首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The increasing popularity of simplified nonlinear methods in seismic design has recently led to many proposals for procedures aimed at extending pushover analysis to plan asymmetric structures. In terms of practical applications, one particularly promising approach is based on combining pushover analysis of a 3D structural model with the results of linear (modal) dynamic analysis. The effectiveness of such procedure, however, is contingent on one fundamental requirement: the elastic prediction of the envelope of lateral displacements must be conservative with respect to the actual inelastic one. This paper aims at verifying the above assumption through an extensive parametric analysis conducted with simplified single‐storey models. The main structural parameters influencing torsional response in the elastic and inelastic range of behaviour are varied, while devoting special attention to the system stiffness eccentricity and radius. The analysis clarifies the main features of inelastic torsional response of different types of building structures; in this manner, it is found that the above‐mentioned method is generally suitable for structures characterized by moderate to large torsional stiffness, whereas it cannot be recommended for extremely torsionally stiff structures, as their inelastic torsional response almost always exceeds the elastic one. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
为了合理计算山区桥梁支座刚度,针对桥墩高度不相同的特点,考虑上部结构对桥墩顶部的转动约束作用,提出在横桥向可将墩顶视为自由约束,而在纵桥向将墩顶视为定向约束。分别按照地震作用下各墩底剪力和弯矩相等的原则,推导桥梁支座纵、横桥向的刚度设计公式,并给出各桥墩支座的设计方法。为验证方法的正确性,以墩底剪力相等的原则为例,利用OpenSees建立一座墩高不等的5跨连续梁桥模型,并依支座刚度取值不同分三种工况:工况一各桥墩支座刚度相同;工况二按墩顶自由计算各支座的纵、横桥向刚度;工况三按墩顶定向约束计算各支座的纵、横桥向刚度。分别对三种工况下的桥梁结构输入三条地震动记录进行时程分析,考察各桥墩的底部剪力。分析结果表明:工况一各桥墩纵、横桥向的底部剪力均不相同;工况二各桥墩横桥向的底部剪力相同而纵桥向的底部剪力不同;工况三各桥墩纵桥向的底部剪力相同而横桥向的底部剪力不同。上述结果表明在桥梁支座设计时,横桥向桥墩的抗推刚度应按墩顶自由计算,而纵桥向桥墩的抗推刚度应按墩顶为定向约束计算。  相似文献   

3.
为精细模拟钢筋混凝土高桥墩在静力推覆荷载作用下的破坏过程,本文基于钢筋混凝土精细化纤维梁柱单元模型分析平台FENAP,对一实际的西部山区空心截面高桥墩进行了Pushover分析,通过对构件、截面和纤维层次的力-位移关系曲线分析,模拟了桥墩从墩底混凝土开裂、纵筋屈服到受压区混凝土压碎的完整破坏过程。并将FENAP平台与OpenSees计算结果进行对比,结果表明,FE-NAP平台可有效地模拟高墩在静力推覆荷载下的破坏过程和软化行为,具有较高的求解精度。进一步比较了不同轴压比、是否考虑约束混凝土效应及纵筋屈曲效应等因素对分析结果的影响,得出结论,轴压比和约束混凝土效应对高桥墩的破坏过程发展有较大影响,而纵筋屈曲效应影响较小,可忽略不计。  相似文献   

4.
Nonlinear static (pushover) analysis has become a popular tool during the last decade for the seismic assessment of buildings. Nevertheless, its main advantage of lower computational cost compared to nonlinear dynamic time‐history analysis (THA) is counter‐balanced by its inherent restriction to structures wherein the fundamental mode dominates the response. Extension of the pushover approach to consider higher modes effects has attracted attention, but such work has hitherto focused mainly on buildings, while corresponding work on bridges has been very limited. Hence, the aim of this study is to adapt the modal pushover analysis procedure for the assessment of bridges, and investigate its applicability in the case of an existing, long and curved, bridge, designed according to current seismic codes; this bridge is assessed using three nonlinear static analysis methods, as well as THA. Comparative evaluation of the calculated response of the bridge illustrates the applicability and potential of the modal pushover method for bridges, and quantifies its relative accuracy compared to that obtained through other inelastic methods. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

