首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
《Advances in water resources》2007,30(6-7):1593-1607
An experimental and numerical investigation was conducted to study the colonization dynamics of a bioluminescent bacterium, Pseudomonas fluorescens HK44, during growth in a porous medium under steady, variably saturated flow conditions. Experiments were conducted in a thin-slab light transmission chamber filled with uniform, translucent quartz sand. Steady, variably saturated flow conditions were established using drip emitters mounted on the top of the chamber, with glucose applied through a central dripper located directly above an inoculated region of the chamber. Periodic pulses of salicylate and a dye tracer were applied to induce bioluminescence of the bacterium to monitor colony expansion and to track changes in the hydraulic and transport properties of the sand. Changes in the apparent water saturation of the sand were quantified by monitoring light transmission through the chamber with a CCD camera. The colonized region expanded laterally by about 15 cm, and upward against the flow by 7–8 cm during the 6-day experiment while apparent saturations in the colonized region decreased by 7–9% and the capillary fringe dropped by ∼5 cm. The observed data were reproduced approximately using a numerical model that accounted for the processes of water flow, solute and bacterial transport, cell growth and accumulation, glucose and oxygen consumption, and gas diffusion and exchange. The results of this study illustrate some of the complexities associated with coupled flow, reactive transport, and biological processes in variably saturated porous media, such as localized desaturation, capillary fringe lowering effects, and upstream movement of bacterial colonization, that may not readily observable using other experimental techniques.  相似文献   

2.
Light non-aqueous phase liquids (LNAPL) represent one of the most serious problems in aquifers contaminated with petroleum hydrocarbons liquids. To design an appropriate remediation strategy it is essential to understand the behavior of the plume. The aim of this paper is threefold: (1) to characterize the fluid distribution of an LNAPL plume detected in a volcanic low-conductivity aquifer (∼0.4 m/day from slug tests interpretation), (2) to simulate the recovery processes of the free-product contamination and (3) to evaluate the primary recovery efficiency of the following alternatives: skimming, dual-phase extraction, Bioslurping and multi-phase extraction wells. The API/Charbeneau analytical model was used to investigate the recovery feasibility based on the geological properties and hydrogeological conditions with a multi-phase (water, air, LNAPL) transport approach in the vadose zone. The modeling performed in this research, in terms of LNAPL distribution in the subsurface, show that oil saturation is 7% in the air–oil interface, with a maximum value of 70% in the capillary fringe. Equilibrium between water and LNAPL phases is reached at a depth of 1.80 m from the air–oil interface. On the other hand, the LNAPL recovery model results suggest a remarkable enhancement of the free-product recovery when simultaneous extra-phase extraction was simulated from wells, in addition to the LNAPL lens. Recovery efficiencies were 27%, 65%, 66% and 67% for skimming, dual-phase extraction, Bioslurping and multi-phase extraction, respectively. During a 3-year simulation, skimmer wells and multi-phase extraction showed the lowest and highest LNAPL recovery rates, with expected values from 207 to 163 and 2305 to 707 l-LNAPL/day, respectively. At a field level we are proposing a well distribution arrangement that alternates pairs of dual-phase well-Bioslurping well. This not only improves the recovery of the free-product plume, but also pumps the dissolve plume and enhances in situ biodegradation in the vadose zone. Thus, aquifer and soil remediation can be achieved at a shorter time. Rough calculations suggest that LNAPL can be recovered at an approximate cost of $6–$10/l.  相似文献   

3.
Capillary pressure (Pc)–saturation (S)–relative permeability (kr) relationships must be quantified to accurately predict non-aqueous phase liquid (NAPL) distribution in the subsurface. Several experimental techniques are presented here for two-fluid PcSkr relationships for various saturation paths to better define the effect of fractional wettability on these relationships. During the primary drainage path of the PcS curves, the air–water system showed no distinct trend as a function of the fraction of sand treated by organosilane (S) to render it non-water wetting. In a NAPL–water system, however, a consistent decrease of capillary pressure with increase of the fraction of non-water wetting sands was observed. The much lower contact angle for air–water (a–w) system may result in the observed insensitivity of the a–w PcS curves to fractional wettability, at least for the PD pathway. For the main imbibition path of NAPL–water system, capillary pressure decreased as the fraction of the S component increased, requiring forced imbibition (negative capillary pressures) for a certain range of saturations. Systems with an increasing percentage of the S component also exhibited a higher water kr and lower NAPL or air kr at a given saturation for the primary drainage and main imbibition paths in both air–water and NAPL–water systems. The increase of water kr with increase of the fraction of the S component can be explained by the ability of water to occupy larger and highly conductive pores in such a system. Experimental krS data for the primary drainage path of NAPL–water system presented here were used to test the Bradford et al. [Bradford SA, Abriola LM, Leij FJ. Wettability effects on two- and three-fluid relative permeabilities. J Contam Hydrol 1997;28:171–91] model and the modified Mualem model for estimating the krS curves from measured PcS data as a function of fractional wettability. Both models predicted significantly less variation in the krS curves than measured indicating that they did not adequately represent the system under investigation.  相似文献   

