首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
2.
With the introduction of high‐resolution digital elevation models, it is possible to use digital terrain analysis to extract small streams. In order to map streams correctly, it is necessary to remove errors and artificial sinks in the digital elevation models. This step is known as preprocessing and will allow water to move across a digital landscape. However, new challenges are introduced with increasing resolution because the effect of anthropogenic artefacts such as road embankments and bridges increases with increased resolution. These are problematic during the preprocessing step because they are elevated above the surrounding landscape and act as artificial dams. The aims of this study were to evaluate the effect of different preprocessing methods such as breaching and filling on digital elevation models with different resolutions (2, 4, 8, and 16 m) and to evaluate which preprocessing methods most accurately route water across road impoundments at actual culvert locations. A unique dataset with over 30,000 field‐mapped road culverts was used to assess the accuracy of stream networks derived from digital elevation models using different preprocessing methods. Our results showed that the accuracy of stream networks increases with increasing resolution. Breaching created the most accurate stream networks on all resolutions, whereas filling was the least accurate. Burning streams from the topographic map across roads from the topographic map increased the accuracy for all methods and resolutions. In addition, the impact in terms of change in area and absolute volume between original and preprocessed digital elevation models was smaller for breaching than for filling. With the appropriate methods, it is possible to extract accurate stream networks from high‐resolution digital elevation models with extensive road networks, thus providing forest managers with stream networks that can be used when planning operations in wet areas or areas near streams to prevent rutting, sediment transport, and mercury export.  相似文献   

3.
The reduction of gravity-field related quantities (e.g., gravity anomalies, geoid heights) due to the topography plays a crucial role in both geodetic and geophysical applications, since in the former it is an intermediate step towards geoid prediction and in the latter it reveals lateral as well as radial density contrasts and infers the geology of the area under study. The computations are usually carried out by employing a DTM and/or a DBM, which describe the topography and bathymetry, respectively. Errors in these DTMs/DBMs will introduce errors in the computed topographic effects, while poor spatial resolution of the topography and bathymetry models will result in aliasing effects to both gravity anomalies and geoid heights, both influencing the accuracy of the estimated solutions. The scope of this work is twofold. First, a validation and accuracy assessment of the SRTM 3″ (90 m) DTM over Greece is performed through comparisons with existing global models as well as with the Greek 450 m national DTMs. Whenever a misrepresentation of the topography is identified in the SRTM data, it is “corrected” using the local 450 m DTM. This process resulted in an improved SRTM DTM called SRTMGr, which was then used to determine terrain effects to gravity field quantities. From the fine-resolution SRTMGr DTMs, coarser models of 15″, 30″, 1′, 2′ and 5′ have been determined in order to investigate aliasing effects on both gravity anomalies and geoid heights by computing terrain effects at variable spatial resolutions. From the results acquired in two test areas, it was concluded that SRTMGr provides similar results to the local DTM making the use of other older global DTMs obsolete. The study for terrain aliasing effects proved that when high-resolution and accuracy gravity and geoid models are needed, then the highest possible resolution DTM should be employed to compute the respective terrain effects. Based on the results acquired from two the test areas a corrected SRTMGr DTM has been compiled for the entire Greek territory towards the development of a new gravimetric geoid model. Results from that analysis are presented based on the well-known remove-compute-restore method, employing land and marine gravity data, EGM08 as a reference geopotential model and the SRTMGr DTM for the computation of the RTM effects.  相似文献   

