首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Fronts in Large Marine Ecosystems   总被引:7,自引:0,他引:7  
Oceanic fronts shape marine ecosystems; therefore front mapping and characterization are among the most important aspects of physical oceanography. Here we report on the first global remote sensing survey of fronts in the Large Marine Ecosystems (LME). This survey is based on a unique frontal data archive assembled at the University of Rhode Island. Thermal fronts were automatically derived with the edge detection algorithm of (Cayula and Cornillon, 1992), (Cayula and Cornillon, 1995) and (Cayula and Cornillon, 1996) from 12 years of twice-daily, global, 9-km resolution satellite sea surface temperature (SST) fields to produce synoptic (nearly instantaneous) frontal maps, and to compute the long-term mean frequency of occurrence of SST fronts and their gradients. These synoptic and long-term maps were used to identify major quasi-stationary fronts and to derive provisional frontal distribution maps for all LMEs. Since SST fronts are typically collocated with fronts in other water properties such as salinity, density and chlorophyll, digital frontal paths from SST frontal maps can be used in studies of physical–biological correlations at fronts. Frontal patterns in several exemplary LMEs are described and compared, including those for: the East and West Bering Sea LMEs, Sea of Okhotsk LME, East China Sea LME, Yellow Sea LME, North Sea LME, East and West Greenland Shelf LMEs, Newfoundland–Labrador Shelf LME, Northeast and Southeast US Continental Shelf LMEs, Gulf of Mexico LME, and Patagonian Shelf LME. Seasonal evolution of frontal patterns in major upwelling zones reveals an order-of-magnitude growth of frontal scales from summer to winter. A classification of LMEs with regard to the origin and physics of their respective dominant fronts is presented. The proposed classification lends itself to comparative studies of frontal ecosystems.  相似文献   

2.
中国近海区域浮游植物生态对气候变化的响应   总被引:1,自引:0,他引:1       下载免费PDF全文
我国近海区域对气候变化高度敏感,浮游植物生态的变化关系到我国近海生态安全.采用重构的遥感数据等资料,分析并综述我国近海区域浮游植物叶绿素a浓度、初级生产力和浮游植物群落结构对气候变化背景下海水升温、风场等环境因子的响应.结果表明,东(南)中国海叶绿素a浓度略有上升(下降)的趋势,但浮游植物群落结构和生物量有明显的变化;其中,微微型浮游植物和甲藻占比增加,小型浮游植物物种成为海区优势种,暖水性种分布区北扩,而这与气候变化背景下海洋热动力环境的长期变化及其对营养盐供给的影响关系密切.分析还指出了气候变化对我国近海区域海洋生态影响研究迫切需要开展的若干工作.  相似文献   

3.
东亚冬夏季风对热带印度洋秋季海温异常的响应   总被引:5,自引:0,他引:5  
利用多年的Reynolds月平均海表温度资料和NCEP/NCAR全球大气再分析资料,分析了热带印度洋秋季海表温度距平(SSTA)与后期东亚冬夏季风强度变化的关系。结果表明,热带印度洋秋季SSTA的主要模态是全区一致(USB)型和偶极子(IOD)型,USB型模态主要代表热带印度洋秋季SSTA的长期变化趋势,而IOD型模态主要反映热带印度洋秋季SSTA的年际变化。热带印度洋秋季海温气候变率中既存在着明显的ENSO信号,也有独立于ENSO的变率特征,独立于ENSO的热带印度洋秋季SSTA变化的主要模态仍是USB型和IOD型。前期秋季USB模态与东亚冬季风及东亚副热带夏季风之间为负相关关系;与前期正(负)IOD模态相对应,南海夏季风强度偏弱(强),而东亚副热带夏季风强度偏强(弱)。USB型和IOD型模态对后期东亚冬、夏季风强度变化的影响是独立于ENSO的,但ENSO起到了调节二者相关显著程度的作用。  相似文献   

