首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Changes in the frequency of tropical cyclones over the North Indian Ocean   总被引:3,自引:0,他引:3  
Summary  Changes in the frequency of tropical cyclones developing over the Arabian Sea and the Bay of Bengal have been studied utilizing 122 year (1877–1998) data of tropical cyclone frequency. There have been significant increasing trends in the cyclone frequency over the Bay of Bengal during November and May which are main cyclone months. During transitional monsoon months; June and September however, the frequency has decreased. The results have been presented for five months, i.e., May-November which are relevant as far as tropical cyclone frequency over the Arabian Sea and the Bay of Bengal are concerned. The tropical cyclone frequency in the Arabian Sea has not shown any significant trend, probably due to small normal frequency. The frequency time series has been subjected to the spectral analysis to obtain the significant periods. The cyclone frequency over the Bay of Bengal during May has shown a 29 year cycle. A significant 44 year cycle has been found during November. Over the Arabian Sea significant cycles of 13 and 10 years have been observed during May-June and November, respectively. The tropical cyclone frequency in the North Indian Ocean has a prominent El Ni?o-Southern Oscillation (ENSO) scale cycle (2–5 years) during all above five months. The annual cyclone frequency exhibits 29 year and ENSO scale (2–4 years) oscillations. There is a reduction in tropical cyclone activity over the Bay of Bengal in severe cyclone months May and November during warm phases of ENSO. Examination of the frequencies of severe cyclones with maximum sustained winds ≥ 48 knots has revealed that these cyclones have become more frequent in the North Indian Ocean during intense cyclone period of the year. The rate of intensification of tropical disturbances to severe cyclone stage has registered an upward trend. Received June 7, 1999/Revised March 20, 2000  相似文献   

2.
The seasonal prediction skill for the Northern Hemisphere winter is assessed using retrospective predictions (1982–2010) from the ECMWF System 4 (Sys4) and National Center for Environmental Prediction (NCEP) CFS version 2 (CFSv2) coupled atmosphere–ocean seasonal climate prediction systems. Sys4 shows a cold bias in the equatorial Pacific but a warm bias is found in the North Pacific and part of the North Atlantic. The CFSv2 has strong warm bias from the cold tongue region of the eastern Pacific to the equatorial central Pacific and cold bias in broad areas over the North Pacific and the North Atlantic. A cold bias in the Southern Hemisphere is common in both reforecasts. In addition, excessive precipitation is found in the equatorial Pacific, the equatorial Indian Ocean and the western Pacific in Sys4, and in the South Pacific, the southern Indian Ocean and the western Pacific in CFSv2. A dry bias is found for both modeling systems over South America and northern Australia. The mean prediction skill of 2 meter temperature (2mT) and precipitation anomalies are greater over the tropics than the extra-tropics and also greater over ocean than land. The prediction skill of tropical 2mT and precipitation is greater in strong El Nino Southern Oscillation (ENSO) winters than in weak ENSO winters. Both models predict the year-to-year ENSO variation quite accurately, although sea surface temperature trend bias in CFSv2 over the tropical Pacific results in lower prediction skill for the CFSv2 relative to the Sys4. Both models capture the main ENSO teleconnection pattern of strong anomalies over the tropics, the North Pacific and the North America. However, both models have difficulty in forecasting the year-to-year winter temperature variability over the US and northern Europe.  相似文献   

3.
In this study, we have investigated the contribution of El Niño-Southern Oscillation (ENSO) to the North Indian Ocean (NIO) tropical cyclone (TC) activity and seasonal predictability. A statistical seasonal prediction model was developed for the NIO region tropical cyclone genesis, trajectories and landfalls using the Southern Oscillation index (SOI: as a metric of ENSO) as a predictor. The forecast model utilised kernel density estimation (KDE), a generalised additive model (GAM), Euler integration, and a country mask. TCs from the Joint Typhoon Warning Centre were analysed over the 35-year period from 1979 to 2013. KDE was used to model the distribution of cyclone genesis points and the cyclone tracks were estimated using the GAM, with velocities fit as smooth functions of location according to ENSO phase and TC season. The best predictor lead time scales for TC forecast potential were assessed from 1 to 6 months. We found that the SOI (as a proxy for ENSO) is a good predictor of TC behaviour 2-months in advance (70% skill). Two hindcast validation methods were applied to assess the reliability of the model. The model was found to be skillful in hindcasting NIO region TC activity for the pre and post monsoon season. The distribution of TC genesis, movement and landfall probabilities over the study period, as well as the hindcast probabilities of TC landfall during ENSO events, matched well against observations over most of the study domain. Overall, we found that the phase of ENSO has the potential to improve NIO region TC seasonal forecast skill by about 15% over climatological persistence.  相似文献   