4.
Global forward modelling of the Earth’s gravitational potential, a classical problem in geophysics and geodesy, is relevant for a range of applications such as gravity interpretation, isostatic hypothesis testing or combined gravity field modelling with high and ultra-high resolution. This study presents spectral forward modelling with volumetric mass layers to degree 2190 for the first time based on two different levels of approximation. In spherical approximation, the mass layers are referred to a sphere, yielding the spherical topographic potential. In ellipsoidal approximation where an ellipsoid of revolution provides the reference, the ellipsoidal topographic potential (ETP) is obtained. For both types of approximation, we derive a mass layer concept and study it with layered data from the Earth2014 topography model at 5-arc-min resolution. We show that the layer concept can be applied with either actual layer density or density contrasts w.r.t. a reference density, without discernible differences in the computed gravity functionals. To avoid aliasing and truncation errors, we carefully account for increased sampling requirements due to the exponentiation of the boundary functions and consider all numerically relevant terms of the involved binominal series expansions. The main outcome of our work is a set of new spectral models of the Earth’s topographic potential relying on mass layer modelling in spherical and in ellipsoidal approximation. We compare both levels of approximations geometrically, spectrally and numerically and quantify the benefits over the frequently used rock-equivalent topography (RET) method. We show that by using the ETP it is possible to avoid any displacement of masses and quantify also the benefit of mapping-free modelling. The layer-based forward modelling is corroborated by GOCE satellite gradiometry, by in-situ gravity observations from recently released Antarctic gravity anomaly grids and degree correlations with spectral models of the Earth’s observed geopotential. As the main conclusion of this work, the mass layer approach allows more accurate modelling of the topographic potential because it avoids 10–20-mGal approximation errors associated with RET techniques. The spherical approximation is suited for a range of geophysical applications, while the ellipsoidal approximation is preferable for applications requiring high accuracy or high resolution.  相似文献   

5.
In many modern local and regional gravity field modelling concepts, the short-wavelength gravitational signal modeled by the residual terrain modelling (RTM) technique is used to augment global geopotential models, or to smooth observed gravity prior to data gridding. In practice, the evaluation of RTM effects mostly relies on a constant density assumption, because of the difficulty and complexity of obtaining information on the actual distribution of density of topographic masses. Where the actual density of topographic masses deviates from the adopted value, errors are present in the RTM mass-model, and hence, in the forward-modelled residual gravity field. In this paper we attempt to overcome this problem by combining the RTM technique with a high-resolution mass-density model. We compute RTM gravity quantities over New Zealand, with different combinations of elevation models and mass-density assumptions using gravity and GPS/levelling measurements, precise terrain and bathymetry models, a high-resolution mass-density model and constant density assumptions as main input databases. Based on gravity observations and the RTM technique, optimum densities are detected for North Island of ~2500 kg m?3, South Island of ~2600 kg m?3, and the whole New Zealand of ~2590 kg m?3. Comparison among the three sets of residual gravity disturbances computed from different mass-density assumptions show that, together with a global potential model, the high-resolution New Zealand density model explains ~89.5% of gravitational signals, a constant density assumption of 2670 kg m?3 explains ~90.2%, while a regionally optimum mass-density explains ~90.3%. Detailed comparison shows that the New Zealand density model works best over areas with small residual heights. Over areas with larger residual heights, subsurface density variations appear to affect the residual gravity disturbance. This effect is found to reach about 30 mGal over Southern Alpine Fault. In order to improve the RTM modelling with mass-density maps, a higher-quality mass-density model that provides radially varying mass-density data would be desirable.  相似文献   

6.
The small scale distribution of the snowpack in mountain areas is highly heterogeneous, and is mainly controlled by the interactions between the atmosphere and local topography. However, the influence of different terrain features in controlling variations in the snow distribution depends on the characteristics of the study area. As this leads to uncertainties in high spatial resolution snowpack simulations, a deeper understanding of the role of terrain features on the small scale distribution of snow depth is required. This study applied random forest algorithms to investigate the temporal evolution of snow depth in complex alpine terrain using as predictors various topographical variables and in situ snow depth observations at a single location. The high spatial resolution (1 m x 1 m) snow depth distribution database used in training and evaluating the random forests was derived from terrestrial laser scanner (TLS) devices at three study sites, in the French Alps (2 sites) and the Spanish Pyrenees (1 site). The results show the major importance of two topographic variables, the topographic position index and the maximum upwind slope parameter. For these variables the search distances and directions depended on the characteristics of each site and the TLS acquisition date, but are consistent across sites and are tightly related to main wind directions. The weight of the different topographic variables on explaining snow distribution evolves while major snow accumulation events still take place and minor changes are observed after reaching the annual snow accumulation peak. Random forests have demonstrated good performance when predicting snow distribution for the sites included in the training set with R2 values ranging from 0.82 to 0.94 and mean absolute errors always below 0.4 m. Oppositely, this algorithm failed when used to predict snow distribution for sites not included in the training set, with mean absolute errors above 0.8 m.  相似文献   