4.
Water masses in the East Sea are newly defined based upon vertical structure and analysis of CTD data collected in 1993–1999 during Circulation Research of the East Asian Marginal Seas (CREAMS). A distinct salinity minimum layer was found at 1500 m for the first time in the East Sea, which divides the East Sea Central Water (ESCW) above the minimum layer and the East Sea Deep Water (ESDW) below the minimum layer. ESCW is characterized by a tight temperature–salinity relationship in the temperature range of 0.6–0.12 °C, occupying 400–1500 m. It is also high in dissolved oxygen, which has been increasing since 1969, unlike the decrease in the ESDW and East Sea Bottom Water (ESBW). In the eastern Japan Basin a new water with high salinity in the temperature range of 1–5 °C was found in the upper layer and named the High Salinity Intermediate Water (HSIW). The origin of the East Sea Intermediate Water (ESIW), whose characteristics were found near the Korea Strait in the southwestern part of the East Sea in 1981 [Kim, K., & Chung, J. Y. (1984) On the salinity-minimum and dissolved oxygen-maximum layer in the East Sea (Sea of Japan), In T. Ichiye (Ed.), Ocean Hydrodynamics of the Japan and East China Seas (pp. 55–65). Amsterdam: Elsevier Science Publishers], is traced by its low salinity and high dissolved oxygen in the western Japan Basin. CTD data collected in winters of 1995–1999 confirmed that the HSIW and ESIW are formed locally in the Eastern and Western Japan Basin. CREAMS CTD data reveal that overall structure and characteristics of water masses in the East Sea are as complicated as those of the open oceans, where minute variations of salinity in deep waters are carefully magnified to the limit of CTD resolution. Since the 1960s water mass characteristics in the East Sea have changed, as bottom water formation has stopped or slowed down and production of the ESCW has increased recently.  相似文献   

5.
Abundances and biomasses of planktonic ciliates and copepod nauplii, major components of the microzooplankton community, were investigated in the subarctic North Pacific and the Bering Sea in summer of 1997. Their regional variation was illustrated by demarcating the entire area into five regions. Ciliates always predominated both in abundance (>94%) and biomass (>78%) over nauplii. Regional means of ciliates in the water column were higher in the Alaskan Gyre (120 × 106 cells/m2) and the Western Subarctic Gyre (110 × 106 cells/m2) in terms of abundance, and rich in the Bering Sea Gyre (360 mgC/m2) and the Western Subarctic Gyre (340 mgC/m2) in terms of biomass. By contrast, standing crops of ciliates were poor in the Oyashio Region (67 × 106 cells/m2; 170 mgC/m2) and the Transition Region (64 × 106 cells/m2; 160 mgC/m2). The values of biomass reported here are generally in agreement with the values reported previously from the Bering Sea Gyre and the Alaskan Gyre but are considerably higher than the previous value found in the Western Subarctic Gyre. No significant correlations could be found between chlorophyll a crop and standing crops of ciliates and copepod nauplii over the entire subarctic North Pacific and the Bering Sea during this summer.  相似文献   

6.
Long-term variations of the sea surface salinity (SSS), air temperature (AT) and sea surface temperature (SST) of the Bohai Sea during 1960–1997 were analyzed. They all showed positive trends. The trends of the annual mean SSS, AT and SST of the Bohai Sea were, respectively, 0.074 y−1, 0.024°C y−1 and 0.011°C y−1. The increases of AT and SST were consistent with, the recent warming in northern China, in the Huanghai Sea (Yellow Sea) and in the East China Sea. The rise of SSS can be attributed to the rapid reduction of the total river discharge into the Bohai Sea, as well as to the increase inflow of high salinity water from the Huanghai Sea. It may also be attributed to increasing human use of river water and increases in evaporation from the sea surface. These changes in the marine environment seemed to have important influence on the Bohai Sea ecosystem.  相似文献   

