首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The concept of vulnerability is increasingly used in the fields of disaster risk reduction and climate change adaptation, as well as socioeconomic studies. This paper reviews research inputs into the concept of vulnerability and highlights the challenges of resolving its spatial and temporal variability with building resilience and adaptation. We hypothesise that a clear understanding of scale is key to integrating these related issues, by differentiating three dimensions of scale when analysing relationships between the observed and the intrinsic scale of a given phenomenon, namely space, time and dimensional level. The paper analyses 20 vulnerability assessment approaches, ranging from the global down to the local scale, and positions them with regard to their integration of the spatial component. We then develop a vulnerability cube as a framework to position existing approaches and to map them in a three-dimensional space. The three axes represent space, time and dimension and provide a structure for the different notions of scales and ultimately for a spatial analysis workflow. The vulnerability cube framework helps us to position different vulnerability assessments and to identify overlaps, differences and specific characteristics. Additionally, this three-dimensional conceptualisation allows the identification and discussion of appropriate scaling issues.  相似文献   

3.
Social vulnerability is a term that has been widely used in the natural hazards literature for quite a few years now. Yet, regardless of how scholars define the term, the approaches and indicators they use remain contested. This article presents findings from social vulnerability assessments conducted in different case studies of flood events in Europe (Germany, Italy and the UK). The case studies relied upon a common set of comparable indicators, but they also adopted a context-sensitive, qualitative approach. A shared finding across the case studies was that it was not possible to identify a common set of socio-economic–demographic indicators to explain social vulnerability of groups and/or individuals for all phases of the disastrous events. Similarly, network-related indicators as well as location- and event-specific indicators did not have the relevance we expected them to have. The results underline that vulnerability is a product of specific spatial, socio-economic–demographic, cultural and institutional contexts imposing not only specific challenges to cross-country research concerning social vulnerability to flooding but also to attempts at assessing social vulnerability in general. The study ends with some reflections upon the methodological, practical and theoretical implications of our findings.  相似文献   

4.
In the European Alps, the concept of risk has increasingly been applied in order to reduce the susceptibility of society to mountain hazards. Risk is defined as a function of the magnitude and frequency of a hazard process times consequences; the latter being quantified by the value of elements at risk exposed and their vulnerability. Vulnerability is defined by the degree of loss to a given element at risk resulting from the impact of a natural hazard. Recent empirical studies suggested a dependency of the degree of loss on the hazard impact, and respective vulnerability (or damage-loss) functions were developed. However, until now, only little information is available on the spatial characteristics of vulnerability on a local scale; considerable ranges in the loss ratio for medium process intensities only provide a hint that there might be mutual reasons for lower or higher loss rates. In this paper, we therefore focus on the spatial dimension of vulnerability by searching for spatial clusters in the damage ratio of elements at risk exposed. By using the software SaTScan, we applied an ordinal data model and a normal data model in order to detect spatial distribution patterns of five individual torrent events in Austria. For both models, we detected some significant clusters of high damage ratios, and consequently high vulnerability. Moreover, secondary clusters of high and low values were found. Based on our results, the assumption that lower process intensities result in lower damage ratios, and therefore in lower vulnerability, and vice versa, has to be partly rejected. The spatial distribution of vulnerability is not only dependent on the process intensities but also on the overall land use pattern and the individual constructive characteristics of the buildings exposed. Generally, we suggest the use of a normal data model for test sites exceeding a minimum of 30 elements at risk exposed. As such, the study enhanced our understanding of spatial vulnerability patterns on a local scale.  相似文献   