7.
Topographic models provide a useful tool for understanding gully occurrence in the landscape but require reliable estimates of gully head drainage areas. Modern high-resolution topography data (collected using structure from motion photogrammetry or light detection and ranging) is increasingly used for topographic studies of gullies, but little work has been done to assess the variability of gully head drainage area estimates using different methods. This study evaluated alternative approaches to using high-resolution digital elevation models (DEMs) so that gully topographic models can be more readily applied to any area with suitably high-resolution data. Specifically, we investigated the impact of single- or multiple-direction flow routing algorithms, DEM hydrologic-enforcement procedures and spatial resolution on gully head drainage area estimation. We tested these methods on a 40 km2 site centred on Weany Creek, a low-relief semi-arid landscape draining towards the Great Barrier Reef, Australia. Using a subroutine to separate gully heads into those with divergent or convergent flow patterns upslope, we found that divergent flow conditions occurred at half of 484 studied gullies. Drainage areas estimated by different flow routing algorithms were more variable in these divergent cases than for convergent cases. This variation caused a significant difference between topographic threshold parameters (slope b and intercept k) derived from single- or multiple-direction flow routing algorithms, respectively. Different methods of hydrologic enforcement (filling or breaching) also affected threshold analysis, resulting in estimates of the exponent b being ~188% higher if the DEM was filled than if breached. The testing of the methods to date indicates that a finer resolution (≤2 m) DEM and a multiple-direction flow routing algorithm achieve the most realistic drainage area estimates in low-relief landscapes. For Weany Creek we estimated threshold parameters k = 0.033 and b = 0.189, indicating that it is highly susceptible to gully erosion.  相似文献   

8.
Digital terrain models (DTMs) are a standard data source for a variety of applications. DTM differencing is also widely used for detection and quantification of topographic changes. While several investigations have been made on the accuracy of DTMs, calculated from different kinds of input data, little has been published on the error of DTM differencing, specifically for the quantification of geomorphological processes. In this study, an extensive, multi‐temporal set of airborne laser scanning (ALS) data is used to investigate the accuracy of topographic change calculations in a high alpine environment, caused by different geomorphic processes. Differences from DTMs with cell sizes ranging from 0.25 m to 10 m were calculated and compared to very accurate point‐to‐point calculations for a variety of processes and in nearby stable areas which show no significant surface changes. The representativeness of the DTM differences is then compared to the terrain slope and surface roughness of the investigated areas to show the influence of these parameters on the errors in the differences. Those errors are then taken into account for analyses of the applicability of different cell sizes for the investigation of geomorphic processes with different magnitudes and over different time periods. The analyses show that the error of DTM differences increases with lower point densities and higher roughness and slope values. The higher the error, the greater the differences between two elevation datasets have to be in order to quantify certain morphodynamic processes. Lower point densities and higher roughness and slope values require greater process rates or longer time intervals in order to obtain valid results. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
High resolution terrain models generated from widely available Interferometric Synthetic Aperture Radar (IfSAR) and digital photogrammetry are an exciting resource for geomorphological research. However, these data contain error, necessitating pre‐processing to improve their quality. We evaluate the ability of digital filters to improve topographic representation, using: (1) a Gaussian noise removal filter; (2) the proprietary filters commonly applied to these datasets; and (3) a terrain sensitive filter, similar to those applied to laser altimetry data. Topographic representation is assessed in terms of both absolute accuracy measured with reference to independent check data and derived geomorphological variables (slope, upslope contributing area, topographic index and landslide failure probability) from a steepland catchment in northern England. Results suggest that proprietary filters often degrade or fail to improve precision. A combination of terrain sensitive and Gaussian filters performs best for both IfSAR and digital photogrammetry datasets, improving the precision of photogrammetry digital elevation models (DEMs) by more than 50 per cent relative to the unfiltered data. High‐frequency noise and high‐magnitude gross errors corrupt geomorphological variables derived from unfiltered photogrammetry DEMs. However, a terrain sensitive filter effectively removes gross errors and noise is minimized using a Gaussian filter. These improvements propagate through derived variables in a landslide prediction model, to reduce the area of predicted instability by up to 29 per cent of the study area. Interferometric Synthetic Aperture Radar is susceptible to removal of topographic detail by oversmoothing and its errors are less sensitive to filtering (maximum improvement in precision of 5 per cent relative to the raw data). Copyright © 2008 John Wiley and Sons, Ltd.  相似文献   

