首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
The effects of soil‐structure interaction on the seismic response of multi‐span bridges are investigated by means of a modelling strategy based on the domain decomposition technique. First, the analysis methodology is presented: kinematic interaction analysis is performed in the frequency domain by means of a procedure accounting for radiation damping, soil–pile and pile‐to‐pile interaction; the seismic response of the superstructure is evaluated in the time domain by means of user‐friendly finite element programs introducing suitable lumped parameter models take into account the frequency‐dependent impedances of the soil–foundation system. Second, a real multi‐span railway bridge longitudinally restrained at one abutment is analyzed. The input motion is represented by two sets of real accelerograms: one consistent with the Italian seismic code and the other constituted by five records characterized by different frequency contents. The seismic response of the compliant‐base model is compared with that obtained from a fixed‐base model. Pile stress resultants due to kinematic and inertial interactions are also evaluated. The application demonstrates the importance of performing a comprehensive analysis of the soil–foundation–structure system in the design process, in order to capture the effects of soil‐structure interaction in each structural element that may be beneficial or detrimental. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
薛富春  张建民 《地震工程学报》2015,37(2):310-316,323
高速铁路中的桥梁常采用灌注桩基础以控制沉降,地震作用是桩基础的设计工况之一。建立桥梁-桥墩-桩基础-地基为一体的耦合系统非线性三维数值分析模型,以典型地震波为输入,考虑上部结构和基础的共同工作、土-结构动力相互作用、材料非线性和土层对桩的侧阻及端阻作用,开展三向地震作用下的动力有限元计算,并对地基主要土层压缩模量、桩体材料弹性模量、桩径和桩长进行参数敏感性分析。计算结果表明:现行的桩基础设计方案能有效控制地震荷载作用下桥梁的变形;地震过程中的不同时刻,桩侧阻发挥程度不同且不可忽略,以单纯的梁单元模拟桩的动力学行为的适用性值得商榷;桩长和地基主要土层压缩模量对桥梁地震反应影响最大,桩体材料弹性模量的影响次之,桩径的影响最小。  相似文献   

3.
This paper evaluates the seismic vulnerability of different classes of typical bridges in California when subjected to seismic shaking or liquefaction-induced lateral spreading. The detailed structural configurations in terms of superstructure type, connection, continuity at support and foundation type, etc. render different damage resistant capability. Six classes of bridges are established based on their anticipated failure mechanisms under earthquake shaking. The numerical models that are capable of simulating the complex soil-structure interaction effects, nonlinear behavior of columns and connections are developed for each bridge class. The dynamic responses are obtained using nonlinear time history analyses for a suite of 250 earthquake motions with increasing intensity. An equivalent static analysis procedure is also implemented to evaluate the vulnerability of the bridges when subjected to liquefaction-induced lateral spreading. Fragility functions for each bridge class are derived and compared for both seismic shaking (based on nonlinear dynamic analyses) and lateral spreading (based on equivalent static analyses) for different performance states. The study finds that the fragility functions due to either ground shaking or lateral spreading show significant correlation with the structural characterizations, but differences emerge for ground shaking and lateral spreading conditions. Structural properties that will mostly affect the bridges' damage resistant capacity are also identified.  相似文献   