5.
An improvement is first suggested to the modal pushover analysis (MPA) procedure for bridges initially proposed by the writers (Earthquake Engng Struct. Dyn. 2006; 35 (11):1269–1293), the key idea being that the deformed shape of the structure responding inelastically to the considered earthquake level is used in lieu of the elastic mode shape. The proposed MPA procedure is then verified by applying it to two actual bridges. The first structure is the Krystallopigi bridge, a 638 m‐long multi‐span bridge, with significant curvature in plan, unequal pier heights, and different types of pier‐to‐deck connections. The second structure is a 100 m‐long three‐span overpass bridge, typical in modern motorway construction in Europe, which, although ostensibly a regular structure, is found to exhibit a rather unsymmetric response in the transverse direction, mainly due to torsional irregularity. The bridges are assessed using response spectrum, ‘standard’ pushover (SPA), and MPA, and finally using non‐linear response history analysis (NL‐RHA) for a number of spectrum‐compatible motions. The MPA provided a good estimate of the maximum inelastic deck displacement for several earthquake intensities. The SPA on the other hand could not predict well the inelastic deck displacements of bridges wherever the contribution of the first mode to the response of the bridge was relatively low. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
Pushover分析方法的发展及其在桥梁结构中的应用   总被引:1,自引:0,他引:1  
非线性静力分析方法(Pushover分析方法)可以较好地检验结构的变形能力,找到结构的薄弱环节,控制强烈地震作用下结构破坏程度,对工程设计有很强的指导意义。但目前Pushover分析方法的种类很多,各自有着不同的优缺点和适用范围,针对桥梁结构,阐述静力非线性分析方法(Pushover)的原理及其研究发展概况,评述了各种Pushover方法的优缺点,并分析了Pushover方法用于桥梁结构的基本原理和评价方法,指出Pushover方法用于桥梁结构存在的问题。  相似文献   

7.
Lateral force, response spectrum and step‐by‐step pushover analyses are performed and compared with the post‐earthquake survey of two Dieh‐Dou buildings seriously affected in the 1999 Chi‐Chi earthquake in Taiwan. The results show that the proposed FE model with finite translational and rotational stiffness can successfully be employed to assess the vulnerability of the frames. The fundamental period of Dieh‐Dou structures is about 1.0 s higher than that calculated by the simplified approach of the codes for regular frames; a modal analysis is, therefore, essential for this typology of structure. The elastic analysis, either lateral force or response spectrum, is shown to be reliable to assess Dieh‐Dou frames when quick results are desired. However, a non‐linear step‐by‐step pushover analysis has the advantage of greater accuracy, as it allows mapping the failure trend and indicating the critical elements. The lateral drifts are compared with the actual observed damage pattern and when the damage level is related to the peak ground acceleration on a vulnerability curve plot, it is shown that the joint failure combined with the lateral drift gives an indication of the global structural behaviour of this historic construction typology. Owing to the unique construction features of the Dieh‐Dou, the joint failure represents also a critical criterion in terms of maximum retention for conservation. Based on a damage level approach, an assessment methodology is suggested that would allow optimizing a strengthening strategy, for protection of these precious structures from future earthquakes while avoiding unnecessary interventions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
An overview of the applicability of a typical single‐mode pushover method (the N2 method) and two typical multi‐mode pushover methods (the modal pushover analysis (MPA) and incremental response spectrum analysis (IRSA) methods) for the analysis of single column bent viaducts in the transverse direction is presented. Previous research, which was limited to relatively short viaducts supported by few columns, has been extended to longer viaducts with more bents. The single‐mode N2 method is accurate enough for bridges where the effective modal mass of the fundamental mode is at least 80% of the total mass. The applicability of this method depends on (a) the ratio of the stiffness of the superstructure to that of the bents and (b) the strength of the bents. In short bridges with few columns, the accuracy of the N2 method increases as the seismic intensity increases, whereas in long viaducts (e.g. viaducts with lengths greater than 500 m) the method is in general less effective. In the case of the analyzed moderately irregular long viaducts, which are common in construction design practice, the MPA method performed well. For the analysis of bridges where the modes change significantly, depending on the seismic intensity, the IRSA method is in principle more appropriate, unless a viaduct is torsionally sensitive. In such cases, all simplified methods should be used with care. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
The performance‐based philosophy has been accepted as a more reasonable design concept for engineering structures. For this purpose, capacity evaluation and demand prediction procedures for civil engineering structures under earthquake excitations are of great significance. This work presents a displacement‐based seismic performance verification procedure including capacity and seismic demand predictions for steel arch bridges and investigates its applicability. Pushover analyses is employed as a basis in this method to investigate the structure's behaviors. A failure criterion for steel members accounting for the effect of local buckling is involved and an equivalent single‐degree‐of‐freedom (ESDOF) system with a simplified bilinear hysteretic model formulated using pushover analyses results is introduced to estimate the displacement capacity and maximum demand of steel arch bridges under major earthquakes. To check the accuracy of the proposed method, seismic capacities and demands from multi‐degree‐of‐freedom (MDOF) time‐history analyses with Level‐II design earthquake record inputs modeling major earthquakes are used as benchmarks for comparison. By a case study, it is clarified that the proposed prediction procedure can give accurate estimations of displacement capacities and demands of the steel arch bridge in the transverse direction, while insufficient for the longitudinal direction, which confirms the conclusion drawn in other structure types about the applicability of pushover analyses. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