5.
冰冻圈及其变化的脆弱性与适应研究体系   总被引:2,自引:1,他引:1  
冰冻圈及其变化的脆弱性与适应研究是以探索冰冻圈及其变化的脆弱性概念为前提和基础,以冰冻圈变化的自然影响为链接点,以社会经济影响研究为突破,以脆弱性研究为桥梁与纽带,以应对与适应冰冻圈变化影响、风险为目的的冰冻圈科学领域的新兴研究方向。探讨了冰冻圈及其变化的脆弱性概念,并以影响—脆弱性—适应为主线,针对冰冻圈变化的社会经济影响研究、脆弱性研究、适应研究内容及其关键科学问题、脆弱性评估模型、尺度问题进行了较为详细的阐述,初步搭建了中国冰冻圈及其变化的脆弱性与适应研究体系。基于冰冻圈要素的多样性、变化影响的复杂性与显著的区域差异性,从2个梯度勾绘了冰冻圈及其变化的脆弱性与适应研究格局与空间布局。中国冰冻圈及其变化的脆弱性与适应研究除深化冰冻圈变化的影响与脆弱性研究之外,应加强不同利益相关者协同设计、共同参与的冰冻圈变化适应应用研究,并关注冰冻圈灾害风险、渐变风险研究。  相似文献   

6.
Urban expansion has become one of the main factors influencing natural habitats. Understanding the advances on the assessments of the impacts of urban expansion on natural habitats is of great significance to balance the contradiction between urban expansion and natural habitats protection and to improve urban sustainability. Therefore, this paper reviewed the assessments of the impacts of urban expansion on natural habitats. The results showed that the number of papers and the frequency of citations continuously increased. Previous studies mainly evaluated the impacts of urban expansion on natural habitats in broad sense, and emphasized the impacts on the area and spatial patterns of natural habitats. The scale of previous studies concentrated on the local scale, and the spatial statistics were used as the most popular assessment method. Previous studies have laid a good foundation for understanding the impacts of urban expansion on natural habitats, but there are shortcomings in several aspects of contents, scales and methods. To solve those shortcomings, we propose a framework for assessing the impacts of urban expansion on natural habitats based on the principle of "multiple perspectives, multiple scales, and multiple methods". This framework will be helpful to assess the impacts of urbanization on natural habitats in a more effective way.  相似文献   

7.
Understanding the complexity of vulnerability to disasters, including those triggered by floods, droughts and epidemics is at the heart of disaster risk reduction. Despite its importance in disaster risk reduction, there remains a paucity of approaches that contribute to our understanding of social vulnerability that is hidden in dynamic contextual conditions. The study demonstrates an accessible means to assessing the spatial variation of social vulnerability to flood hazards and related for the context of Muzarabani district in northeast Zimbabwe. The study facilitated local identification with residents of variables contributing to social vulnerability and used the principal component analysis (PCA) technique to develop a social vulnerability index (SoVI). Using ArcMap10.2 geographic information systems (GIS) tool, the study mapped composite SoVI at the ward level. The results showed that Muzarabani district is socially vulnerable to hazards. The social vulnerability is influenced by a variety of economic, social and institutional factors that vary across the wards. Quantifying and visualising social vulnerability in Muzarabani provides useful information for decision makers to support disaster preparedness and mitigation programmes. The approach shows how spatially distributed multivariate vulnerability, as grounded in interpretations at local level, can be quantitatively derived for contexts such as those of Muzarabani. The study findings can inform disaster risk reduction communities and cognate disciplines on quantitative assessments for managing hazard vulnerability where these have hitherto not been developed.  相似文献   

8.
Fobe, B. and Goossens, M., 1990. The groundwater vulnerability map for the Flemish region: its principles and uses. Eng. Geol., 29: 355–363.

The vulnerability map of the groundwater for the Flemish region demonstrates the possible risk for contamination of the groundwater in the upper aquifer of economical value. The map was ordered by the Flemish government and distributed among the people working in the environmental sector. The vulnerability map, in scale 1/100,000, is based on static factors, like the lithology of the aquifer and its possible coverlayers and the depth of the water table. The map will serve as a tool for proper management of the groundwater. Because of its smaller scale, the document will be used to determine areas where particular regulations and actions for the protection of groundwater are necessary.

