首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Overturning of a structure causes variations in the normal loads of the isolators supporting that structure. For frictional isolators, such variation leads to changes in the frictional forces developed and, hence, in the strength distribution in plan. For frictional pendulum system (FPS) isolators, it also causes changes in the pendular action, i.e. in the stiffness distribution of the isolation interface. Therefore, although the structure is nominally symmetric it develops lateral–torsional coupling when it is subjected to two horizontal components of ground motion. This coupling is denoted herein as accidental torsion due to overturning, and its effect in the earthquake response of nominally symmetric structures is evaluated. Several parameters are identified to control this coupling, but the most important are the slenderness of the structure and the aspect ratio of the building plan. Results are presented in terms of the torsional amplification of the deformations of the isolation base and the interstorey deformations of the superstructure. The FPS system is modelled accurately by including true large deformations and the potential uplift and impact of the isolators. Impulsive as well as subduction‐type ground motions are considered in the analysis, but results show small differences between them. An upper bound for the mean‐plus‐one standard deviation values of the torsional amplifications for the base due to this accidental torsion is 5%. This implies that for design purposes of the isolation system such increase in deformations could probably be neglected. However, the same amplification for the interstorey deformations may be as large as 50%, depending on the torsional stiffness and slenderness of the superstructure, and should be considered in design. In general, such amplification of deformations decreases for torsionally stiffer structures and smaller height‐to‐base aspect ratios. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

2.
While isolation can provide significantly enhanced performance compared to fixed‐base counter parts in design level or even maximum considered level earthquakes, there is still uncertainty over the performance of isolation systems in extreme events. Researchers have looked at component level stability of rubber bearings and on the effect of moat impact on behavior of structures isolated on general bilinear isolators. However, testing of triple friction pendulum (TFP) sliding bearings has not been done dynamically or incorporated into a building system. Here, one‐third scale laboratory tests were conducted to on a 2‐story 2‐bay TFP‐isolated structure. Input motions were increasingly scaled until failure occurred at the isolation level. As the superstructure was designed with a yield force equivalent to the force of the bearing just at their ultimate displacement capacity, there was minimal yielding. A numerical model is presented to simulate the isolated building up to and including bearing failure. Forces transferred to the superstructure in extreme motions are examined using both experimental and numerical data. Additionally, the effect of the hardening stage of the TFP bearing is evaluated using the numerical model, finding slight benefits.  相似文献   

3.
In the paper a simplified nonlinear method has been applied to the analysis of base‐isolated structures. In the first part, a three‐linear idealization of the capacity curve is proposed. The initial stiffness is defined based on the first yielding point in the superstructure, whereas the secondary slope depends on the failure mechanism of the superstructure. A consequence is a much more pronounced secondary slope, which does not correspond to the presumptions used in the originally proposed N2 method. A parametric nonlinear dynamic study of single degree of freedom systems with different hardening slopes and damping has been performed for an ensemble of seven EC8 spectrum‐compatible artificial accelerograms. It was concluded that, in the long‐period range, the equal displacement rule could be assumed also for the proposed systems with non‐zero post‐yield stiffness. In the second part, the proposed idealization was used for the analysis of isolated RC frame buildings that were isolated with different (lead) rubber‐bearing isolation systems. The stiffness of the isolators was selected for three different protection levels and for three different ground motion intensities, which have resulted in elastic as well as moderately and fully damaged superstructure performance levels. Three different lateral load distributions were investigated. It was observed that a triangular distribution, with an additional force at the base, works best in the majority of practical cases. It was concluded that the N2 method can, in general, provide a reasonably accurate prediction of the actual top displacement, as well as of the expected damage to the superstructure. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
In the current code requirements for the design of base isolation systems for buildings located at near-fault sites, the design engineer is faced with very large design displacements for the isolators. To reduce these displacements, supplementary dampers are often prescribed. These dampers reduce displacements, but at the expense of significant increases in interstorey drifts and floor accelerations in the superstructure. An elementary analysis based on a simple model of an isolated structure is used to demonstrate this dilemma. The model is linear and is based on modal analysis, but includes the modal coupling terms caused by high levels of damping in the isolation system. The equations are solved by a method that avoids complex modal analysis. Estimates of the important response quantities are obtained by the response spectrum method. It is shown that as the damping in the isolation system increases, the contribution of the modal coupling terms due to isolator damping in response to the superstructure becomes the dominant term. The isolator displacement and structural base shear may be reduced, but the floor accelerations and interstorey drift are increased. The results show that the use of supplemental dampers in seismic isolation is a misplaced effort and alternative strategies to solve the problem are suggested. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

