the discrete element method models.  相似文献   

3.
天然水体中泥沙颗粒表面容易生长生物膜,生物膜的生长会对泥沙颗粒的运动特性产生显著影响。设计了泥沙颗粒表面生长生物膜的实验,以及生长生物膜后泥沙颗粒的起动水槽实验。在水槽观测段分别放置由去离子水浸泡和天然水培养的两种泥沙,对比观察两种泥沙起动过程的区别,分析起动流速的差异和随培养时间的变化规律。结果表明,天然富营养水体中生物膜生长繁茂,对泥沙起动特性有着显著的影响,能够增强泥沙颗粒的抗冲性,并随时间呈现出先逐步增强到一个最优值后有所削弱的钟形曲线的变化趋势,表明在研究天然河流和湖泊尤其是污染严重的水域的泥沙起动时,需要考虑到生物膜的作用。  相似文献   

4.
In growing sedimentary sequences range and velocity of vertically ascending pore water (advection) can be determined quantitatively by using a simple graphical method. During continuing deposition and maintenance of compaction equilibrium, the pore water from deeper layers cannot reach the sediment-water interface. Range and velocity of advective flow decrease from top to bottom of a sequence and depend on the thickness affected by compaction. The velocity of pore water flow as well as the transport of solutes by advective flux are proportional to the sedimentation rate. Compaction flow can also result from under-con-solidation and diagenetic reduction of pore space. At the sediment-water interface, a direct contact between the ascending pore water and the overlying water body is feasible only under special conditions (interrupted sedimentation over under-consolidated material, erosion). These results are demonstrated on geometric models of sedimentary sequences, on experimentally deposited clay, and on selected examples of the Deep Sea Drilling Project.  相似文献   

5.
Mcewan  Jefcoate  & Willetts 《Sedimentology》1999,46(3):407-416
A grain-scale model of fluvial bed load transport is described, with particular emphasis on the equilibrium between the saltating grains and the near bed flow, and its role in determining transport rate. The model calculates, explicitly, the modification of the velocity profile by the moving grains, together with the consequential reduction in surface fluid shear stress. As the surface fluid shear stress is reduced by the moving grains, so the entrainment rate decreases and the model reaches a steady state. The results provide insight into two important questions at a macroscopic level. First, they show that, in the absence of large static roughness, the dynamic roughness caused by the moving grains may be a significant contributor to flow resistance. Secondly, the model indicates the manner in which transport may be limited by a combination of the transport capacity of the flow and the availability of sediment for entrainment. Only in the case of high sediment availability does the fluid shear stress acting at the surface approach the critical entrainment value, reproducing the behaviour suggested by Bagnold (1956 ) and Owen (1964 ). This suggests that prediction formulae based on this assumption only describe the bed load transport system under particular conditions.  相似文献   

6.
粘性土及粘性土夹沙的起动规律研究   总被引:5,自引:0,他引:5       下载免费PDF全文
从水流脉动的机理出发,以粘性土的宾汉应力作参数,建立了粘性土的临界起动剪切力公式.根据一系列实验结果,分析了不同情况下粘性土夹沙的起动条件,归纳出统一的表达式.此外,还对上部水流为浑水的情况下,粘性土及粘性土夹沙的起动条件作了定性分析.  相似文献   

7.
The initiation of particle movement by wind   总被引:4,自引:0,他引:4  
When air blows across the surface of dry, loose sand, a critical shear velocity (fluid threshold, ut), must be achieved to initiate motion. However, since most natural sediments consist of a range of grain sizes, fluid threshold for any sediment cannot be defined by a finite value but should be viewed as a threshold range which is a function of the size, shape, sorting and packing of the surface sediment. In order to investigate the initiation of particle movement by wind a series of wind-tunnel tests was carried out on a range of pre-screened fluvial sands and commercially available glass beads with differing mean sizes and sorting characteristics. A sensitive laser-monitoring system was used in conjunction with a high speed counter to detect initial grain motion and to count individual grain movements. Test results indicate that when velocity is slowly increased over the sediment surface the smaller or more exposed grains are first entrained by the fluid drag and lift forces either in surface creep (rolling) or in saltation (bouncing or hopping downwind). As velocity continues to rise, larger or less exposed grains may also be moved by fluid drag. On striking the surface saltating grains impart momentum to stationary grains. This impact may result in the rebound of the original grain as well as the ejection of one or more stationary grains into the air stream at shear velocities lower than that required to entrain a stationary particle by direct fluid pressure. As a result, there is a cascade effect with a few grains of varying size initially moving over a range of shear velocities (the fluid threshold range) and setting in motion a rapidly increasing number of grains. Results of the tests showed that the progression from fluid to dynamic threshold, based on grain movement, can be characterized by a power function, the coefficients of which are directly related to the mean size and sorting characteristics of the sediment.  相似文献   