Some of the data presented by the map suggest a safer situation than actually present. This is because the compilation followed strictly the principles of the legend. In the future, care should be taken to avoid such ambiguous situations on a map that is available for the public.

Plans exist to start with the compilation of dynamic vulnerability maps. One experimental project is already finished. This study and other recent scientific research gave experience about the influence of topography on the recharge of groundwater. It will be necessary to review the risk of groundwater contamination in some of the areas on the vulnerability map, especially in sandy hill ridges.  相似文献   


9.
Thanks to modelling advances and the increase in computational resources in recent years, it is now feasible to perform 2-D urban flood simulations at very high spatial resolutions and to conduct flood risk assessments at the scale of single buildings. In this study, we explore the sensitivity of flood loss estimates obtained in such micro-scale analyses to the spatial representation of the buildings in the 2D flood inundation model and to the hazard attribution methods in the flood loss model. The results show that building representation has a limited effect on the exposure values (i.e. the number of elements at risk), but can have a significant impact on the hazard values attributed to the buildings. On the other hand, the two methods for hazard attribution tested in this work result in remarkably different flood loss estimates. The sensitivity of the predicted flood losses to the attribution method is comparable to the one associated with the vulnerability curve. The findings highlight the need for incorporating these sources of uncertainty into micro-scale flood risk prediction methodologies.  相似文献   

10.
滑坡灾害风险评价的关键理论与技术方法   总被引:3,自引:1,他引:2  
滑坡灾害风险评估主要包括滑坡敏感性分析、危险性评价和风险评估3个不同层次的内容。但是,滑坡地质灾害本身的复杂性和滑坡强度的确定、滑坡发生的时空概率估算、承灾体的易损性时空概率分析等难点问题的存在,无疑阻碍了滑坡风险定量评估的推广和应用。在系统分析国内外滑坡灾害风险评估研究成果的基础上,对滑坡灾害风险评价的技术体系进行了总结,提出了不同层次滑坡灾害的研究内容和相应的评价方法;分析了实现滑坡风险有效评价涉及到的难点问题,并结合降雨和地震诱发的滑坡灾害危险性评价国内外的实践,提出了中国未来滑坡灾害风险评价研究的主要内容和技术方法。  相似文献   

11.
Agriculture communities in the Himalayas are disproportionately vulnerable due to the emerging challenges from climatic and non-climatic stressors. In this study, we systematically review peer-reviewed literature focused on vulnerability assessment of agriculture communities (n = 26) in the five Himalayan countries (Bhutan, China, India, Nepal, and Pakistan). We examine the yearly distribution, geographical scale, methodological approach, stress in consideration, indicators used, and assessment communication methods of the reviewed papers. Our findings indicate that vulnerability assessment of agriculture communities in the Himalayas is a recent practice, as all of the reviewed articles were published after 2007. About 62% of the assessments were conducted at local (household, community, and village) level, and few assessments at sub-national (19%) and basin (12%) levels. Indicator-based methods using primary quantitative data were most common (54%). Further, 90% of the studies addressed vulnerability to a single stressor with 50% of papers dealing with the vulnerability of agriculture communities to climate change and/or climate variability. From the analysis of the literature, it was found that multi-level, multi-stress, and comprehensive socio-ecological assessments were seldom attempted. Mostly the studies were done in isolated pockets and failed to identify the patterns of vulnerability. We advocate that to holistically understand the vulnerability-creating and differentiating mechanisms in agriculture communities, vulnerability assessment should adopt a multi-level approach by integrating both social and ecological determinants, firstly to identify the hotspots of vulnerability and then to deeply understand the root causes in the identified hotspots through integrated analysis.  相似文献   