4.
The impact of ENSO periodicity on North Pacific SST variability   总被引:1,自引:0,他引:1  
The periodicity of ENSO in nature varies. Here we examine how changes in the frequency of ENSO impacts remote teleconnections in the North Pacific. The numerical experiments presented here are designed to simulate perfectly periodic ENSO in the tropical Pacific, and to enable the air–sea interaction in other regions (i.e., the North Pacific) via a simple mixed layer ocean model. The temporal evolution and spatial structure of the North Pacific SST teleconnection patterns are relatively insensitive to the frequency of ENSO, but the amplitude of the variability is sensitive. Specifically, the 2-year period ENSO experiment (P2) shows weak event-by-event consistency in the ENSO response mature pattern. This is because there is not enough time to damp the previously forced ENSO teleconnections (i.e., 1 year earlier). The 4-year period ENSO experiment (P4) has 1 year damping time before a successive ENSO event matures, so the structure of the response pattern is stably repeated. However, the event-by-event variance of anomaly magnitude, specifically responding to El Niño, is still larger than that in the 6-year ENSO experiment (P6), which has 2-year damping time between consecutive ENSO events. In addition, we tested whether the variability due to tropical remote forcing is linearly independent of the extratropical local variability. Statistical tests indicate that tropical remote forcing can constructively or destructively interfere with local variability in the North Pacific. Lastly, there is a non-linear rectification of the ENSO events that can be detected in the climatology.  相似文献   

5.
郑玉琼  陈文  陈尚锋 《大气科学》2020,44(2):435-454
根据观测资料的研究指出春季北极涛动(Arctic Oscillation, AO)对随后冬季厄尔尼诺-南方涛动(El Nino–Southern Oscillation, ENSO)的影响具有明显不对称性。春季AO处于正位相时,它对随后冬季厄尔尼诺(El Nino)事件的影响显著,然而春季AO负位相对随后冬季拉尼娜(La Nina)的影响不明显。本研究分析了30个来自CMIP5的耦合模式对春季AO与随后冬季ENSO不对称性关系的模拟能力。30个CMIP5耦合模式中,只有CNRM-CM5和GISS-E2-H-CC模式能较好地抓住春季AO与冬季ENSO的联系。进一步分析这两个模式中春季AO与冬季ENSO的不对称性关系,发现CNRM-CM5模式能较好地再现春季AO与冬季ENSO的非对称关系,即春季AO正(负)位相会导致赤道中东太平洋出现El Nino(La Nina)型海表温度增暖(冷却)。然而,GISS-E2-H-CC模式的模拟结果显示,春季AO对随后冬季ENSO的影响是对称的。本文随后解释了CNRM-CM5(GISS-E2-H-CC)模式能(不能)模拟出春季AO与冬季ENSO不对称关系的原因。对于CNRMCM5模式,在春季AO正位相年,副热带西北太平洋上空存在明显的异常气旋和正降水异常,正降水异常通过Gill型大气响应对赤道西太平洋异常西风的形成和维持起着重要作用,异常西风通过激发向东传播的暖赤道Kelvin波对随后冬季El Nino事件的发生产生显著的影响;然而,在春季AO负位相年,副热带北太平洋的异常反气旋和负降水异常较弱,导致赤道西太平洋的异常东风不明显,因此,春季AO负异常对随后冬季La Nina的影响不显著。所以,CNRM-CM5模式能够较好地抓住春季AO对随后冬季ENSO事件的非对称性影响。相比之下,对于GISS-E2-H-CC模式,春季AO正(负)位相年副热带西北太平洋上存在显著的正(负)降水异常,通过Gill型大气响应在赤道西太平洋激发出明显的异常西(东)风从而影响随后冬季的El Nino(La Nina)事件。因此,在GISS-E2-H-CC模式中,春季AO对随后冬季ENSO具有对称性影响。另外,模式捕捉春季AO对随后冬季ENSO非对称性影响的能力与模式对春季AO空间结构的模拟能力有一定的联系。  相似文献   