10.
Seismic behavior of damaged buildings may be expressed as a function of their REsidual Capacity (REC), which is a measure of seismic capacity, reduced by damage. REC can be interpreted as the median value of collapse vulnerability curves. Its variation owing to damage is a useful indication of increased building vulnerability. REC reduction, indicating the lowering of seismic safety after an earthquake (performance loss, PL), represents an effective index for assessing the need of seismic repair/strengthening after earthquakes. The study investigates the applicability of a pushover‐based method in the analysis of damaged structures for the case of existing under‐designed RC buildings. The paper presents a systematization of the procedure in an assessment framework that applies the capacity spectrum method based on inelastic demand spectra; furthermore, the vulnerability variation of a real building is investigated with a detailed case study. The behavior of damaged buildings is simulated with pushover analysis through suitable modification of plastic hinges (in terms of stiffness, strength and residual drift) for damaged elements. The modification of plastic hinges has been calibrated in tests on nonconforming columns. The case study analysis evidenced that, for minor or moderate damages, the original structural displacement capacity was only slightly influenced, but the ductility capacity was significantly reduced (up to 40%) because of the increased structure deformability. This implied performance loss in the range 10%–20%. For severe damages the PL ranged between 41% and 56%. Local mechanism types exhibit PL nearly double with respect to global mechanism types. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
The influence of the higher modes and their consideration in the pushover analysis of reinforced concrete single column bent viaducts with different degree of irregularity is discussed. Typical multimode pushover‐based methods (modal pushover analysis, modal adaptive non‐linear static procedure and incremental response spectrum analysis) are addressed and compared with a single mode procedure (N2) and inelastic time history analysis. If in the transverse direction the substructure of the viaduct is flexible in comparison with the superstructure, the influence of higher modes is small (the structure is regular) and single mode procedure works well. This typically occurs when the columns are high or considerably damaged. Conversely, for the analysis of irregular structures having short and slightly damaged columns, the multimode methods are needed. In most cases, all the analysed multimode pushover‐based methods have given the results comparable with time history analysis, with the exception of cases where torsional sensitivity is varying during the response. All the methods have limitations (discussed in detail in the paper), which should be fully recognized by the user. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
The paper deals with the applicability of the extended N2 method to base‐isolated plan‐asymmetric building structures. The results obtained by the usual pushover analysis of a 3D structural model are further combined with the aid of linear dynamic (spectral) analysis to account for the dynamic effects caused by structural asymmetry. In the paper, the method has been applied to the seismic analysis of a mass‐eccentric four‐storeyed RC frame building isolated with lead rubber bearings. Three different positions of the center of isolation system (CI) with respect to the center of mass (CM) and the center of stiffness of the superstructure (CS) were considered. The response was analyzed for three different eccentricities, three different torsional to lateral frequency ratios of the superstructure, and two ground motion intensities. The stiffness of the isolators was selected for three different protection levels, which resulted in elastic as well as moderately to excessively damaged superstructure performance levels. The results are presented in terms of the top, base and relative displacements, as well as the stiff/flexible side amplification factors. A more detailed insight into the nonlinear behavior of the superstructure is given in a form of ductility factors for the flexible and stiff side frames. The results of the extended N2 method for selected lateral load distributions are compared with the average results of nonlinear dynamic analyses. It was concluded that the extended N2 method could, with certain limitations, provide a reasonable prediction of the torsional influences in minor to moderately asymmetric base‐isolated structures. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
The nonlinear behavior of reinforced concrete (RC) members represents a key issue in the seismic performance assessment of structures. Many structures constructed in the 1980s or earlier were designed based on force limits; thus they often exhibit brittle failure modes, strength and stiffness degradation, and severe pinching effects. Field surveys and experimental evidence have demonstrated that such inelastic responses affect the global behavior of RC structural systems. Efforts have been made to consider the degrading stiffness and strength in the simplified nonlinear static procedures commonly adopted by practitioners. This paper investigates the accuracy of such procedures for the seismic performance assessment of RC structural systems. Refined finite element models of a shear critical bridge bent and a flexure‐critical bridge pier are used as reference models. The numerical models are validated against experimental results and used to evaluate the inelastic dynamic response of the structures subjected to earthquake ground motions with increasing amplitude. The maximum response from the refined numerical models is compared against the results from the simplified static procedures, namely modified capacity spectrum method and coefficient method in FEMA‐440. The accuracy of the static procedures in estimating the displacement demand of a flexure‐critical system and shear‐critical system is discussed in detail. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
Fast performance uncertainty estimation via pushover and approximate IDA   总被引:1,自引:0,他引:1  
Approximate methods based on the static pushover are introduced to estimate the seismic performance uncertainty of structures having non‐deterministic modeling parameters. At their basis lies the use of static pushover analysis to approximate Incremental Dynamic Analysis (IDA) and estimate the demand and capacity epistemic uncertainty. As a testbed we use a nine‐storey steel frame having beam hinges with uncertain moment–rotation relationships. Their properties are fully described by six, randomly distributed, parameters. Using Monte Carlo simulation with Latin hypercube sampling, a characteristic ensemble of structures is created. The Static Pushover to IDA (SPO2IDA) software is used to approximate the IDA capacity curve from the appropriately post‐processed results of the static pushover. The approximate IDAs allow the evaluation of the seismic demand and capacity for the full range of limit‐states, even close to global dynamic instability. Moment‐estimating techniques such as Rosenblueth's point estimating method and the first‐order, second‐moment (FOSM) method are adopted as simple alternatives to obtain performance statistics with only a few simulations. The pushover is shown to be a tool that combined with SPO2IDA and moment‐estimating techniques can supply the uncertainty in the seismic performance of first‐mode‐dominated buildings for the full range of limit‐states, thus replacing semi‐empirical or code‐tabulated values (e.g. FEMA‐350), often adopted in performance‐based earthquake engineering. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
A setback building has a sudden discontinuity in the frame geometry along the height. This kind of irregularity causes an abrupt discontinuity in stiffness, strength and mass of the building frame. In this study, a total of nineteen mid-rise 9-story steel moment resisting frames with setbacks including the broad range of different geometrical configurations were studied. An eigenvalue analysis was performed to evaluate and scrutinize the dynamic characteristics of setback structures. The effect of geometrical configurations on the seismic responses of setback frames was studied by means of nonlinear response history analysis using a set of far-field ground motion records. Moreover, due to the rapidly increasing use of pushover analysis for the seismic evaluation of structures in recent years, enhanced pushover analyses (EPAs) including the modal pushover analysis, the upper bound pushover analysis, the consecutive modal pushover and the extended N2 methods were implemented as a main part of this study. The findings show that two factors including the location of setback and the degree of setback are of key importance and influence the dynamic characteristics and seismic responses of setback structures. The degree of accuracy of the enhanced pushover analysis methods generally depends on the dynamic characteristics (geometrical configuration) of the setback frames. The largest error in the EPAs in predicting the story drifts generally occurs in a setback frame with a larger amount of the ratio between the effective modal participating mass ratio of the higher modes and that of the first mode.  相似文献   