4.
In the water flooding of mixed-wet porous media, oil may drain down to relatively low residual oil saturations (Sor). Various studies have indicated that such low saturations can only be reached when oil layers in pore corners are included in the pore-scale modelling. These processes within a macroscopic porous medium can be modelled at the pore-scale by incorporating the fundamental physics of capillary dominated displacement within idealised pore network models. Recently, the authors have developed thermodynamic criteria for oil layer existence in pores with non-uniform wettability which takes as input geometrically and topologically representative networks, to calculate realistic Sor values for mixed-wet and oil-wet sandstones [16, 21]. This previous work is developed in this paper to include (i) the visualisation of the 3D structure of this residual oil, and (ii) a statistical analysis of this “residual/remaining” oil. Both the visualisation and the statistical analysis are done under a wide range of wettability conditions, which is reported for the first time in this paper.The structure of residual oil for strongly water wet systems is well known (where residual = remaining oil) and our model agrees with this but this structure changes radically for mixed wet systems (where residual  remaining) and this has not yet been visualised experimentally. We find that for more water-wet systems high final residual oil saturations are reached at relatively small amounts of water injected and this oil is present in the pores as bulk oil. On the other hand, for more oil-wet systems we find a slow decrease of the amount of remaining oil with increasing amounts of injected water. During the process, the remaining connectivity of the oil phase is increasingly provided by oil layers only, hence the slow drainage. The final residual oil saturation, only reached in the theoretical limit of an infinite amount of injected water, is almost entirely contained in large number of (relatively low volume) oil layers, which are present in pores of most radius sizes.  相似文献   

5.
Drinking water wells indiscriminatingly placed adjacent to fecal contaminated surface water represents a significant but difficult to quantify health risk. Here we seek to understand mechanisms that limit the contamination extent by scaling up bacterial transport results from the laboratory to the field in a well constrained setting. Three pulses of Escherichia coli originating during the early monsoon from a freshly excavated pond receiving latrine effluent in Bangladesh were monitored in 6 wells and modeled with a two-dimensional (2-D) flow and transport model conditioned with measured hydraulic heads. The modeling was performed assuming three different modes of interaction of E. coli with aquifer sands: (1) irreversible attachment only (best-fit ki = 7.6 day−1); (2) reversible attachment only (ka = 10.5 and kd = 0.2 day−1); and (3) a combination of reversible and irreversible modes of attachment (ka = 60, kd = 7.6, ki = 5.2 day−1). Only the third approach adequately reproduced the observed temporal and spatial distribution of E. coli, including a 4-log10 lateral removal distance of ∼9 m. In saturated column experiments, carried out using aquifer sand from the field site, a combination of reversible and irreversible attachment was also required to reproduce the observed breakthrough curves and E. coli retention profiles within the laboratory columns. Applying the laboratory-measured kinetic parameters to the 2-D calibrated flow model of the field site underestimates the observed 4-log10 lateral removal distance by less than a factor of two. This is promising for predicting field scale transport from laboratory experiments.  相似文献   