10.
The development of studies on estimating the accuracy of the Earth’s modern global gravity models in terms of the spherical harmonics of the geopotential in the problematic regions of the world is discussed. The comparative analysis of the results of reconstructing quasi-geoid heights and gravity anomalies from the different models is carried out for two polar regions selected within a radius of 1000 km from the North and South poles. The analysis covers nine recently developed models, including six high-resolution models and three lower order models, including the Russian GAOP2012 model. It is shown that the modern models determine the quasi-geoid heights and gravity anomalies in the polar regions with errors of 5 to 10 to a few dozen cm and from 3 to 5 to a few dozen mGal, respectively, depending on the resolution. The accuracy of the models in the Arctic is several times higher than in the Antarctic. This is associated with the peculiarities of gravity anomalies in every particular region and with the fact that the polar part of the Antarctic has been comparatively less explored by the gravity methods than the polar Arctic.  相似文献   

11.
The effects of the topographic data source and resolution on the hydraulic modelling of floods were analysed. Seven digital terrain models (DTMs) were generated from three different altimetric sources: a global positioning system (GPS) survey and bathymetry; high‐resolution laser altimetry data LiDAR (light detection and ranging); and vectorial cartography (1:5000). Hydraulic results were obtained, using the HEC‐RAS one‐dimensional model, for all seven DTMs. The importance of the DTM's accuracy on the hydraulic modelling results was analysed within three different hydraulic contexts: (1) the discharge and water surface elevation results from the hydraulic model; (2) the delineation of the flooded area; and (3) the relative sensitivity of the hydraulic model to changes in the Manning's n roughness coefficient. The contour‐based DTM was the least accurate with a root mean square error (RMSE) of 4·5 m in the determination of the water level and a variation of up to 50 per cent in the estimation of the inundated area of the floodplain. The GPS‐based DTM produced more realistic water surface elevation results and variations of up to 8 per cent in terms of the flooded area. The laser‐based model's RMSE for water level was 0·3 m, with the flooded area varying by less than 1 per cent. The LiDAR data also showed the greatest sensitivity to changes in the Manning's roughness coefficient. An analysis of the effect of mesh resolution indicated an influence on the delineation of the flooded area with variations of up to 7·3 per cent. In addition to determining the accuracy of the hydraulic modelling results produced from each DTM, an analysis of the time–cost ratio of each topographic data source illustrates that airborne laser scanning is a cost‐effective means of developing a DTM of sufficient accuracy, especially over large areas. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
Topographic measurements are essential for the study of earth surface processes. Three‐dimensional data have been conventionally obtained through terrestrial laser scanning or photogrammetric methods. However, particularly in steep and rough terrain, high‐resolution field measurements remain challenging and often require new creative approaches. In this paper, range imaging is evaluated as an alternative method for obtaining surface data in such complex environments. Range imaging is an emerging time‐of‐flight technology, using phase shift measurements on a multi‐pixel sensor to generate a distance image of a surface. Its suitability for field measurements has yet not been tested. We found ambient light and surface reflectivity to be the main factors affecting error in distance measurements. Low‐reflectivity surfaces and strong illumination contrasts under direct exposure to sunlight lead to noisy distance measurements. However, regardless of lighting conditions, the accuracy of range imaging was markedly improved by averaging multiple images of the same scene. For medium ambient lighting (shade) and a light‐coloured surface the measurement uncertainty was approximately 9 mm. To further test the suitability of range imaging for field applications we measured a reach of a steep mountain stream with a horizontal resolution of approximately 1 cm (in the focal plane of the camera), allowing for the interpolation of a digital elevation model on a 2 cm grid. Comparison with an elevation model obtained from terrestrial laser scanning for the same site revealed that both models show similar degrees of topographic detail. Despite limitations in measurement range and accuracy, particularly at bright ambient lighting, range imaging offers three‐dimensional data in real time and video mode without the need of post‐processing. Therefore, range imaging is a useful complement or alternative to existing methods for high‐resolution measurements in small‐ to medium‐scale field sites. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
In this paper we explore the optimum assimilation of high‐resolution data into numerical models using the example of topographic data provision for flood inundation simulation. First, we explore problems with current assimilation methods in which numerical grids are generated independent of topography. These include possible loss of significant length scales of topographic information, poor representation of the original surface and data redundancy. These are resolved through the development of a processing chain consisting of: (i) assessment of significant length scales of variation in the input data sets; (ii) determination of significant points within the data set; (iii) translation of these into a conforming model discretization that preserves solution quality for a given numerical solver; and (iv) incorporation of otherwise redundant sub‐grid data into the model in a computationally efficient manner. This processing chain is used to develop an optimal finite element discretization for a 12 km reach of the River Stour in Dorset, UK, for which a high‐resolution topographic data set derived from airborne laser altimetry (LiDAR) was available. For this reach, three simulations of a 1 in 4 year flood event were conducted: a control simulation with a mesh developed independent of topography, a simulation with a topographically optimum mesh, and a further simulation with the topographically optimum mesh incorporating the sub‐grid topographic data within a correction algorithm for dynamic wetting and drying in fixed grid models. The topographically optimum model is shown to represent better the ‘raw’ topographic data set and that differences between this surface and the control are hydraulically significant. Incorporation of sub‐grid topographic data has a less marked impact than getting the explicit hydraulic calculation correct, but still leads to important differences in model behaviour. The paper highlights the need for better validation data capable of discriminating between these competing approaches and begins to indicate what the characteristics of such a data set should be. More generally, the techniques developed here should prove useful for any data set where the resolution exceeds that of the model in which it is to be used. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