16.
This paper summarizes the results of an extensive study on the inelastic seismic response of X‐braced steel buildings. More than 100 regular multi‐storey tension‐compression X‐braced steel frames are subjected to an ensemble of 30 ordinary (i.e. without near fault effects) ground motions. The records are scaled to different intensities in order to drive the structures to different levels of inelastic deformation. The statistical analysis of the created response databank indicates that the number of stories, period of vibration, brace slenderness ratio and column stiffness strongly influence the amplitude and heightwise distribution of inelastic deformation. Nonlinear regression analysis is employed in order to derive simple formulae which reflect the aforementioned influences and offer a direct estimation of drift and ductility demands. The uncertainty of this estimation due to the record‐to‐record variability is discussed in detail. More specifically, given the strength (or behaviour) reduction factor, the proposed formulae provide reliable estimates of the maximum roof displacement, the maximum interstorey drift ratio and the maximum cyclic ductility of the diagonals along the height of the structure. The strength reduction factor refers to the point of the first buckling of the diagonals in the building and thus, pushover analysis and estimation of the overstrength factor are not required. This design‐oriented feature enables both the rapid seismic assessment of existing structures and the direct deformation‐controlled seismic design of new ones. A comparison of the proposed method with the procedures adopted in current seismic design codes reveals the accuracy and efficiency of the former. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
The paper discusses nonlinear pushover curves for multistory moment‐frame buildings. Attention is brought to the steepening effect that elastic unloading has on the slope of the descending branch of the pushover curve, with the possibility of snapback. Displacement control is shown to be effective for the entire range of pushover analysis, including the descending branch. The method is enhanced by controlling the difference in displacement of 2 floors in the vicinity of the collapse mechanism rather than, say, controlling the roof displacement. An automated drift control version is described and tested. Analysis of a 20‐story building demonstrates that variable strength of plastic hinges and inclusion of the strength and stiffness of the gravity frames in the model affect the pushover curve significantly, especially the descending branch. The concept of dynamic pushover is described, and results are compared with the static version.  相似文献   