6.
Water level, sediment heterogeneity, and plant density are important factors that determine plant growth, distribution, and community structure. In the present study, we investigated the effects of these factors on the growth and root characteristics of Carex brevicuspis. We conducted an outdoor experiment to monitor biomass accumulation and allocation, relative root distribution mass ratio, longest root length, and total N and P contents of C. brevicuspis plants. We used a factorial design with two water levels (0 cm and −15 cm relative to the soil surface, named high and low water level treatments, respectively), three sediment types (sand/clay sediment with 0–15 cm of sand and 15–30 cm of clay; mixed sediment with 0–30 cm mixture of sand and clay with 1:1 volumw ratio; and clay/sand sediment with 0–15 cm of clay and 15–30 cm of sand), and three plant densities (88 plants per m2, 354 plants per m2, and 708 plants per m2). Biomass accumulation decreased with increasing plant density and was significantly higher in the low water level and the clay/sand sediment than in the high water level and the other two sediment types. The shoot:root ratio was markedly higher in the high water level than in the low water level and decreased with increasing plant density; further, in the high water level, it was significantly lower in the sand/clay sediment than in the other two sediment types. The relative root distribution mass ratio was markedly higher in the high water level treatments than in the low water level treatments. Further, in the high water level treatments, the relative root distribution mass ratio increased with increasing plant density in the clay/sand sediment and was lower in the sand/clay sediment than in the other two sediment types. The longest root length was significantly lower in the high water level than in the low water level and increased with increasing plant density in the sand/clay sediment in the high water level. Total N content in the plants was influenced only by sediment type; on the other hand, total P content was markedly higher in the high water level than in the low water level. Our data indicate that growth of C. brevicuspis was limited by higher water level, higher density and sand/clay sediment. Plants can increase shoot:root ratio and develop shallow root system to acclimate to high water level and thus could adjust shoot:root ratio and root characteristics, e.g. decrease their shoot:root ratio and allocating more root and increasing root length to the nutrient rich layer to acclimate to conditions of higher density and sediment heterogeneity.  相似文献   

7.
In this study, carbon dioxide exsolution from carbonated water is directly observed under reservoir conditions (9 MPa and 45 °C). Fluorescence microscopy and image analysis are used to quantitatively characterize bubble formation, morphology, and mobility. Observations indicate the strong influence of interfacial tension and pore-geometry on bubble growth and evolution. Most of the gas exhibits little mobility during the course of depressurization and clogs water flow paths. However, a snap-off mechanism mobilizes a small portion of the trapped gas along the water flow paths. This feature contributes to the transport of the dispersed exsolved gas phase and the formation of intermittent gas flow. A new definition of critical gas saturation is proposed accordingly as the minimum saturation that snap-off starts to produce mobile bubbles. Low mobility of the water phase and CO2 phase in exsolution is explained by formation of dispersed CO2 bubbles which block water flow and lack the connectivity to create a mobile gas phase.  相似文献   

8.
In this study we performed three categories of steady- and unsteady-state core-flooding experiments to investigate capillary trapping, relative permeability, and capillary pressure, in a scCO2 + SO2/brine/limestone system at elevated temperature and pressure conditions, i.e., 60 °C and 19.16 MPa. We used a Madison limestone core sample acquired from the Rock Springs Uplift in southwest Wyoming. We carried out two sets of steady-state drainage-imbibition relative permeability experiments with different initial brine saturations to study hysteresis. We found that the final scCO2 + SO2 drainage relative permeability was very low, i.e., 0.04. We also observed a rapid reduction in the scCO2-rich phase imbibition relative permeability curve, which resulted in a high residual trapping. The results showed that between 62.8% and more than 76% of the initial scCO2 + SO2 at the end of drainage was trapped by capillary trapping mechanism (trapping efficiency). We found that at higher initial brine saturations, the trapping efficiency was higher. The maximum initial and residual scCO2-rich phase saturations at the end of primary drainage and imbibition were 0.525 and 0.329, respectively. Each drainage-imbibition cycle was followed by a dissolution process to re-establish Sw = 1. The dissolution brine relative permeabilities for both cycles were also obtained. We characterized the scCO2 + SO2/brine capillary pressure hysteresis behavior through unsteady-state primary drainage, imbibition, and secondary drainage experiments. We observed negative imbibition capillary pressure curve indicative of possible wettability alteration throughout the experiments due to contact with scCO2 + SO2/brine fluid system. The trapping results were compared to those reported in literature for other carbonate core samples. We noticed slightly more residual trapping in our sample, which might be attributed to heterogeneity, different viscosity ratio, and pore-space topologies. The impact of dynamic effects, i.e., high brine flow rate imbibition tests, on trapping of the scCO2-rich phase was also explored. We performed two imbibition experiments with relatively high brine flow rates. The residual scCO2 saturation dropped to 0.291 and 0.262 at the end of the first and second imbibition tests, i.e., 11.5% and 20.4%, respectively, compared to 0.329 under capillary-dominated regime.  相似文献   