8.
ABSTRACT Temporally and spatially averaged models of bedload transport are inadequate to describe the highly variable nature of particle motion at low transport stages. The primary sources of this variability are the resisting forces to downstream motion resulting from the geometrical relation (pocket friction angle) of a bed grain to the grains that it rests upon, variability of the near‐bed turbulent velocity field and the local modification of this velocity field by upstream, protruding grains. A model of bedload transport is presented that captures these sources of variability by directly integrating the equations of motion of each particle of a simulated mixed grain‐size sediment bed. Experimental data from the velocity field downstream and below the tops of upstream, protruding grains are presented. From these data, an empirical relation for the velocity modification resulting from upstream grains is provided to the bedload model. The temporal variability of near‐bed turbulence is provided by a measured near‐bed time series of velocity over a gravel bed. The distribution of pocket friction angles results as a consequence of directly calculating the initiation and cessation of motion of each particle as a result of the combination of fluid forcing and interaction with other particles. Calculations of bedload flux in a uniform boundary and simulated pocket friction angles agree favourably with previous studies.  相似文献   

9.
In flowing water the incipient motion of sediment can be affected by the presence of microbial biofilm growth. This article documents a series of flume experiments using non‐uniform sediments, in which sediment entrainment was investigated for cases where the sediment was immersed in deionized water, so that no biofilm developed, and for cases where a bio‐sediment was cultivated by placing the sediment in a mixture of natural water and nutrient solution. Differences in entrainment and the velocity at incipient motion were measured over an eight week period, as biofilm grew. It was found that the incipient motion phenomena were quite distinct between the two kinds of sediment. Sediment with biofilm was more stable and, over time, incipient velocity increased to a threshold level, before declining. Biofilm development is clearly an important control on the stability of sediments, especially in eutrophic water bodies. Two incipient velocity formulas were derived for sliding and rolling conditions. Film water theory was utilized to describe the cohesive force between sediment particles and the adhesive force generated by biofilm was introduced into the formula derivation; the time variation characteristics of biofilm strength and the features of the substrate were also taken into consideration. Such analyses can help to predict sediment transport changes due to biofilm presence in nutrient‐rich water bodies.  相似文献   

10.
Bioclastic particles derived from mollusc shell debris can represent a significant fraction of sandy to gravelly sediments in temperate and cool‐water regions with high carbonate productivity. Their reworking and subsequent transport and deposition by waves and currents is highly dependent on the shape and density of the particles. In this study, the hydrodynamic behaviour of shell debris produced by eight mollusc species is investigated for several grain sizes in terms of settling velocity (measurements in a settling tube) and threshold of motion under unidirectional current (flume experiments using an acoustic profiler). Consistent interspecific differences in settling velocity and critical bed shear stress are found, related to differences in shell density, shell structure imaged by scanning electron microscopy and grain shape. Drag coefficients are proposed for each mollusc species, based on an interpolation of settling velocity data. Depending on the shell species, the critical bed shear stress values obtained for bioclastic particles fall within or slightly below empirical envelopes established for siliciclastic particles, despite very low settling velocity values. The results suggest that settling velocity, often used to describe the entrainment of sediment particles through the equivalent diameter, is not a suitable parameter to predict the initiation of motion of shell debris. The influence of the flat shape of bioclastic particles on the initiation of motion under oscillatory flows and during bedload and saltation transport is yet to be elucidated.  相似文献   

11.
A very important parameter in aeolian equations is the deflation threshold shear velocity, which quantifies the instant of particle motion. In this paper, a simple model is presented for the prediction of the threshold shear velocity of dry loose particles. It has the same functional form as the widely used models of Bagnold (1941) and Greeley & Iversen (1985), but differs in its treatment of the so‐called threshold parameter. As the new expression was based on the moment balance equation used by Greeley & Iversen, it includes a function for the aerodynamic forces, including the drag force, the lift force and the aerodynamic moment force, and a function for the interparticle forces. The effect of gravitation is incorporated in both functions. However, rather than using an implicit function for the effect of the aerodynamic forces as in the Greeley & Iversen model, a constant aerodynamic coefficient was introduced. From consideration of the van der Waals' force between two particles, it was also shown that the function for the interparticle cohesion force is inversely proportional to the particle diameter squared. The model was calibrated on data reported by Iversen & White (1982). The new expression compared, at least for terrestrial conditions, very well with the Greeley & Iversen model, although it is much simpler. It was finally validated with data from wind‐tunnel experiments on different fractions of dune sand and sandy loam soil aggregates. The soil aggregates were treated as individual particles with a density equal to their bulk density. The good agreement between observations and predictions means that, when predicting mass transport of particles above a given soil, minimally dispersed particle‐size distributions should be considered rather than the granulometric composition of the soil.  相似文献   