4.
The simultaneous effects of soil–structure interaction, foundation uplift and inelastic behavior of the superstructure on total displacement response of soil–structure systems are investigated. The superstructure is modeled as an equivalent single‐degree‐of‐freedom system with bilinear behavior mounted on a rigid foundation resting on distributed tensionless Winkler springs and dampers. It is well known that the behavior of soil–structure systems can be well described using a limited number of nondimensional parameters. Here, by introducing two new parameters, the concept is extended to inelastic soil–structure systems in which the foundation is allowed to uplift. An extensive parametric study is conducted for a wide range of the key parameters through nonlinear time history analyses. It is shown that while uplifting soil–structure systems experience excessive displacements, in comparison with systems that are not allowed to uplift, ductility demand in the superstructure generally decreases owing to foundation uplift. A new inelastic displacement ratio (IDR) is proposed in conjunction with a nonlinear static analysis of uplifting soil–structure systems. Simplified expressions are also provided to estimate the proposed IDR. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
The paper presents a lumped parameter model for the approximation of the frequency‐dependent dynamic stiffness of pile group foundations. The model can be implemented in commercial software to perform linear or nonlinear dynamic analyses of structures founded on piles taking into account the frequency‐dependent coupled roto‐translational, vertical, and torsional behaviour of the soil‐foundation system. Closed‐form formulas for estimating parameters of the model are proposed with reference to pile groups embedded in homogeneous soil deposits. These are calibrated with a nonlinear least square procedure, based on data provided by an extensive non‐dimensional parametric analysis performed with a model previously developed by the authors. Pile groups with square layout and different number of piles embedded in soft and stiff soils are considered. Formulas are overall well capable to reproduce parameters of the proposed lumped system that can be straightforwardly incorporated into inertial structural analyses to account for the dynamic behaviour of the soil‐foundation system. Some applications on typical bridge piers are finally presented to show examples of practical use of the proposed model. Results demonstrate the capability of the proposed lumped system as well as the formulas efficiency in approximating impedances of pile groups and the relevant effect on the response of the superstructure.  相似文献   

6.
This paper aims at clarifying the role of dynamic soil–structure interaction in the seismic assessment of structure and foundation, when the non‐linear coupling of both subsystems is accounted for. For this purpose, the seismic assessment of an ideal set of bridge piers on shallow foundations is considered. After an initial standard assessment, based on capacity design principles, the evaluation of the seismic response of the piers is carried out by dynamic simulations, where both the non‐linear responses of the superstructure and of the foundation are accounted for, in the latter case through the macro‐element modeling of the soil–foundation system. The results of the dynamic simulations point out the beneficial effects of the non‐linear response of the foundation, which provides a substantial contribution to the overall energy dissipation during seismic excitation, thus allowing the structural ductility demand to decrease significantly with respect to a standard fixed‐base or linear‐elastic base assessment. Permanent deformations at the foundation level, such as rotation and settlement, turn out to be of limited amount. Therefore, an advanced assessment approach of the integrated non‐linear system, consisting of the interacting foundation and superstructure, is expected to provide more rationale and economic results than the standard uncoupled approach, which, neglecting any energy dissipation at the foundation level, generally overestimates the ductility demand on the superstructure. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
Interaction of bridge structures with the adjacent embankment fills and pile foundations is generally responsible for response modification of the system to strong ground excitations, to a degree that depends on soil compliance, support conditions, and soil mass mobilized in dynamic response. This paper presents a general modeling and assessment procedure specifically targeted for simulation of the dynamic response of short bridges such as highway overcrossings, where the embankment soil–structure interaction is the most prevalent. From previous studies it has been shown that in this type of interaction, seismic displacement demands are magnified in the critical bridge components such as the central piers. This issue is of particular relevance not only in new design but also in the assessment of the existing infrastructure. Among a wide range of issues relevant to soil–structure interaction, typical highway overcrossings that have flexible abutments supported on earth embankments were investigated extensively in the paper. Simulation procedures are proposed for consideration of bridge‐embankment interaction effects in practical analysis of these structures for estimation of their seismic performance. Results are extrapolated after extensive parametric studies and are used to extract ready‐to‐use, general, and parameterized capacity curves for a wide range of possible material properties and geometric characteristics of the bridge‐embankment assembly. Using two instrumented highway overpasses as benchmark examples, the capacity curves estimated using the proposed practical procedures are correlated successfully with the results of explicit incremental dynamic analysis, verifying the applicability of the simple tools developed herein, in seismic assessment of existing short bridges. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
The methodology for dealing with spatial variability of ground motion, site effects and soil–structure interaction phenomena in the context of inelastic dynamic analysis of bridge structures, and the associated analytical tools established and validated in a companion paper are used herein for a detailed parametric analysis, aiming to evaluate the importance of the above effects in seismic design. For a total of 20 bridge structures differing in terms of structural type (fundamental period, symmetry, regularity, abutment conditions, pier‐to‐deck connections), dimensions (span and overall length), and ground motion characteristics (earthquake frequency content and direction of excitation), the dynamic response corresponding to nine levels of increasing analysis complexity was calculated and compared with the ‘standard’ case of a fixed base, uniformly excited, elastic structure for which site effects were totally ignored. It is concluded that the dynamic response of RC bridges is indeed strongly affected by the coupling of the above phenomena that may adversely affect displacements and/or action effects under certain circumstances. Evidence is also presented that some bridge types are relatively more sensitive to the above phenomena, hence a more refined analysis approach should be considered in their case. Copyright @ 2003 John Wiley & Sons, Ltd.  相似文献   