9.
Relationships describing response times for landscape saturation and subsurface flow for idealised hillslopes after a change in water balance are derived in terms of similarity parameters given by their topographic, soil and climatic attributes. The study was carried out under a set of specific assumptions.The work quantitatively describes effects of each of these attributes on travel time. For example, divergent hillslopes can exhibit travel times that are double those of convergent hillslopes, and concave slopes tend to have lower travel times than planar or convex slopes. It is shown that the hillslope travel time T is dependent on hillslope length L, hydraulic conductivity K and slope S such that T = f(L/KS, B, CR, Δq/smd) and if saturation does not occur in the lower reaches of a hillslope, this can be simplified to T = f(L/KS, B). Here, Δq is change in net external flux and smd is soil moisture deficit; CR and B are the convergence ratio and profile factor respectively. The relative importance of these attributes on response time is discussed.It is shown that subsurface flow hydrographs of simple hillslopes of different scale, derived numerically, can be collapsed into a single curve by normalising them by means of a form of response time, the time constant.Results from the analytical derivation were compared with numerical analysis with good agreement. The theory was applied to a natural catchment using observed data from a bushfire event. Comparison of analytically calculated response time with observed response time for the event showed a large discrepancy. The reason is discussed.  相似文献   

10.
The spectral attenuation of solar irradiation was measured during summer in two types of coastal waters in southern Chile, a north Patagonian fjord (Seno Reloncaví) and open coast (Valdivia). In order to relate the light availability with the light requirements of upper subtidal seaweeds, the saturating irradiance for photosynthesis (Ek) from PI curves was measured. In addition the UV risk was assessed. Based on the z1% of PAR, the lower limit of the euphotic zone in the studied systems averaged 21 m (Kd 0.24 m?1) in Seno Reloncaví and 18 m (Kd 0.27 m?1) in the coast of Valdivia. Photosynthesis of the studied seaweeds was saturated at markedly lower irradiances than found in their natural depths at the time of the study. Solar radiation penetrating into these depths at both locations largely supports the light requirements for the photosynthesis of subtidal species: 50–160 μmol m?2 s?1 for seaweeds from Seno Reloncaví (7 m tidal range) and 20–115 μmol m?2 s?1 for Valdivia assemblages (2 m tidal range). Optimal light conditions to saturate photosynthesis (Ek) were present at 10–16 m water depth. The attenuation of solar irradiation did not vary significantly between the fjord and coastal sites of this study. However, the underwater light climates to which seaweeds are exposed in these sites vary significantly because of the stronger influence of tidal range affecting the fjord system as compared with the open coastal site. The patterns of UV-B penetration in these water bodies suggest that seaweeds living in upper littoral zones such as the intertidal and shallow subtidal (<3 m) may be at risk.  相似文献   

11.
《Advances in water resources》2005,28(10):1112-1121
Over the past decade there have been a variety of exact solutions developed for one-dimensional two-phase flow, however when higher dimensions are considered there is a distinct scarcity of solutions. In this paper we consider the problem of radially symmetric two-phase flow, into an infinite medium of uniform initial saturation, subject to a constant flux V from a line source at the origin. We show that in the absence of gravity and when the two-phase diffusivity D is related to the fraction flow function f by βD = V df/dθ, where θ is the water content and β is a constant of proportionality, a new class of exact solutions can be found. In particular, when β = 2, we show that the solution is given by a simple quadrature for arbitrary D, and is fully integrable for specific functional forms of D. It has been shown by Weeks et al. [Weeks SW, Sander GC, Parlange J-Y. n-Dimensional first integral and similarity solutions for two-phase flow. ANZIAM J 2003;44:365–80] that when D obeys the above relation, a saturated zone does not grow around the line of injection, consequently we find for β = 1, the flow equation maps to one-dimensional single-phase flow under a saturated boundary condition. Consequently solutions developed for one-dimensional single-phase flow (exact or approximate) apply to radially symmetric two-phase flow. Solutions for β = 1 or 2 can be derived for either a wetting fluid displacing a non-wetting fluid, or a non-wetting fluid displacing a wetting fluid, however for arbitrary β numerical methods are required.  相似文献   