12.
Promper  C.  Glade  T. 《Natural Hazards》2016,82(1):111-127
Assessments of natural hazards and risks are beneficial for sustainable planning and natural hazard risk management. On a regional scale, quantitative hazard and risk assessments are data intensive and methods developed are difficult to transfer to other regions and to analyse different periods in a given region. Such transfers could be beneficial regarding factors of global change influencing the patterns of natural hazard and risk. The aim of this study was to show the landslide exposure of different elements at risk in one map, e.g. residential buildings and critical infrastructure, as a solid basis for an in-depth analysis of vulnerability and consequent risk. This enables to overcome the data intensive assessments on a regional scale and highlights the potential hotspots for risk analysis. The study area is located in the alpine foreland in Lower Austria and comprises around 112 km2. The results show the different levels of exposure, as well as how many layers of elements at risk are affected. Several exposure hotspots can be delineated throughout the study area. This allows a decision on in-depth analysis of hotspots not only by indicated locations but also by a rank resulting from the different layers of incorporated elements at risk.  相似文献   

13.
For assessing the social dimension of vulnerability, population exposure mapping is usually considered the essential starting point. Integration of social structure then further differentiates situation-specific vulnerability patterns on a local scale. Census data available in heterogeneous spatial reference units are still considered the standard information input for assessing potentially affected people, for example, in case of an emergency. There is a strong demand for population data in homogeneous spatial units that are independent from administrative areas. Raster representations meet this demand but are not yet available for all European countries. In this paper, we present an approach of spatial disaggregation of population data for a European transect referring to current population statistics and anticipated future prospects. Recently published data providing the degree of soil sealing are applied as basic proxy for population density in the spatial disaggregation model. In order to assess future patterns of climate change-related vulnerability, results of a European regional climate model are considered for projecting the situation in the 2030s. “Heat wave frequency” is accounted for as climate variable featuring conditions regarded as especially strenuous for elderly or physically weak persons. Integrated analysis of the population and climate prospects enables identification of hot spots in the European transect examined, that is, regions of particularly demanding projected climatic patterns as well as high population density and case-specific vulnerable structure (elderly people). Integrated and consistent spatial analyses on European scale are essential for decision support in the context of climate change impact mitigation as well as for risk communication and future safety and security considerations.  相似文献   

14.
Water-deficit-based drought risk assessments in Taiwan   总被引:1,自引:0,他引:1  
Taiwan is located in Western Pacific and receives approximate 2,500?mm rainfall per year. Suffered from inadequate water supply during prolonged and severe droughts, assessing drought risk becomes one of the key tasks of water-resources planning and management in Taiwan. Well-prepared drought mitigation measures require assimilation of physical environment of droughts and human socioeconomic factors. An index-based approach is presented in this study to evaluate drought risk at municipal scale in Taiwan for current status (2008) as well as future scenarios (2021). A multiplicative formula links drought hazard (frequency, duration, and severity of droughts), drought exposure (water use), and drought vulnerability (unreliable water supply) to determine drought risk. This approach quantifies the spatial distribution of drought risk and is able to deal with future changes of water use and water-supply source and to examine their influences on drought risk assessments. The results reveal that the regions that are at great risk in the future are those regions already threaten by drought currently. Changes of future water use and water-supply source would not significantly alter spatial distribution of drought risk and ranking order among regions. These results present a basis for future water-resources planning and economic developments for each municipal region.  相似文献   