12.
床面附近泥沙运动的分析   总被引:6,自引:0,他引:6       下载免费PDF全文
基于水、沙两相的分相测量试验结果,分析了床面附近泥沙颗粒的脉动和力学特性,指出床面附近的泥沙运动有着特殊的力学机制:颗粒相具有较强的非湍流脉动,其产生的脉动应力对颗粒的运动起着重要作用。论述了沙粒在水流中从推移运动到扬起悬浮的物理过程,讨论了过去一些理论中存在的问题和不足,概括了泥沙颗粒在水流中从床面扬起的基本模式,运用两相流理论分析了沙粒在水流中扬起的动力学机理。根据颗粒运动的垂向动量平衡原理,对泥沙颗粒的垂向浓度分布规律作了新的分析解释。证实了除浓度梯度之外,颗粒相的垂向脉动强度梯度也是泥沙扩散的重要扩散势,进一步揭示了悬移质浓度垂线分布存在两种类型的内在机理。  相似文献   

13.
为探明层流条件下Shields曲线的分布规律,运用电荷耦合组件(Charge Coupled Device,CCD)成像技术结合激光扫描及计算机图像处理技术,在水和甘油混合液中对无黏性均匀玻璃颗粒的起动拖曳力进行测量,并根据层流绕流理论建立了无黏性均匀颗粒的滚动起动模型,提出层流条件下无黏性均匀颗粒的量纲一起动拖曳力公式.试验观测发现在层流范围内希尔兹数呈规则的带状分布,流体作用引起颗粒床表面粗化并导致床面颗粒突起减小,使颗粒起动拖曳力增大1倍以上.结果表明颗粒床表面结构性状直接影响着颗粒起动拖曳力的大小,在层流区Shields曲线具有带状分布特性.  相似文献   

14.
Commercially available, daylight and near-ultraviolet fluorescent, colored dyes can be used in long- or short-lived surface coatings on coarse sediments. Such tracer coatings make possible day- or nighttime visual and quantitative determination of river or beach sediment transport. Testing of five commercial coatings led to formulation of two additional coatings. A wide selection of dye colors is available for use in four coating mixtures. All coatings are insoluble in fresh or saline water. Single-application coating thicknesses range between 0.0003 and 0.0024 inches. Still air drying time at room temperature for separated particles varies from 40 seconds to 14 minutes depending on coating mixture used. Volume production of marked particles in the field is possible. Extensive sediment sampling in particle transport studies possibly may be eliminated by measuring visible light emission from coated particles under nearultraviolet excitation. A battery operated, portable photometer was assembled from a light cell, linear amplifier, and metering circuit. Laboratory calibration indicates that 5% differences in areal concentration of marked particles at given sampling locations can be determined. Color coded sizes of fluorescent sand and gravel were used in a test of foreshore sediment transport pattern over a single tidal cycle. Initial trajectory (minimum transport angle) of particles moved by beach drifting is approximately equal to deep water angle of wave approach relative to the shoreline. Angular magnitude of the dispersion zone for each group of particles seems to be a function of particle size and point of introduction on the foreshore. Minimum average transport velocity of particles was 0.42 ft./min under test conditions.  相似文献   

15.
“Sliding Surface Liquefaction” is a process causing strength loss and consequent rapid motion and long runout of certain landslides. Using a new ring shear apparatus with a transparent shear-box and digital video camera system, shear-speed-controlled tests were conducted on mixed grains (mixture of three different sizes of sand and gravel) and mixed beads to study shear behavior and shear zone development process under the naturally drained condition in which pore pressure is allowed to dissipate through the opened upper drainage valve during shearing. Higher excess pore water pressure and lower minimum apparent friction were observed in the tests where grain crushing was more extensive under higher normal stress and higher shear speed. Along with the diffusion of silty water generated by grain crushing, smaller particles were transported upward and downward from the shear zone. Concentration of larger grains to the central and upper part of the shear zone was confirmed by means of visual observation together with grain size analysis of sliced samples from several layers after the test. On the other hand, smaller particles were accumulated mostly below the layer where larger grains were accumulated. The reason why larger grains were accumulated into the shear zone may be interpreted as follows: grains under shearing are also subjected to vertical movement, the penetration resistance of larger grains into a layer of moving particles is smaller than that into the static layer. Therefore, larger grains tend to move into the layer of moving grains. At the same time, smaller particles can drop into the pores of underlying larger grains downward due to gravity.  相似文献   