12.
The Mu Us Desert, located in the northwestern fringe of the East Asian monsoon region, is sensitive to climate variability. The desert is characterized by mobile, semi-fixed and fixed sand dunes. Alternating units of dune sands and sandy palaeosols in the Mu Us Desert imply multiple episodes of dune building and stabilization, in response to the ebb and flow of the East Asian monsoon. Desert evolution and climatic change of high-resolution in the Mu Us Desert are still poorly understood due to limited numerical dating results. In the present study, 19 samples collected from five sand dune sections along a northwest–southeast transect in the Mu Us Desert were dated using quartz optically stimulated luminescence (OSL) and single aliquot regenerative-dose (SAR) protocol. Internal checks of the OSL dating indicate that the SAR protocol is appropriate for equivalent dose (De) determination for the samples under study. Combined with the lithologic stratigraphy and the luminescence chronology, the sand dune development in the Mu Us Desert during the Late Pleistocene is discussed. Our results indicate that the sand was mobilized approximately at 91 ka, 71 ka, 48–22 ka, 5 ka, 1 ka, and 0.44 ka; the sand was fixed approximately at 65 ka and Holocene Optimum period in the interior Mu Us Desert. The Mu Us Desert formed at least before ~144 ka, and has shown increasing aridity in the Late Pleistocene.  相似文献   

13.
We present the results of K-feldspar IRSL dating of the four lower terraces (T3–T6) of the Portuguese Tejo River, in the Arripiado-Chamusca area. Terrace correlation was based upon: a) analysis of aerial photographs, geomorphological mapping and field topographic survey; b) sedimentology of the deposits; and c) luminescence dating. Sediment sampled for luminescence dating gave unusually high dose rates, of between 3.4 and 6.2 Gy/ka and, as a result, quartz OSL was often found to be in saturation. We therefore used the IRSL signal from K-feldspar as the principal luminescence technique. The K-feldspar age results support sometimes complex geomorphic correlations, as fluvial terraces have been vertically displaced by faults (known from previous studies). Integration of these new ages with those obtained previously in the more upstream reaches of the Tejo River in Portugal indicates that the corrected K-feldspar IRSL ages are stratigraphically and geomorphologically consistent over a distance of 120 km along the Tejo valley. However, we are sceptical of the accuracy of the K-feldspar ages of samples from the T3 and T4 terraces (with uncorrected De values >500 Gy). In these cases the Dose Rate Correction (DRC) model puts the natural signals close to luminescence saturation, giving a minimum corrected De of about 1000 Gy, and thus minimum terrace ages; this may even be true for those doses >200 Gy. Luminescence dating results suggest that: T3 is older than 300 ka, probably ca. 420–360 ka (~Marine Isotope Stage [MIS]11); T4 is ca. 340–150 ka (~MIS9-6); T5 is 136–75 ka (~MIS5); T6 is 60–30 ka (MIS3); an aeolian sand unit that blankets T6 and some of the older terraces is 30–≥12 ka. Collectively, the luminescence ages seem to indicate that regional river downcutting events may be coincident with periods of low sea level (associated, respectively, with the MIS10, MIS6, MIS4 and MIS2).  相似文献   

14.
A detailed model was formulated to describe the non-passive transport of water-soluble chemicals in the unsaturated zone and used to illustrate one-dimensional infiltration and redistribution of alcohol–water mixtures. The model includes the dependence of density, viscosity, surface tension, molecular diffusion coefficient in the liquid-phase, and gas–liquid partition coefficient on the aqueous mixture composition. It also takes into account the decrease in the gas–liquid partition coefficient at high capillary pressures, in accordance with Kelvin’s equation for multi-component mixtures. Simulation of butanol–water mixtures infiltration in sand was in agreement with the experimental data and simulations reported in the literature. Simulation of methanol infiltration and redistribution in two different soils showed that methanol concentration significantly affects volumetric liquid content and concentration profiles, as well as the normalized volatilization and evaporation fluxes. Dispersion in the liquid-phase was the predominant mechanism in the transport of methanol when dispersivity at saturation was set to 7.8 cm. Liquid flow was mainly due to capillary pressure gradients induced by changes in volumetric liquid content. However, for dispersivity at saturation set to 0.2 cm, changes in surface tension due to variation in composition induced important liquid flow and convection in the liquid-phase was the most active transport mechanism. When the Kelvin effect was ignored within the soil, the gas-phase diffusion was significantly lower, leading to lower evaporation flux of water and higher volumetric liquid contents near the soil surface.  相似文献   