14.
Acquiring high resolution topographic data of natural gravel surfaces is technically demanding in locations where the bed is not exposed at low water stages. Often the most geomorphologically active surfaces are permanently submerged. Gravel beds are spatially variable and measurement of their detailed structure and particle sizes is essential for understanding the interaction of bed roughness with near‐bed flow hydraulics, sediment entrainment, transport and deposition processes, as well as providing insights into the ecological responses to these processes. This paper presents patch‐scale laboratory and field experiments to demonstrate that through‐water terrestrial laser scanning (TLS) has the potential to provide high resolution digital elevation models of submerged gravel beds with enough detail to depict individual grains and small‐scale forms. The resulting point cloud data requires correction for refraction before registration. Preliminary validation shows that patch‐scale TLS through 200 mm of water introduces a mean error of less than 5 mm under ideal conditions. Point precision is not adversely affected by the water column. The resulting DEMs can be embedded seamlessly within larger sub‐aerial reach‐scale surveys and can be acquired alongside flow measurements to examine the effects of three‐dimensional surface geometry on turbulent flow fields and their interaction with instream ecology dynamics. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
Drainage channels are an integral part of agricultural landscapes, and their impact on catchment hydrology is strongly recognized. In cultivated and urbanized floodplains, channels have always played a key role in flood protection, land reclamation, and irrigation. Bank erosion is a critical issue in channels. Neglecting this process, especially during flood events, can result in underestimation of the risk in flood‐prone areas. The main aim of this work is to consider a low‐cost methodology for the analysis of bank erosion in agricultural drainage networks, and in particular for the estimation of the volumes of eroded and deposited material. A case study located in the Veneto floodplain was selected. The research is based on high‐resolution topographic data obtained by an emerging low‐cost photogrammetric method (structure‐from‐motion or SfM), and results are compared to terrestrial laser scanning (TLS) data. For the SfM analysis, extensive photosets were obtained using two standalone reflex digital cameras and an iPhone5® built‐in camera. Three digital elevation models (DEMs) were extracted at the resolution of 0.1 m using SfM and were compared with the ones derived by TLS. Using the different DEMs, the eroded areas were then identified using a feature extraction technique based on the topographic parameter Roughness Index (RI). DEMs derived from SfM were effective for both detecting erosion areas and estimating quantitatively the deposition and erosion volumes. Our results underlined how smartphones with high‐resolution built‐in cameras can be competitive instruments for obtaining suitable data for topography analysis and Earth surface monitoring. This methodology could be potentially very useful for farmers and/or technicians for post‐event field surveys to support flood risk management. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
A numerical method is used to investigate the effect of topographic and local thermal conductivity anomalies on near-surface heat flow for two-dimensional models. Heat flow associated with a sloping topographic structure is calculated. Also, the effects of a fault structure associated with the sloping topography are considered. Vertical and horizontal heat flow components are calculated alone; the surface of the earth as well as throughout the whole region of interest. The results indicate that surface heat flow is substantially affected by topographic relief and the horizontal heat flow component associated with topographic features can be large. Also, regional heat flow is greatly perturbed by local thermal conductivity anomalies and the effect of topographic features may be considerably modified by the subsurface structure.  相似文献   