9.
Based on the theory of dynamic wheel–rail interactions, a dynamic model of coupled train–bridge system subjected to earthquakes is established, in which the non‐uniform characteristics of the seismic wave input from different foundations are considered. The bridge model is based on the modal comprehension analysis technique. Each vehicle is modelled with 31 degrees of freedom. The seismic loads are imposed on the bridge by using the influence matrix and exerted on the vehicles through the dynamic wheel–rail interaction relationships. The normal wheel–rail interaction is tackled by using the Hertzian contact theory, and the tangent wheel–rail interaction by the Kalker linear theory and the Shen–Hedrick–Elkins theory. A computer code is developed. A case study is performed to a continuous bridge on the planned Beijing–Shanghai high‐speed railway in China. Through input of typical seismic waves with different propagation velocities to the train–bridge system, the histories of the train running through the bridge are simulated and the dynamic responses of the bridge and the vehicles are calculated. The influences of train speed and seismic wave propagation velocity on the dynamic responses of the bridge–vehicle system are studied. The critical train speeds are proposed for running safety on high‐speed railway bridges under earthquakes of various intensities. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

10.
Complex seismic behaviour of soil–foundation–structure (SFS) systems together with uncertainties in system parameters and variability in earthquake ground motions result in a significant debate over the effects of soil–foundation–structure interaction (SFSI) on structural response. The aim of this study is to evaluate the influence of foundation flexibility on the structural seismic response by considering the variability in the system and uncertainties in the ground motion characteristics through comprehensive numerical simulations. An established rheological soil‐shallow foundation–structure model with equivalent linear soil behaviour and nonlinear behaviour of the superstructure has been used. A large number of models incorporating wide range of soil, foundation and structural parameters were generated using a robust Monte‐Carlo simulation. In total, 4.08 million time‐history analyses were performed over the adopted models using an ensemble of 40 earthquake ground motions as seismic input. The results of the analyses are used to rigorously quantify the effects of foundation flexibility on the structural distortion and total displacement of the superstructure through comparisons between the responses of SFS models and corresponding fixed‐base (FB) models. The effects of predominant period of the FB system, linear vs nonlinear modelling of the superstructure, type of nonlinear model used and key system parameters are quantified in terms of different probability levels for SFSI effects to cause an increase in the structural response and the level of amplification of the response in such cases. The results clearly illustrate the risk of underestimating the structural response associated with simplified approaches in which SFSI and nonlinear effects are ignored. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
The modern transportation facilities demand that the bridges are to be constructed across the gorges that are located in seismically active areas and at the same time the site conditions compel the engineers to rest the pier foundation on soil. The purpose of this study is to assess the effects of soil–structure interaction (SSI) on the peak responses of three-span continuous deck bridge seismically isolated by the elastomeric bearings. The emphasis has been placed on gauging the significance of physical parameters that affect the response of the system and identify the circumstances under which it is necessary to include the SSI effects in the design of seismically isolated bridges. The soil surrounding the foundation of pier is modelled by frequency independent coefficients and the complete dynamic analysis is carried out in time domain using complex modal analysis method. In order to quantify the effects of SSI, the peak responses of isolated and non-isolated bridge (i.e. bridge without isolation device) are compared with the corresponding bridge ignoring these effects. A parametric study is also conducted to investigate the effects of soil flexibility and bearing parameters (such as stiffness and damping) on the response of isolated bridge system. It is observed that the soil surrounding the pier has significant effects on the response of the isolated bridges and under certain circumstances the bearing displacements at abutment locations may be underestimated if the SSI effects are not considered in the response analysis of the system.  相似文献   