15.
Serpentinization of the mantle wedge is an important process that influences the seismic and mechanical properties in subduction zones. Seismic detection of serpentines relies on the knowledge of elastic properties of serpentinites, which thus far has not been possible in the absence of single-crystal elastic properties of antigorite. The elastic constants of antigorite, the dominant serpentine at high-pressure in subduction zones, were measured using Brillouin spectroscopy under ambient conditions. In addition, antigorite lattice preferred orientations (LPO) were determined using an electron back-scattering diffraction (EBSD) technique. Isotropic aggregate velocities are significantly lower than those of peridotites to allow seismic detection of serpentinites from tomography. The isotropic VP/VS ratio is 1.76 in the Voigt–Reuss–Hill average, not very different from that of 1.73 in peridotite, but may vary between 1.70 and 1.86 between the Voigt and Reuss bonds. Antigorite and deformed serpentinites have a very high seismic anisotropy and remarkably low velocities along particular directions. VP varies between 8.9 km s? 1 and 5.6 km s? 1 (46% anisotropy), and 8.3 km s? 1 and 5.8 km s? 1 (37%), and VS between 5.1 km s? 1 and 2.5 km s? 1 (66%), and 4.7 km s? 1 and 2.9 km s? 1 (50%) for the single-crystal and aggregate, respectively. The VP/VS ratio and shear wave splitting also vary with orientation between 1.2 and 3.4, and 1.3 and 2.8 for the single-crystal and aggregate, respectively. Thus deformed serpentinites can present seismic velocities similar to peridotites for wave propagation parallel to the foliation or lower than crustal rocks for wave propagation perpendicular to the foliation. These properties can be used to detect serpentinite, quantify the amount of serpentinization, and to discuss relationships between seismic anisotropy and deformation in the mantle wedge. Regions of high VP/VS ratios and extremely low velocities in the mantle wedge of subduction zones (down to about 6 and 3 km.s?1 for VP and VS, respectively) are difficult to explain without strong preferred orientation of serpentine. Local variations of anisotropy may result from kilometer-scale folding of serpentinites. Shear wave splittings up to 1–1.5 s can be explained with moderately thick (10–20 km) serpentinite bodies.  相似文献   

16.
To test and evaluate the ability of commonly used constitutive relations for multifluid flow predictions, results of numerical flow and transport simulations are compared to experimental data. Three quantitative experiments were conducted in 1-m-long vertical columns. The columns were filled with either a uniform sand, a sand with a broad particle-size distribution, or with a layered system where a layer of a course-textured uniform sand was placed in an otherwise finer-textured uniform sand. After establishing variably water-saturated conditions, a pulse of a light nonaqueous-phase liquid (LNAPL) was injected uniformly at a constant rate. Water and LNAPL saturations were measured as a function of time and elevation with a dual-energy gamma-radiation system. The infiltration and redistribution of the LNAPL were simulated with nonhysteretic and hysteretic parametric relative permeability-saturation-pressure (k-S-P) models. The models were calibrated using two-phase air-water retention data and an established scaling theory. The nonhysteretic Brooks-Corey k-S-P model, which utilizes the Burdine relative permeability model, yielded predictions that closely matched the experimental data. Use of the nonhysteretic and hysteretic k-S-P models, based on the van Genuchten S-P relations and k-S relations derived from the Mualem relative permeability model, did not agree as well with the experimental data as those obtained with the Brooks-Corey k-S-P model. Explanations for the differences in performance of the three tested parametric k-S-P models are proposed.  相似文献   

17.
The persistent droughts, dry spells, and chronic food insecurity in semi-arid areas necessitate the introduction of more robust rainwater harvesting and soil water management technologies. The study reported here was conducted to assess the influence of dead level contours and infiltration pits on in-field soil water dynamics over two growing seasons. A transect consisting of six access tubes, spaced at 5 m interval, was established across each dead level contour with or without an infiltration pit before the onset of the rains. Two access tubes were installed upslope of the contour while four tubes were installed on the downslope side. Dead level contours with infiltration pits captured more rainwater than dead level contours only resulting in more lateral soil water movement. Significant lateral soil water movement was detected at 3 m downslope following rainfall events of 60–70 mm/day. The 0.2–0.6 m soil layer benefited more from the lateral soil water movement at all the farms. Our results suggest that dead level contours have to be constructed at 3–8 m spacing for crops to benefit from the captured rainwater. It is probably worth exploring strip cropping of food and fodder crops on the downslope of the dead level contours and infiltration pits using the current design of these between-field structures. With the advent of in situ rainwater harvesting techniques included in some conservation agriculture practices it will benefit smallholder cropping systems in semi-arid areas if these between-field structures are promoted concurrently with other sustainable land management systems such as conservation agriculture.  相似文献   