7.
北欧海作为连接北冰洋和北大西洋的重要海域,其由热效应产生的辐合场值得关注.本文利用NECP/NCAR的速度势函数(Velocity Potential,VP)数据表征北欧海辐合辐散场,发现在秋冬季北欧海上空大气低层存在一个独立的辐合区域.经验正交函数分解结果表明,北欧海上空的VP显示出除了表征北极涛动的全区一致型模态外...  相似文献   

8.
基于1951—2018年哈德里中心海温资料、美国气象环境预报中心和美国国家大气研究中心再分析资料和第四代欧洲中心汉堡模式, 针对1994年、2018年等西北太平洋热带气旋(TC)生成异常多的年份, 研究了引起TC增加的海表温度异常(SSTA)模态及其影响机制。结果表明, 北半球热带中太平洋增暖与印度洋变冷是夏季西北太平洋TC生成频数增加的主要原因, 北大西洋负三极型式SSTA促使TC生成的进一步增加。热带中太平洋增暖与印度洋冷却在菲律宾以东激发出西风异常和气旋性环流异常。北大西洋负三极型式SSTA在我国南海、菲律宾至东南沿岸激发出气旋性环流异常。前者在西北太平洋中部, 后者在南海产生有利于TC生成的局地环境。1994年和2018年夏季热带中太平洋出现暖SSTA、印度洋为冷SSTA、北大西洋呈现负三极型式SSTA, 西北太平洋TC生成频数极端增多。近30年来, 当出现热带中太平洋增暖和印度洋冷却时, 北大西洋表现出比1989年以前更强的负三极型式SSTA, 使西北太平洋TC生成频数和北半球热带印度洋-太平洋SSTA梯度的线性相关更显著。  相似文献   

9.
利用NCEP/NCAR的再分析资料、全球海温资料(OISST)及区域气候模式(RegCM3)研究了东亚夏季低层(925hPa)大气环流对东海及其邻近海域热力异常的响应.结果表明,夏季,当东海及其邻近海域的海温升高0.5和1.0℃时,在中国东部和东海及其邻近海域上空均会出现一个异常的气旋性环流,而且海温越高,气旋性环流越明显,并在海面上空形成辐合中心;反之,当东海及其邻近海域海温降低时,中国东部和东海及其邻近海域上空将出现一个异常的反气旋性环流,并在海面上空形成辐散中心.东海及其邻近海域夏季海温的异常可通过热力作用影响低层大气的辐合(散)和垂向运动,并影响局地低层大气和上层海洋的相互作用,从而使得东亚大气环流发生改变,进而可能对中国大陆东部气候和近海环境的变化产生重要作用.  相似文献   

10.
Nitrogen isotope compositions of particulate organic matter and nitrate were analyzed for seawater sampled at five stations at the Alaskan Gyre, Western Subarctic Gyre and East China Sea, focusing on the samples from the surface to 5000 m water to characterize the nitrogen cycling in the subarctic North Pacific Ocean and its marginal sea. The 15N of particulate organic matter showed little agreement with a conceptual closed model that interprets isotopic variation as being caused by isotope discrimination on nitrate utilization. The 15N and 13C of particulate organic matter varied with the water depth. A correlation between isotope compositions and C/N elemental ratio was found generally at all stations, although some irregular data were also found in deep layers. We developed a hypothetical nitrogen balance model based on N2 fixation and denitrification in seawater and attempted to apply it to distinguish nutrient cycling using both 15N-NO3 and N* variation in seawater. This model was applied to the observed data set of 15N-NO3 and N* in the North Pacific water and estimated the 15N-NO3 of primordial nitrate in the North Pacific deep water as 4.8. The North Pacific intermediate water for all stations showed similar 15N-NO3 and N* values of 6 and –3 µmol/kg, respectively, suggesting a similar nitrogen biogeochemistry. In the East China Sea, analysis showed evidence of water exchange with the North Pacific intermediate water but a significant influence of nitrogen from the river runoff was found in depths shallower than 400 m.  相似文献   