15.
Freitas  Gabriel  Díaz  Ismael  Bessonart  Martín  da Costa  Edwin  Achkar  Marcel 《GeoJournal》2021,86(3):1155-1171

Floods are natural processes that constitute a hazard to society when associated to improper land use. Anthropic activities in floodplains are a factor of vulnerability that converts a natural hazard into a threat factor, eventually leading to disaster. Nowadays, natural and social complex processes demand integrated assessments in order to improve their understanding, helping decision making over sustainable use of territory, as well as integrating society’s activity in ecosystems and potentials, restrictions and benefits that society obtain from them. In this context, the objective of this work was to build a composite vulnerability model for a floodplain under urban influence, using an integrated assessment approach. This model was based on three dimensions; threat, fragility and an ecosystem services provision. These dimensions were calculated using both primary and secondary information, and weights by specialists. Main results show that the area presents high vulnerability with an increasing gradient towards high and urbanized areas, associated with an important number and relevant ecosystem services. Also, a spatial heterogeneity of the three dimensions emerged, making evident this area’s complexity and the need of integrated assessments to approach it. The composite vulnerability model proposed presents an elevated potential for natural and social processes analysis in floodplains, which is crucial for these territory management. Moreover, these integrated dimensions could contribute to decision making in different levels, as well as generating important supplies for environmental management and land planning.

  相似文献   

16.
In the context of disaster risk management and in particular for improving preparedness and mitigation of potential impacts, information on socioeconomic characteristics including aspects of situation-specific human exposure and vulnerability is considered vital. This paper provides an overview on available multi-level geospatial information and modeling approaches from global to local scales that could serve as inventory for people involved in disaster-related areas. Concepts and applications related to the human exposure and social vulnerability domains are addressed by illustrating the varying dimensions and contextual implications. Datasets and methods are highlighted that can be applied to assess earthquake-related population exposure, ranging from global and continental-scale population grids (with a focus on recent developments for Europe) to high-resolution functional urban system models and space–time variation aspects. In a further step, the paper elaborates on the integration of social structure on regional scale and the development of aggregative social and economic vulnerability indicators which would eventually enable the differentiation of situation-specific risk patterns. The presented studies cover social vulnerability mapping for selected US federal states in the New Madrid seismic zone as well as the advancement of social vulnerability analysis through integration of additional economic features in the index construction by means of a case study for Turkey’s provinces.  相似文献   

17.
Groundwater management has a prominent role in the world especially in arid and semi-arid areas which have a shortage of water, and due to this serious problem, many researchers work on that for prevention and managing the water recourses to conserve and monitor sources. DRASTIC index can be put forward for estimating of groundwater vulnerability to such pollution. The main purpose of using the groundwater vulnerability model is to map groundwater susceptibility to pollution in different areas. However, this method has been used in various areas without modification, disregarding the effects of pollution type and characteristics. Thus, this technique must be standardized and approved for Kerman plain. Vulnerability evaluation to explain areas that are more vulnerable to contamination from anthropogenic sources has become a prominent element for land use planning and tangible resource management. This contribution aims at evaluating groundwater vulnerability by applying the DRASTIC index as well as employ sensitivity analyses to evaluate the comparative prominent of the model parameters for groundwater vulnerability in Kerman plain in the southeastern part of Iran. Moreover, the potential of vulnerability to pollution is more accurately assessed by optimizing the weights of the DRASTIC parameters with the single-parameter sensitivity analysis (SPSA). The new weights were calculated. The result of the study revealed that the DRASTIC-Sensitivity analysis exhibit more efficiently than the traditional method for a nonpoint source pollution. Observation of ultimate nitrate showed the result of DRASTIC-SPSA has more accuracy. The GIS method offers an efficient environment for carrying out assessments and greater capabilities for dealing with a huge quantity of spatial data.  相似文献   

18.
A practical issue is present in sustaining and rehabilitating the ecologically vulnerable post-mining area in which the environmental condition varies spatially and therefore influenced by multiple factors. This paper attempts to integrate the ecological vulnerability assessment and rehabilitation treatment to assist land managers in revealing vulnerable features along with developing treatments of vulnerability mitigation. Using a post-mining site in a mountainous area in western China as study area, an indicator system and framework for assessing and reducing vulnerability were developed based on a vulnerability analysis. Geo-informatics, such as satellite image processing and spatial analysis, were employed to perform the assessment and planning. It was found that higher exposure and sensitivity are the main causes of increased vulnerability in a seriously disturbed post-mining area. Rehabilitation treatments were arranged spatially and structurally based on the framework of vulnerability mitigation. A pre-evaluation of the effectiveness shows this type of rehabilitation has a convergence effect that clusters and lowers the ecological vulnerability index (EVI). The average value of EVI will be reduced by 15.02% if the minimum standards of rehabilitation can be completed. Altogether, an integration of rehabilitation treatments and the quantification of vulnerability in a spatially explicit manner are critical for planners to gain more insight into ecological vulnerability in post-mining area, which provides guidance to simplify rehabilitation planning with respect to vulnerability mitigation.  相似文献   