12.
In this study, it is intended to determine the effects of soil–structure interaction (SSI) and spatially varying ground motion on the dynamic characteristics of cable-stayed bridges. For this purpose, ground motion time histories are simulated for spatially varying ground motions, depending on its components of incoherence, wave-passage and site-response effects. The substructure method, which partitions the total soil–structure system into the structural system and the soil system, is used to treat the soil–structure interaction problem. To emphasize the relative importance of the spatial variability effects of earthquake ground motion, bridge responses are determined for the fixed base bridge model, which neglects the soil–structure interaction (no SSI) and for the bridge model including the soil–structure interaction (SSI). This parametric study concerning the relative importance of the soil–structure interaction and spatially varying ground motion shows that these effects should be considered in the dynamic analyses of cable-stayed bridges.  相似文献   

13.
因大跨径悬索桥梁具有较大的跨越尺度,同时墩柱基础所处场地条件也存在差异,所以对其进行地震响应分析时需考虑局部场地效应。为了正确分析场地效应对大跨度桥梁的地震响应,以某悬索桥为研究背景,采用MIDAS/CIVIL有限元软件,建立该悬索桥的有限元模型,在考虑地震动的局部场地效应情况下列举9种不同的计算工况,对大跨度悬索桥进行时程分析,通过控制一个塔墩处场地类别,改变另一个塔墩处的场地类别来分析场地效应对桥梁跨中位移和弯矩的影响。研究结果显示:场地效应对悬索桥的跨中位移和弯矩存在一定影响,不同的场地条件对桥梁同一位置的破坏程度不同。  相似文献   

14.
The computational demand of the soil‐structure interaction analysis for the design and assessment of structures, as well as for the evaluation of their life‐cycle cost and risk exposure, has led the civil engineering community to the development of a variety of methods toward the model order reduction of the coupled soil‐structure dynamic system in earthquake regions. Different approaches have been proposed in the past as computationally efficient alternatives to the conventional finite element model simulation of the complete soil‐structure domain, such as the nonlinear lumped spring, the macroelement method, and the substructure partition method. Yet no approach was capable of capturing simultaneously the frequency‐dependent dynamic properties along with the nonlinear behavior of the condensed segment of the overall soil‐structure system under strong earthquake ground motion, thus generating an imbalance between the modeling refinement achieved for the soil and the structure. To this end, a dual frequency‐dependent and intensity‐dependent expansion of the lumped parameter modeling method is proposed in the current paper, materialized through a multiobjective algorithm, capable of closely approximating the behavior of the nonlinear dynamic system of the condensed segment. This is essentially the extension of an established methodology, also developed by the authors, in the inelastic domain. The efficiency of the proposed methodology is validated for the case of a bridge foundation system, wherein the seismic response is comparatively assessed for both the proposed method and the detailed finite element model. The above expansion is deemed a computationally efficient and reliable method for simultaneously considering the frequency and amplitude dependence of soil‐foundation systems in the framework of nonlinear seismic analysis of soil‐structure interaction systems.  相似文献   

15.
Identification of system parameters with the help of records made on base-isolated bridge during earthquakes provides an excellent opportunity to study the performance of the various components of such bridge systems. Using a two-stage system identification methodology for non-classically damped systems, modal and structural parameters of four base-isolated bridges are reliably identified using acceleration data recorded during 18 earthquakes. Physical stiffness of reinforced concrete columns, dynamic properties of soil and foundation impedance are found by available theoretical models in conjunction with pertinent information from the recorded accelerographs. Soil–structure interaction (SSI) effect in these bridges is examined by comparing the identified and physical stiffness of the sub-structure components. It is found that SSI is relatively pronounced in bridges founded in weaker soils and is more strongly related to the ratio of pier flexural stiffness and horizontal foundation stiffness than soil shear modulus, Gs, alone. However, substantial reduction in Gs is observed for moderate seismic excitation and this effect should be taken into account while computing foundation impedance.  相似文献   