18.
《Continental Shelf Research》2007,27(3-4):475-488
Across a limited depth range (5–10 m) on many continental shelves, the dominant sediment size changes from sand to mud. This important boundary, called the sand–mud transition (SMT), separates distinct benthic habitats, causes a significant change in acoustic backscatter, represents a key facies change, and delimits more surface-reactive mud from less surface-reactive sand. With the goal of improving dynamical understanding of the SMT, surficial sediments were characterized across two SMTs on the Adriatic continental shelf of Italy. Geometric mean diameter, specific surface area (SSA), mud fraction (<63 μm) and heavy metal concentrations were all measured. The SMT related to the Tronto River is identified between 15 and 20 m water depth while the SMT associated with the Pescara River varies between 15 and 25 m water depth. The sediment properties correlate with a new, process-based sedimentological parameter that quantifies the fraction of the sediment in the seabed that was delivered as flocs. These correlations suggest that floc dynamics exert strong influence over sediment textural properties and metal concentrations. Relative constancy in the depth of the SMT along this portion of the margin and its lack of evolution over a period during which sediment input to the margin has dramatically decreased suggest that on the Adriatic continental shelf energy is the dominant control on the depth of the SMT.  相似文献   

19.
The vadose zone is the main region controlling water movement from the land surface to the aquifer and has a very complex structure. The use of non-invasive or minimally invasive geophysical methods especially electrical resistivity imaging is a cost-effective approach adapted for long-term monitoring of the vadose zone. The main aim of this work is to know the fractures in the vadose zone, of granitic terrene, through which the recharge or preferred path recharge to the aquifer takes place and thus to relate moisture and electrical resistivity. Time lapse electrical resistivity tomography (TLERT) experiment was carried out in the vadose zone of granitic terrene at the Indian Geophysical Research Institute, Hyderabad along two profiles to a depth of 18 m and 13 m each. The profiles are 300 m apart. Piezometric, rainfall and soil moisture data were recorded to correlate with changes in the rainfall recharge. These TLERT difference images showed that the conductivity distribution was consistent with the recharge occurring along the minor fractures. We mapped the fractures in hard rock or granites to see the effect of the recharge on resistivity variation and estimation of moisture content. These fractures act as the preferred pathways for the recharge to take place. A good correlation between the soil moisture and resistivity is established in the vadose zone of granitic aquifer. Since the vadose zone exhibits extremely high variability, both in space and time, the surface geophysical investigations such as TLERT have been a simple and useful method to characterize the vadose zone, which would not have been possible with the point measurements alone. The analyses of the pseudosection with time indicate clearly that the assumption of the piston flow of the moisture front is not valid in hard rocks. The outcome of this study may provide some indirect parameters to the well known Richard's equation in studying the unsaturated zone.  相似文献   

20.
The standardised growth curve (SGC) for quartz OSL has recently been developed as a practical means to reduce measurement times when determining palaeodoses using quartz of aeolian sediments, especially loess and desert sand from the same section or the same geographical area. In the present study, we test the performance of SGCs for lacustrine sediments of three cores in the Qaidam Basin of the Qinghai-Tibetan Plateau (QTP) in China. A total of nine samples were collected (three samples from each of the three cores), and silt-sized (38–63 μm) quartz was extracted for the experiment. The results demonstrated that: (a) Nine samples display similar dose–response curves up to a regeneration dose of 600 Gy using single aliquot regenerative-dose (SAR) protocol, suggesting the existence of a standardised growth curve for lacustrine sediments in the Qaidam Basin; (b) For samples with Des of up to ~400 Gy, the Des determined by the SGC are in agreement with the Des by the SAR protocol, suggesting that the SGC approach could be used for De determination up to a dose of ~400 Gy for lacustrine samples from the Qaidam Basin of the Qinghai-Tibetan Plateau in China; (c) The saturation dose for these samples is more than 600 Gy, and in the growth curve a linear growth part was observed in the high dose range of >200 Gy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号