5.
组合基础隔震在建筑工程中的应用   总被引:3,自引:1,他引:2  
隔震作为一种新的抗震技术,已广泛应用于新建和加固的建筑工程,同时,许多新型式的支座得到了开发和应用。组合基础隔震是一种新的隔震设计思想,能充分应用不同类型隔震支座的特性,有效降低上部结构地震反应。本文介绍了组合基础隔震在某一工程中的应用,工程中使用的支座包括普通橡胶隔震支座、铅芯橡胶隔震支座和弹性滑板支座三种类型,对全部使用支座进行了常规检测,结构计算采用等效线性法、能量包络法和时程反应分析等方法,计算结果表明:组合基础隔震能有效降低上部结构的反应,隔震层的变形控制在安全范围之内。  相似文献   

6.
The mid‐story isolation design method is recently gaining popularity for the seismic protective design of buildings located in the areas of high population. In a mid‐story isolated building, the isolation system is incorporated into the mid‐story rather than the base of the building. In this paper, the dynamic characteristics and seismic responses of mid‐story isolated buildings are investigated using a simplified three‐lumped‐mass structural model for which equivalent linear properties are formulated. From the parametric study, it is found that the nominal frequencies of the superstructure and the substructure, respectively, above and below the isolation system have significant influences on the isolation frequency and equivalent damping ratio of a mid‐story isolated building. Moreover, the mass and stiffness of the substructure are of greater significance than the superstructure in affecting the dynamic characteristics of the isolated building. Besides, based on the response spectrum analysis, it is noted that the higher mode responses may contribute significantly to the story shear force of the substructure. Consequently, the equivalent lateral force procedure of design codes should carefully include the effects of higher modes. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
In a midstory isolated building, the isolation system is incorporated into the midstory rather than the base of the building. Because of the flexibility of the substructure below the isolation system in a midstory isolated building, the contribution of higher modes to the seismic responses of the midstory isolated structure may not be negligible, especially when the coupling of higher modes exists. To investigate this modal coupling effect, a simplified three‐lumped‐mass structural model of the midstory isolated building is assumed in this study. Through the equivalent linear analysis and shaking table tests, it is found that the coupling of higher modes may lead to enlarged acceleration responses at the super‐floor and superstructure above the isolation layer. Accordingly, a simple method to prevent the midstory isolation design from the coupling of higher modes attributed to the improper design of the substructure and superstructure is proposed in this paper. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
温度作用是结构设计中不可忽视的作用,如何有效控制温度作用一直是一个重要的课题。近些年,随着建筑和结构的发展,出现越来越多的超长结构和隔震结构。对于超长结构的温度效应有许多学者做过相关的研究,但超长隔震结构的温度效应还研究甚少,温度作用下的结构变形和内力特点还不甚明晰。对超长剪力墙隔震结构的温度效应进行了探讨,利用有限元软件ETABS建立了结构的隔震模型和非隔震模型。通过对比2种模型在季节温差和混凝土收缩当量温差共同作用下的结构变形特点、构件内力和应力大小,分析隔震支座变形量与所在位置关系,发现超长隔震结构较超长非隔震结构,隔震层以上结构由于约束释放在温度作用下接近自由变形。而结构构件的内力和应力大大减小,得出隔震支座能充分消除结构因温度效应产生的不利影响,从而保护结构和构件的结论,对超长隔震结构的温度效应控制提供一定的思路和参考。  相似文献   