16.
In the new trend of seismic design methodology, the static pushover analysis is recommended for simple or regular structures whilst the time‐history analysis is recommended for complex structures. To this end, the applicable range of the pushover analysis has to be clarified. This study aims at investigating the applicability of pushover analysis to multi‐span continuous bridge systems with thin‐walled steel piers. The focus is concentrated on the response demand predictions in longitudinal or transverse directions. The pushover analysis procedure for such structures is firstly summarized and then parametric studies are carried out on bridges with different types of superstructure‐pier bearing connections. The considered parameters, such as piers' stiffness distribution and pier–0.5ptdeck stiffness ratio, are varied to cover both regular and irregular structures. Finally, the relation of the applicability of pushover analysis to different structural formats is demonstrated and a criterion based on the higher modal contribution is proposed to quantitatively specify the applicable range. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

17.
This paper presents the probabilistic seismic performance and loss assessment of an actual bridge–foundation–soil system, the Fitzgerald Avenue twin bridges in Christchurch, New Zealand. A two-dimensional finite element model of the longitudinal direction of the system is modelled using advanced soil and structural constitutive models. Ground motions at multiple levels of intensity are selected based on the seismic hazard deaggregation at the site. Based on rigorous examination of several deterministic analyses, engineering demand parameters (EDP's), which capture the global and local demand, and consequent damage to the bridge and foundation are determined. A probabilistic seismic loss assessment of the structure considering both direct repair and loss of functionality consequences was performed to holistically assess the seismic risk of the system.It was found that the non-horizontal stratification of the soils, liquefaction, and soil–structure interaction had pronounced effects on the seismic demand distribution of the bridge components, of which the north abutment piles and central pier were critical in the systems seismic performance. The consequences due to loss of functionality of the bridge during repair were significantly larger than the direct repair costs, with over a 2% in 50 year probability of the total loss exceeding twice the book-value of the structure.  相似文献   

18.
19.
It is commonly understood that earthquake ground excitations at multiple supports of large dimensional structures are not the same. These ground motion spatial variations may significantly influence the structural responses. Similarly, the interaction between the foundation and the surrounding soil during earthquake shaking also affects the dynamic response of the structure. Most previous studies on ground motion spatial variation effects on structural responses neglected soil–structure interaction (SSI) effect. This paper studies the combined effects of ground motion spatial variation, local site amplification and SSI on bridge responses, and estimates the required separation distances that modular expansion joints must provide to avoid seismic pounding. It is an extension of a previous study (Earthquake Engng Struct. Dyn. 2010; 39 (3):303–323), in which combined ground motion spatial variation and local site amplification effects on bridge responses were investigated. The present paper focuses on the simultaneous effect of SSI and ground motion spatial variation on structural responses. The soil surrounding the pile foundation is modelled by frequency‐dependent springs and dashpots in the horizontal and rotational directions. The peak structural responses are estimated by using the standard random vibration method. The minimum total gap between two adjacent bridge decks or between bridge deck and adjacent abutment to prevent seismic pounding is estimated. Numerical results show that SSI significantly affects the structural responses, and cannot be neglected. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
The present study explores analytically the concept of rocking isolation in bridges considering for the first time the influence of the abutment-backfill system. The dynamic response of rocking bridges with free-standing piers of same height and same section is examined assuming negligible deformation for the substructure and the superstructure. New relationships for the prediction of the bridge rocking motion are derived, including the equation of motion and the restitution coefficient at each impact at the rocking interfaces. The bridge structure is found to be susceptible to a failure mode related to the failure of the abutment-backfill system, which can occur prior to the well-known overturning of the rocking piers. Thus, a new failure spectrum is proposed called Failure Minimum Acceleration Spectrum (FMAS) which extends the overturning spectrum put forward in previous studies, and it differs in principle from the latter. The comparison with the dynamic response of bridges modelled as rocking frames without abutments reveals not only that seat-type abutments and their backfill have a generally beneficial effect on the seismic performance of rocking pier bridges by suppressing the free rocking motion of the frame system, but also that the simple frame model cannot capture all salient features of the rocking bridge response as it misses potential failure modes, overestimating the rocking bridge's safety when these modes are critical.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号