11.
通过海气耦合模式CCSM3(The Community Climate System Model version 3),研究在北大西洋高纬度淡水强迫下,北太平洋冬季的海表温度SST、风场及流场的响应及其区域性差异。结果表明:淡水的注入使北太平洋整体变冷,但有部分区域异常增暖;在太平洋东部赤道两侧,SST的变化出现北负南正的偶极子型分布。阿留申低压北移的同时中纬度西风减弱,热带附近东北信风增强。黑潮和南赤道流减弱,北太平洋副热带逆流和北赤道流增强,日本海被南向流控制。风场及流场的改变共同导致了北太平洋SST异常出现复杂的空间差异:北太平洋中高纬度SST的降温主要由大气过程决定,海洋动力过程主要影响黑潮、日本海及副热带逆流区域的SST,太平洋热带地区SST异常由大气与海洋共同主导。  相似文献   

12.
卢峰  郑彬 《海洋学报》2011,33(5):39-46
利用1967-2009年的逐月海表温度(Sea Surface Temperature,SST)资料和降水资料,以及经验正交函数(Empirical Orthogonal Function,EOF)和相关分析方法,探讨了亚印太交汇区(Joining Area of Asia and Indian-Pacific Oce...  相似文献   

13.
Primary production (PP) was determined using 14C uptake at 117 stations in the Atlantic Ocean to validate three PP satellite algorithms of varying complexity. An empirical satellite algorithm based on log chlorophyll-a had the highest bias and root-mean square error compared with measured 14C PP and tended to under-estimate PP. The vertical generalised production model improved PP estimates and was the most accurate algorithm in the Eastern Tropical Atlantic (ETRA) and Western Tropical Atlantic (WTRA), but tended to over-estimate PP in eutrophic provinces. A photosynthesis-light wavelength-resolved model was the most accurate over the Atlantic basin, having the lowest mean log-difference error, root-mean square error and bias, and exhibited a superior performance in six out of the nine ecological provinces surveyed. Using this algorithm and mean monthly SeaWiFS fields, a PP time series was generated for the Atlantic Ocean from 1998 to 2005 which was compared with Advanced Very High Resolution Radiometer (AVHRR) sea-surface temperature (SST) data. There was a significant negative correlation between SST and PP in the North Atlantic Subtropical Gyre Province (NAST), North Atlantic Tropical Gyre (NATR), and WTRA suggesting that recent warming trends in these provinces are coupled with a decrease in phytoplankton production.  相似文献   

14.
陈迪  孙启振 《海洋学报》2022,44(12):42-54
本文利用1951?2021年哈德莱中心提供的海冰和海温最新资料以及美国国家海洋和大气管理局气候预报中心提供的NCEP/NCAR再分析资料,分析探讨了北极海冰70余年的长期变化特征,进而研究了其快速减少与热带海温场异常变化之间的联系,揭示了在全球热带海洋海温场变化与北极海冰之间存在密切联系的事实。结果表明,北极海冰异常变化最显著区域出现在格陵兰海、卡拉海和巴伦支海。热带不同海区对北极海冰的影响存在明显时滞时间和强度差异,热带大西洋的影响相比偏早,印度洋次之,太平洋偏晚。热带大西洋、印度洋和中东太平洋海温异常影响北极海冰的最佳时间分别是后者滞后26个月、30个月和34个月,全球热带海洋影响北极海冰的时滞时间为33个月。印度洋SST对北极海冰的影响程度最强,其次是太平洋,最弱是大西洋。全球热带海洋对北极海冰的影响过程中,热带东太平洋和印度洋起主导作用。当全球热带海洋SST出现正(负)距平时,北极海冰会出现偏少(多)的趋势,而AO、PNA、NAO对北极海冰变化起重要作用,是热带海洋与北极海冰相系数的重要“纽带”。而AO、PNA和NAO不仅受热带海洋SST的影响,同时也受太平洋年代际振荡PDO和大西洋多年代际AMO的影响,这一研究为未来北极海冰快速减少和全球气候变暖机理的深入研究提供理论支撑。  相似文献   