9.
The yield level of an insulator is one of the important parameters which are related to responses and absorbing energy under seismic input energy in isolated structures. The purpose of this paper is to determine the optimal ratios of yield force of the isolator (Qy) to the total weight of the structures (W). To obtain the optimal ratio, 1044 two-degree-of-freedom isolated bridge models, which have bilinear isolators, were selected. These 2-DOF isolated bridge models with superstructure isolation can consider pier flexibility and various parameters of the isolator. Two formulas for determining the optimal yield ratio are proposed and compared with the previous researches. RAE (the ratio of absorbed energy by the isolator to the total input energy) is related directly to structural responses, and Optimal Yield Ratio (OYR), defined as a yield ratio at maximum RAE, can be obtained from the relationship between RAE and Qy/W. Here, we found that RAE is a reliable factor to evaluate OYR, and it is proportional to earthquake amplitudes under the same kinds of earthquake loadings. Using the proposed formulas, OYR is determined and the optimal yield force of the isolator can be obtained easily and reliably at a seismic isolation design stage. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

10.
While the performance of sliding isolators has been extensively validated under typical levels of ground motion, there have been very few experimental studies on the extreme behavior of sliding isolation bearings when the displacement limit is reached. However, to appropriately design isolated systems, from selecting the displacement capacity of the bearing to sizing the superstructure members, the behavior of the bearing as it reaches, and in some cases exceeds, the displacement limit should be well understood. A series of shake table tests to investigate the extreme behavior of double pendulum sliding bearings under strong ground motions were conducted at McMaster University. One major difference in sliding bearings around the world is how the motion of the bearing is restrained at the bearing's displacement capacity. Scaled bearings with four different types of restraining rim designs were included, representing typical sliding restraining rims found in Europe, Japan, and the United States. Experimental observation shows that the restraining rim has a significant influence on the extreme behavior of sliding isolation bearing. Key response parameters such as impact force and uplift are evaluated and compared between the different sliding bearing designs. While the bearing with no rim bearing imparts the lowest forces to the superstructure, it loses its functionality at a lower amplitude input than all the other rim types. For the other rim designs, the impact forces are significantly higher but they remained operational although damaged.  相似文献   

11.
The trend of isolating highway bridges is on the rise after the recent large earthquakes in Japan, the United States, and other countries. Recent investigation shows that isolated systems perform well against seismic forces as the substructures of such systems experience less lateral forces due to energy dissipation of the isolation device. Hence, it is anticipated that there might be an effect on fragility curves of highway bridges due to isolation. In this study, 30 isolated bridge models were considered (and they were designed according to the seismic design code of highway bridges in Japan) to have a wider range of the variation of structural parameters, e.g. pier heights, weights, and over-strength ratio of structures. Then, fragility curves were developed by following a simplified procedure using 250 strong motion records, which were selected from 5 earthquake events that occurred in Japan, the USA, and Taiwan. It is observed that the level of damage probability for the isolated system is less than that of the non-isolated one for a lower level of pier height. However, having the same over-strength ratio of the structures, the level of damage probability for the isolated system is found to be higher for a higher level of pier height compared to the one of the non-isolated system. The proposed simple approach may conveniently be used in constructing fragility curves for a class of isolated bridge structures in Japan that have similar characteristics.  相似文献   