18.
Alternative static pushover methods for the seismic design of new structures are assessed with the aid of advanced computational tools. The current state-of-practice static pushover methods as suggested in the provisions of European and American regulations are implemented in this comparative study. In particular the static pushover methods are: the displacement coefficient method of ASCE-41, the ATC-40 capacity spectrum method and the N2 method of Eurocode 8. Such analysis methods are typically recommended for the performance assessment of existing structures, and therefore most of the existing comparative studies are focused on the performance of one or more structures. Therefore, contrary to previous research studies, we use static pushover methods to perform design and we then compare the capacity of the outcome designs with reference to the results of nonlinear response history analysis. This alternative approach pinpoints the pros and cons of each method since the discrepancies between static and dynamic analysis are propagated to the properties of the final structure. All methods are implemented in an optimum performance-based design framework to obtain the lower-bound designs for two regular and two irregular reinforced concrete building configurations. The outcome designs are compared with respect to the maximum interstorey drift and maximum roof drift demand obtained with the Incremental Dynamic Analysis method. To allow the comparison, also the life-cycle cost of each design is calculated; i.e. a parameter that is used to measure the damage cost due to future earthquakes that will occur during the design life of the structure. The problem of finding the lower bound designs is handled with an Evolutionary type optimization algorithm.  相似文献   

19.
为研究曲线桥梁结构桥墩高度参数对地震响应的敏感性,借助有限元分析软件Midas Civil,通过分类处理建立边墩为变高墩和中墩为变高墩两类有限元分析模型。根据Newmark-β法对多自由度体系的曲线桥梁结构进行动力时程分析,结合曲线桥梁结构地震激励的输入基本方式,计算两类墩高布置形式下两跨曲线连续梁桥结构的基本周期、墩顶位移、主梁内力和桥墩墩底内力的变化规律,通过对计算结果分析探究桥墩高度参数和桥墩高度比参数对曲线桥梁结构地震响应的影响规律。研究结果表明:相同条件下,Ⅱ类曲线桥梁的整体刚度小于Ⅰ类曲线桥梁结构;各墩顶径向位移对桥墩高度比和墩高参数敏感性不同;中墩顶曲线主梁内力耦合机理复杂,难以用较少结构参数表征;变高墩墩底内力与曲线桥梁桥墩布置类型密切相关。研究结果可用于指导山区曲线桥梁结构的抗震分析和设计。  相似文献   

20.
为充分了解板式橡胶支座对斜交连续梁桥地震反应的影响,利用OpenSees软件建立简化的斜交桥计算模型进行时程分析,研究板式橡胶支座摩擦滑移效应,以及支座动摩擦系数、剪切刚度、局部脱空等参数对斜交桥地震反应的影响。结果表明:板式橡胶支座考虑摩擦滑移后,不仅桥面位移和转角显著增大,而且出现残余位移和残余转角;随着支座剪切刚度的增大,桥面位移和转角均明显减小;随着桥墩处支座动摩擦系数的增大,桥面位移、转角均呈增长趋势,然而桥台处支座动摩擦系数的影响与之相反;桥墩处局部支座脱空对斜交桥的影响明显大于桥台支座。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号