15.
通过谐波分析的方法,对东亚31个冬季(1980—2010年)的气温提取年际变化分量(周期小于8a部分)进行EOF分析。结果发现:在年际变化的时间尺度上,东亚冬季气温表现为高纬模态和低纬模态2个主要模态,它们一起可以解释总方差73%的变化。进一步分析表明,在年际变化尺度上,与气温变化的高纬模态相联系的大气环流表现为显著的北极涛动(AO)负位相分布,海平面气压场上西伯利亚高压和阿留申低压北移,对流层中层东亚大槽西移,高层西风急流向西北方向移动;副热带北太平洋和阿拉斯加湾的海表面温度(SST)变化呈偶极子振荡分布,这种准两年的周期振荡对这一模态的出现有一定的预示意义。而与气温变化的低纬模态相联系的大气环流表现为类AO正位相分布,与之相关的西伯利亚高压和阿留申低压南移,对流层中层东亚大槽东移,高层的西风急流则是向东南方向移动;赤道东太平洋的SST异常可能对这一模态的形成有一定的作用,而东亚近海的SST则更多是被动地改变。此外,海冰异常变化与东亚冬季气温变化的联系主要体现在:在前夏和前秋,东西伯利亚海-波弗特海海冰异常减少(增加)对应着随后东亚冬季气温变化的高纬模态(低纬模态),而冬季东亚气温变化的高纬模态(低纬模态)又与后期春季北极东半球的海冰异常增加(减少)具有较好的相关性,此外白令海和鄂霍次克海的海冰异常变化是伴随东亚冬季气温变化产生的。  相似文献   

16.
渤、黄、东海海表面温度年际变化特征分析   总被引:7,自引:1,他引:6  
将渤、黄、东海海表面温度作为一个整体场,研究其年际变化特征,并进一步探讨其与东亚季风场年际变化特征的关系.利用美国NOAA极轨卫星中的高级甚高分辨率辐射计(AVHRR)反演的海表面温度资料,采用EOF方法分冬夏两季对渤、黄、东海SST的年际变化做了初步分析,发现渤、黄、东海SST存在显著的年际变化周期,冬季存在5 a的显著变化周期,夏季存在4 a的显著变化周期,并研究了东亚季风场的年际变化对SST变化产生的影响.发现冬季日Nin0年东亚寒潮活动弱于La Nina年,El Nino年SST较La Nina年偏高;夏季El Nino.年东亚夏季风活动弱于La Nina年,El Nino年SST较La Nina年偏低,但是趋势不如冬季明显.  相似文献   

17.
对北太平洋西部海域、苏禄海及印尼海、中国南海、印度洋东部海域、孟加拉湾及安达曼海等表层水体中放射性核素137Cs的活度进行了测定。结果表明,上述海域表层水体中137Cs活度显示了较大的变化范围,最低值出现在南极附近的南大洋(1.1Bqm-3),较高的活度值则出现在北太平洋西部海域及中国南海(3Bqm-3)。在所研究水域范围内,137Cs活度的纬度分布特征并没有完全有效地反映出137Cs的全球理论大气沉降趋势及其纬度效应。综合本研究及Miyake等人(1988)的测定结果,我们计算出137Cs自表层海水中的析出速率在苏禄海及印尼海约为0.016/a,在孟加拉湾及安达曼海约为0.033/a,在中国南海约为0.029/a,这一结果明显低于西北太平洋日本沿海表层水体中137Cs的析出速率。这可能是因为在这些海域,横向及纵向的水体混合过程相对都较慢,而且颗粒物对137Cs的吸附析出过程也比较弱所致。  相似文献   