19.
Wetlands are commonly assessed for ecological condition and biological integrity using a three-tiered framework of landscape-scale assessment, rapid assessment protocols, and intensive biological and physiochemical measurements. However, increased inundation resulting from accelerated sea level rise (SLR) is negatively impacting tidal marsh ecosystem functions for US Northeast coastal wetlands, yet relative vulnerability to this stressor is not incorporated in condition assessments. This article assesses tools available to measure coastal wetland vulnerability to SLR, including measurements made as part of traditional rapid condition assessments (e.g., vegetation communities, soil strength), field and remote sensing-based measurements of elevation, VDatum, and Sea Level Affecting Marshes Model (SLAMM) model outputs. A vulnerability metric that incorporates these tools was calibrated and validated using recent rates of marsh vegetation losses (1972–2011) as a surrogate for future vulnerability. The metric includes complementary measures of elevation capital, including the percentage of high vs. low marsh vegetation, Spartina alterniflora height, elevation measurements, and SLAMM outputs that collectively explained 62% of the variability in recent rates of marsh vegetation loss. Stepwise regression revealed that all three elements (elevation, vegetation measures, and SLAMM outputs) explained significant and largely unique components of vulnerability to SLR, with the greatest level of overlap found between SLAMM outputs and elevation metrics. While soil strength varied predictably with habitat zone, it did not contribute significantly to the vulnerability metric. Despite the importance of determining wetland elevation above key tidal datums of mean sea level and mean high water, we caution that VDatum was found to perform poorly in back-barrier estuaries. This factor makes it difficult to compare elevation capital among marshes that differ in tidal range and poses accuracy problems for broad-scale modeling efforts that require accurate tidal datums. Given the pervasive pattern of coastal wetland drowning occurring in the Northeastern USA and elsewhere, we advocate that compilation of regional data on marsh habitats and vulnerability to SLR is crucial as it permits agencies to target adaptation to sites based on their vulnerability or mixture of habitats, it helps match sites to appropriate interventions, and it provides a broader regional context to site-specific management actions. Without such data, adaptation actions may be implemented where action is not necessary and to the disadvantage of vulnerable sites where opportunities for successful adaptation will be missed.  相似文献   

20.
Shabana Khan 《Natural Hazards》2012,64(2):1587-1607
An understanding of vulnerability is not only crucial for the survival of the exposed communities to extreme events, but also for their adaptation to climate change. Vulnerability affects community participation in hazard mitigation, influences emergency response and governs adaptive capacity for the changing environmental and hazards characteristics. However, despite increased awareness, assessments and understanding of the processes that produce vulnerability, disaster risks prevail. This raises questions on the effectiveness of vulnerability assessments and their applications for hazard mitigation and adaptation. The literature includes a range of vulnerability assessment methods, wherein frequently the selection of any particular method is governed by the research objectives. On the other hand, hazard mitigation plans and policies even though mention vulnerability, their implementation pays less attention to the variations in its nature and underlying causes. This paper explores possible reasons for such gaps by exploring a case study of the Hutt Valley, New Zealand. It brings out the limitations of different vulnerability assessment methods in representing the local vulnerability and challenges they bring in planning for the vulnerability reduction. It argues that vulnerability assessment based on any particular method, such as deprivation index, principle component analysis, composite vulnerability index with or without weight, may not reveal the actual vulnerability of a place, and therefore, a comprehensive vulnerability assessment is needed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号