12.
A systematic method is developed for the dynamic analysis of the structures with sliding isolation which is a highly non-linear dynamic problem. According to the proposed method, a unified motion equation can be adapted for both stick and slip modes of the system. Unlike the traditional methods by which the integration interval has to be chopped into infinitesimal pieces during the transition of sliding and non-sliding modes, the integration interval remains constant throughout the whole process of the dynamic analysis by the proposed method so that accuracy and efficiency in the analysis of the non-linear system can be enhanced to a large extent. Moreover, the proposed method is general enough to be adapted for the analysis of the structures with multiple sliding isolators undergoing independent motion conditions simultaneously. The superiority of the proposed method for the analysis of sliding supported structures is verified by a three-span continuous bridge subjected to harmonic motions and real earthquakes. In addition, the side effect of excessive displacement of the superstructure induced by the sliding isolation is eliminated by replacing one of the roller supports on the abutments with hinge support. Therefore, both reductions in the forces of the substructure and the displacements of the superstructure can be achieved simultaneously. © 1998 John Wiley & Sons, Ltd.  相似文献   

13.
Structural design code provisions worldwide prescribe relatively small seismic force reduction factors for seismically base‐isolated structures, making their response to design‐level earthquake excitation essentially elastic. This paper uses the method of dimensional analysis to prove that; in most cases, this is not a conservative design approach but a necessity that emerges from the dynamics of base‐isolated structures. It is shown that allowing typical base‐isolated structures to yield results in large displacement ductility demands for the structure. This phenomenon is caused by the change in the nature of the ground motion excitation as it is transmitted to the structure through the seismic base isolation system as well as by the change in the distribution of displacements between the structure and the isolation bearings caused by yielding of the isolated structure. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
15.
The seismic design provisions of most building codes in the United States specify ground motion parameters for various regions of the country and provide simple formulae to determine a distribution of lateral forces for which the structure should be designed. Although the code provisions are very simple to use, they oversimplify a complex problem and are based on many implicit assumptions which many designers may not appreciate. Furthermore, the reliability of the final design is not easily determined. This paper describes a reliability-based seismic design procedure for building structures. It is a performance-based design procedure which requires the designer to verify that a particular structural design satisfies displacement-based performance criteria. An equivalent system methodology and uniform hazard spectra are used to evaluate structural performance. The performance criteria are expressed in probabilistic terms, and deterministic design-checking equations are derived from these criteria. The design-checking equations incorporate design factors (analogous to load and resistance factors) which account for the uncertainty in the seismic hazard, the uncertainty in predicting site soil effects, and the approximate nature of the simplified models of the structure. The alternative procedure should enable designers to achieve code-specified target performance objectives for moderate and severe levels of earthquake excitation.  相似文献   

16.
A new base isolation system using scrap tire rubber pads (STRP) has been introduced for seismic mitigation of ordinary residential buildings. The rubber and the steel reinforcing cords used in manufacturing the tire are the alternative materials of the proposed base isolation system. The steel reinforcing cords represent the steel plates used in conventional laminated rubber bearings. These steel reinforcing cords shall prevent the lateral bulging of the rubber bearing. The proposed base isolation system has no bonding between the superstructure and the foundation beam which allows for rollover deformation. In the first part of the study, the STRP layers were just stacked one on top of another without applying the adhesive. This paper presents loading test as well as finite element analysis (FE analysis) of strip STRP isolators that are subjected to any given combination of static vertical and lateral loads. The results of the static vertical and horizontal loading test conducted on STRP isolators were used to calculate the mechanical properties of the isolators, including stiffness and damping values. The load–displacement relationship of STRP isolators were compared between experimental and FE analysis results and the results were found to be in close agreement. The stress state within the STRP isolators was also analyzed in order to estimate the maximum stress demand in the rubber and steel reinforcing cords. These STRP isolators have several advantages over conventional laminated rubber bearings including superior damping properties, lower incurred cost, light weight and easily available material. This study suggests that using the STRP as low cost base isolation device for ordinary residential buildings is feasible.  相似文献   