18.
The North Sea regime shift: Evidence, causes, mechanisms and consequences   总被引:2,自引:0,他引:2  
This paper focuses on the ecosystem regime shift in the North Sea that occurred during the period 1982–1988. The evidence for the change is seen from individual species to key ecosystem parameters such as diversity and from phytoplankton to fish. Although many biological/ecosystem parameters and individual species exhibited a stepwise change during the period 1983–1988, some indicators show no evidence of change. The cause of the regime shift is likely to be related to pronounced changes in large-scale hydro-meteorological forcing. This involved activating of complex intermediate physical mechanisms which explains why the exact timing of the shift can vary from 1982 to 1988 (centred around two periods: 1982–1985 and 1987–1988) according to the species or taxonomic group. Increased sea surface temperature and possibly change in wind intensity and direction at the end of the 1970s in the west European basin triggered a change in the location of an oceanic biogeographical boundary along the European continental shelf. This affected both the stable and substrate biotope components of North Sea marine ecosystems (i.e. components related to the water masses and components which are geographically stable) circa 1984. Large-scale hydro-climatic forcing also modified local hydro-meteorological parameters around the North Sea after 1987 affecting the stable biotope components of North Sea ecosystems. Problems related to the detection and quantification of an ecosystem regime shift are discussed.  相似文献   

19.
Basing upon the total of 1,081 samples collected by a large plankton net (160 cm in mouth diameter) in the Pacific Ocean, the geographical and vertical distribution ofGonostoma gracile were studied. The species is distributed in the water masses of the Kuroshio, the Kuroshio Extension, the North Pacific Current, the Oyashio, the North Pacific Subarctic Water and the western North Pacific Central Water. The center of distribution lies in the Kuroshio area off Japan. Vertically, the species occurs between the depths of 200 and 1,000 m, mainly 300–700 m, both during daytime and at night. A part of population might come up to 0–200 m at night, although its biomass is negligibly small in comparison to that remaining in 300–700 m layer. Postlarvae are found in 300–700 m layer, mainly at 300–500 m, and apparently do not undertake diurnal vertical migration.  相似文献   

20.
Arctic sea ice cover has decreased dramatically over the last three decades. This study quanti?es the sea ice concentration(SIC) trends in the Arctic Ocean over the period of 1979–2016 and analyzes their spatial and temporal variations. During each month the SIC trends are negative over the Arctic Ocean, wherein the largest(smallest) rate of decline found in September(March) is-0.48%/a(-0.10%/a).The summer(-0.42%/a) and autumn(-0.31%/a) seasons show faster decrease rates than those of winter(-0.12%/a) and spring(-0.20%/a) seasons. Regional variability is large in the annual SIC trend. The largest SIC trends are observed for the Kara(-0.60%/a) and Barents Seas(-0.54%/a), followed by the Chukchi Sea(-0.48%/a), East Siberian Sea(-0.43%/a), Laptev Sea(-0.38%/a), and Beaufort Sea(-0.36%/a). The annual SIC trend for the whole Arctic Ocean is-0.26%/a over the same period. Furthermore, the in?uences and feedbacks between the SIC and three climate indexes and three climatic parameters, including the Arctic Oscillation(AO), North Atlantic Oscillation(NAO), Dipole anomaly(DA), sea surface temperature(SST), surface air temperature(SAT), and surface wind(SW), are investigated. Statistically, sea ice provides memory for the Arctic climate system so that changes in SIC driven by the climate indices(AO, NAO and DA) can be felt during the ensuing seasons. Positive SST trends can cause greater SIC reductions, which is observed in the Greenland and Barents Seas during the autumn and winter. In contrast, the removal of sea ice(i.e., loss of the insulating layer) likely contributes to a colder sea surface(i.e., decreased SST), as is observed in northern Barents Sea. Decreasing SIC trends can lead to an in-phase enhancement of SAT, while SAT variations seem to have a lagged in?uence on SIC trends. SW plays an important role in the modulating SIC trends in two ways: by transporting moist and warm air that melts sea ice in peripheral seas(typically evident inthe Barents Sea) and by exporting sea ice out of the Arctic Ocean via passages into the Greenland and Barents Seas, including the Fram Strait, the passage between Svalbard and Franz Josef Land(S-FJL),and the passage between Franz Josef Land and Severnaya Zemlya(FJL-SZ).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号