16.
A computer-based numerical model of turbidity current flow and sedimentation is presented that integrates geological observations with basic equations for fluid and sediment motion. The model quantifies those aspects of turbidity currents that make them different from better-understood fluvial processes, including water mixing across the upper flow boundary and the interactions between the suspended-sediment concentration and the flow dynamics and sedimentation. The model includes three numerical components: (1) a layer-averaged three-equation flow model for tracing downslope flow evolution using continuity and momentum equations, (2) a sedimentation/fluidization model for tracing sediment-size fractionation in sedimenting multicomponent suspensions and (3) a concentration-viscosity model for quantifying the changes in resistance of such suspensions toward fluid and sediment motion. The model traces the evolution of a model turbidity current in terms the layer-averaged flow velocity, flow thickness, sediment concentration distribution, and the rate of sedimentation and sediment size fractionation. It generates synthetic turbidites with downslope variations in thickness and grain-size structuring at each point along the flow path. This study represents an effort to evaluate quantitatively the effects of basin geometry, sediment supply and sediment properties on the mechanics of turbidity current flow and sedimentation and on the geometry and grain size characteristics of the resulting deposits.  相似文献   

17.
ABSTRACT Laboratory observations regarding the limit conditions for particle entrainment into suspension are presented. A high‐speed video system was used to investigate conditions for the entrainment of sediment particles and glass beads lying over a smooth boundary as well as over a rough bed. The results extend experimental conditions of previous studies towards finer particle sizes. A criterion for the limit of entrainment into suspension is proposed which is a function of the ratio between the flow shear velocity and particle settling velocity. Observations indicate that particles totally immersed within the viscous sublayer can be entrained into suspension by the flow, which contradicts the conclusions of previous researchers. A theoretical analysis of the entrainment process within the viscous sublayer, based on force–balance considerations, is used to show that this phenomenon is related to turbulent flow events of high instantaneous values of the Reynolds stress, in agreement with previous observations. In the case of experiments with a rough bed, a hiding effect was observed, which tends to preclude the entrainment of particles finer than the roughness elements. This implies that, as the ratio between particle and roughness element sizes becomes smaller, progressively higher bed shear stresses are required to entrain particles into suspension. On the other hand, an overexposure effect was also observed, which indicates that a particle moving on a smooth bed is more prone to be entrained than the same particle moving on a bed formed by identical particles.  相似文献   

18.
采用图像识别与推移质动态监测技术,开展基于双峰型非均匀推移质的系列水槽试验.通过引入反映床面粗糙度、粘性底层特性与颗粒非均匀度η(粗细比)的综合水流强度函数Ψb、特征弗劳德数Frb,系统研究了不同水流强度与床沙组成条件下的推移质输移特性以及颗粒非均匀度对输沙率的影响.通过对关键因子的辨识与量纲分析,提出了双峰型非均匀推移质输移模式,建立了基于近壁特征因子的水流强度Ψb与非均匀推移质输移强度Φ'的函数关系.对双峰型底沙输移机理的分析表明,非均匀沙的组成特征使得η成为影响Φ'的重要参量;正是细粒对粗粒的解怙作用对粗沙运动产生重要影响,使推移质输移率与颗粒非均匀度间呈现驼峰关系,峰值对应的粗细比ηc约为3∶7.  相似文献   

19.
天然河流床沙通常为非均匀沙,准确把握非均匀沙颗粒运动规律是模拟和预测天然河流河床演变的基础。开展了恒定均匀流条件下的非均匀沙推移质运动水槽试验,床沙粒径范围为0.10~20 mm。利用摄像机从顶部拍摄了粗化条件下的推移质颗粒运动,获取大量非均匀沙颗粒的运动轨迹,提取了颗粒运动速度、走停时间等基本运动参数,推移质运动颗粒粒径范围为0.74~8.19 mm。试验结果表明,非均匀沙床面聚集体或大颗粒使推移质颗粒运动方向发生改变,与均匀沙成果相比,非均匀沙推移质颗粒的纵向运动速度减小,横向运动速度增大;推移质颗粒纵向运动速度遵循指数分布,单次运动速度遵循Γ分布,横向运动速度及运动速度矢量角则遵循正态分布。  相似文献   

20.
Soil–water interaction is a pivotal process in many underwater geohazards such as underwater landslides where soil sediments gradually evolve into turbidity currents after interactions with ambient water. Due to the large deformations, multiphase interactions and phase changes this involves, investigations from numerical modelling of the transition process have been limited so far. This study explores a simple numerical replication of such soil–water mixing with respect to changes in average strength using smoothed particle hydrodynamics (SPH). A uniform viscoplastic model is used for both the solid-like and fluid-like SPH particles. The proposed numerical solution scheme is verified by single-phase dam break tests and multiphase simple shear tests. SPH combinations of solid-like and fluid-like particles can replicate the clay–water mixture as long as the liquidity index of the solid-like particles is larger than unity. The proposed numerical scheme is shown to capture key features of an underwater landslide such as hydroplaning, water entrainment and wave generation and thus shows promise as a tool to simulate the whole process of subaquatic geohazards involving solid–fluid transition during mass transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号