17.
18.
三维数据的二维可视化方法综述   总被引:1,自引:0,他引:1       下载免费PDF全文
等高线图、晕渲图和分层设色图等作为传统的三维数据的二维可视化方法,有各自的优点并被广泛地应用于屏幕显示和平面制图中。随着三维数据分辨率的不断提高,传统可视化方法已不能完全满足显示、挖掘隐含信息的要求。一种新的地形参数(openness)以及由此而产生的新的可视化方法(RRIM)被提出,这在很大程度上增强了二维显示的立体感和直观性。同时,在构造地貌研究的应用中,对细微构造的识别有着其他可视化方法无法比拟的优越性。良好的室内地貌解译工作不仅能够提高工作效率而且能够在一定程度上减少野外工作量。同时,对于森林覆盖严重、自然条件恶劣、不易到达而又具有研究价值的区域,RRIM提供了一种更好的工作方法,有着非常重要的实用价值。  相似文献   

19.
数字高程模型是重要的地理空间数据,可以提供丰富的地形信息.为了获得时效性好、分辨率高的数字高程模型,本文以南京市为实验区域,利用德国宇航局TerraSAR-X卫星同一轨道上的两幅StripMap模式SAR影像对,主从影像时间间隔只有66天,空间分辨率为3 m.采用InSAR技术,通过迭代的方法来提高获取DEM的分辨率,并结合JAXA/EORC提供的AW3D30数字表面模型与迭代后的DEM进行融合来解决阴影等问题,最终获取了南京地区的高精度数字高程模型.将实验结果分别与90 m分辨率的SRTM、30 m分辨率的ASTER GDEM、30 m分辨率的AW3D30进行相互对比分析.结果表明,相比三种常用的DEM而言,本文获取的DEM能够更精确的获取地面的细节信息,特别是对于分布稀疏的大型单体建筑物,能够很好的恢复其三维信息,但是对于建筑物分布较为密集的区域,由于传感器视线受阻,不能观测建筑物的全貌,阴影分布较多,导致此类区域的DEM结果不理想,还需进一步深入研究,提高精度及可靠性.  相似文献   

20.
In watershed modelling, the traditional practice of arbitrarily filling topographic depressions in digital elevation models has raised concerns. Advanced high‐resolution remote sensing techniques, including airborne scanning laser altimetry, can identify naturally occurring depressions that impact overland flow. In this study, we used an ensemble physical and statistical modelling approach, including a 2D hydraulic model and two‐point connectivity statistics, to quantify the effects of depressions on high‐resolution overland flow patterns across spatial scales and their temporal variations in single storm events. Computations for both models were implemented using graphic processing unit‐accelerated computing. The changes in connectivity statistics for overland flow patterns between airborne scanning laser altimetry‐derived digital elevation models with (original) and without (filled) depressions were used to represent the shifts of overland flow response to depressions. The results show that depressions can either decrease or increase (to a lesser degree and shorter duration) the probability that any two points (grid locations) are hydraulically connected by overland flow pathways. We used macro‐connectivity states (Φ) as a watershed‐specific indicator to describe the spatiotemporal thresholds of connectivity variability caused by depressions. Four states of Φ are identified in a studied watershed, and each state represents different magnitudes of connectivity and connectivity changes (caused by depressions). The magnitude of connectivity variability corresponds to the states of Φ, which depend on the topological relationship between depressions, the rising/recession limb, and the total rainfall amount in a storm event. In addition, spatial distributions of connectivity variability correlate with the density of depression locations and their physical structures, which cause changes in streamflow discharge magnitude. Therefore, this study suggests that depressions are “nontrivial” in watershed modelling, and their impacts on overland flow should not be neglected. Connectivity statistics at different spatial scales and time points within a watershed provide new insights for characterizing the distributed and accumulated effects of depressions on overland flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号