17.
The paper deals with the applicability of the extended N2 method to base‐isolated plan‐asymmetric building structures. The results obtained by the usual pushover analysis of a 3D structural model are further combined with the aid of linear dynamic (spectral) analysis to account for the dynamic effects caused by structural asymmetry. In the paper, the method has been applied to the seismic analysis of a mass‐eccentric four‐storeyed RC frame building isolated with lead rubber bearings. Three different positions of the center of isolation system (CI) with respect to the center of mass (CM) and the center of stiffness of the superstructure (CS) were considered. The response was analyzed for three different eccentricities, three different torsional to lateral frequency ratios of the superstructure, and two ground motion intensities. The stiffness of the isolators was selected for three different protection levels, which resulted in elastic as well as moderately to excessively damaged superstructure performance levels. The results are presented in terms of the top, base and relative displacements, as well as the stiff/flexible side amplification factors. A more detailed insight into the nonlinear behavior of the superstructure is given in a form of ductility factors for the flexible and stiff side frames. The results of the extended N2 method for selected lateral load distributions are compared with the average results of nonlinear dynamic analyses. It was concluded that the extended N2 method could, with certain limitations, provide a reasonable prediction of the torsional influences in minor to moderately asymmetric base‐isolated structures. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
抗震规范应用强度折减系数的现状及分析   总被引:5,自引:1,他引:4  
世界上大多数的抗震规范都采用了基于强度的设计方法,强度折减系数是基于强度的抗震设计中确定设计地震力的关键因素,提高强度折减系数的可靠性已经被认为是提高现有抗震规范可靠性的有效途径。本文主要介绍了抗震研究处于世界先进水平的美国(UBC97)、欧洲(EC8)、日本、墨西哥、加拿大、中国等国家抗震规范中强度折减系数取值的有关规定,然后给出了各国学者关于规范规定的强度折减系数的一些重要讨论和分析,最后指出了世界各国应用强度折减系数过程中存在的不足,指出了需进一步研究的问题。  相似文献   

19.
This paper presents a formulation for earthquake resistant design of optimum hybrid isolation systems for sensitive equipment protection. The hybrid system under consideration consists of laminated rubber bearings, viscodampers and a set of actuators which, grounded on the main structural system, deliver forces on the basement of the isolated substructure mounted on the main structural system. An integrated design procedure for the passive and active components of the isolation system is developed aiming at acceleration reduction under random excitation. Linear models are used for the isolated structure, the main structural system and the isolation system. Fractional derivative Maxwell elements are used to model the mechanical behaviour of the viscodampers. The active component of the isolation system applies forces proportional to the absolute velocity of the isolated piece of equipment. Constraints in the deformation capacity of the isolators as well as constraints in the capacity of the actuators are considered for the design of an optimal hybrid isolation system. Simple numerical examples are developed herein to illustrate the design procedure. The superiority of hybrid systems over passive systems in reducing acceleration response is demonstrated.  相似文献   

20.
A design procedure for improving the seismic performance of unequal-span underground structures by installing isolation devices at the top end of columns is proposed based on the seismic failure mode of frame-type underground structures and the design concept of critical support columns. A two-dimensional finite element model (FEM) for a soil-underground structure with an unequal-span interaction system was established to shed light on the effects of a complex subway station with elastic sliding bearings (ESB) and lead rubber bearings (LRB) on seismic mitigation. It was found that the stiffness and internal force distribution of the underground structure changed remarkably with the installation of isolation devices at the top end of the columns. The constraints of the beam-column joints were significantly weakened, resulting in a decrease in the overall lateral stiffness and an increase in the structural lateral displacement. The introduction of the isolation device effectively reduces the internal force and seismic damage of the frame column; however, the tensile damage to the isolation structure, such as the roof, bottom plate, and sidewall, significantly increased compared to those of the non-isolation structure. Although the relative slip of the ESB remains within a controllable range under strong earthquake excitation as well as frame columns with stable vertical support and self-restoration functions, the LRB shows a better performance during seismic failure and better lateral displacement response of the unequal-span underground structure. The analysis results provide new ideas and references for promoting the application of seismic isolation technology in underground structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号