6.
The influence of sea-surface temperatures on six measures of tropical cyclone activity in the Eastern North Pacific is examined using historical sea-surface temperature and tropical cyclone data spanning from 1971 to 2002. Relationships are evaluated using methods of trend analysis, extreme year analysis, and bivariate correlation. Results suggest that in order to understand the climatological factors affecting topical cyclone activity in the Eastern North Pacific, the main development region must be divided into two sub-regions of development to the east and west of 112°W longitude. Increasing trends of sea-surface temperature are not accompanied by increasing trends in tropical cyclone activity. In the western development region, sea-surface temperatures are significantly correlated with all measures of tropical cyclone activity during extreme years. In this region, sea-surface temperatures are on average below the threshold for tropical cyclone development. In the Eastern development region, the only significant correlation with sea-surface temperatures is for the more intense measures of hurricane activity. In this region, sea-surface temperatures are on average above the threshold for cyclone formation. This leads to the hypothesis that the proximity to the cyclone formation temperature threshold in the WDR enhances the sensitivity of tropical cyclone activity to SSTs. This may have application to other tropical cyclone basins such as the North Atlantic.  相似文献   

7.
周群  陈文 《大气科学》2012,36(4):851-862
本文利用美国NCEP/NCAR再分析资料、海温、降水和反映太阳活动强弱的太阳10.7 cm射电流量资料,研究了1952~2010年太阳活动11年周期对ENSO年海温异常演变以及与之相联系的东亚降水的影响,在此基础上着重分析了ENSO发展期秋季东亚地区降水异常对太阳射电流量高(HS)/低(LS)的不同响应以及相关的物理过...  相似文献   

8.
Interannual variations of spring wheat yields in Canadian agricultural regions are analyzed, together with the associated sea surface temperature (SST) anomalies in the northern hemisphere tropics and extratropics, from 1961 to 2015. The cubic trend is calculated and used to represent the trend related to advances in agricultural technology over this time period. The correlations between Canadian wheat yields at regional scales and the tropical El Niño–Southern Oscillation (ENSO) variability are not robust at any stage of the evolution of ENSO. Based on the power spectrum and cross-spectrum analysis, the most prominent yield variance is found in the Canadian Prairies, with a significant power peak of 4.5 years but does not co-vary significantly with interannual ENSO variability. ENSO weakly affects temperature and precipitation anomalies in the Canadian Prairie Region in summer—two important agroclimatic conditions for crop growth—and hence insignificantly impacts wheat yields. This indicates that there would be little benefit to including tropical ENSO indices in the operational wheat yield forecasting system. For Canadian wheat yield forecasting, attention should be paid to the preceding winter and spring SST anomalies in the northern extratropics. The SST anomalies associated with yields in the Canadian Prairie region and Central Region are generally stronger than those associated with yields in the Canadian Pacific Coast Region and eastern Maritime Region. In association with the Prairie Region and Central Region yields, SST shows pronounced anomalies in the mid-high latitudes of the North Pacific from winter to summer. The non-linearity of the SST anomalies associated with the Canadian yields is also clearly evident. Stronger (weaker) SST anomalies in the extratropical North Pacific correspond to low wheat yields in the Prairie (Central) Region, while weaker (stronger) SST anomalies correspond to high yields in the Prairie (Central) Region.  相似文献   

9.
西北太平洋热带气旋潜在生成指数的改进   总被引:7,自引:2,他引:5  
热带气旋潜在生成指数(GPI,Genesis Potential Index)是热带气旋生成可能性大小的空间分布函数,利用大尺度环境场可以应用于热带气旋活动的季节预报,并且可以评估全球气候变化对热带气旋活动的影响。但是目前的GPI基本都是针对全球热带气旋活动构建的,没有考虑到热带气旋不同活动地区及其内部的差异。本研究考虑到南海和西北太平洋热带气旋生成的不同特点,分别构建了适用于南海(5~25°N,100~120°E)和西北太平洋(5~40°N,120~180°E)的热带气旋GPI。改进后的GPI对南海和西北太平洋区域热带气旋生成具有较好的模拟能力,不仅能很好地模拟南海和西北太平洋热带气旋生成频数空间分布的气候特征(相似系数为0.67),而且能够较好地模拟热带气旋生成在年际时间尺度上的空间分布特征。  相似文献   

10.
The present study aims to (a) examine meteorological basis for construction of regional monsoon indices and (b) explore the commonality and differences among tropical regional monsoons, especially the teleconnection and monsoon–ENSO relationship. We show that the area-averaged summer precipitation intensity is generally a meaningful precipitation index for tropical monsoons because it represents very well both the amplitude of annual cycle and the leading mode of year-to-year rainfall variability with a nearly uniform spatial pattern. The regional monsoon circulation indices can be defined in a unified way (measuring monsoon trough vorticity) for seven tropical monsoon regions, viz.: Indian, Australian, western North Pacific, North and South American, and Northern and Southern African monsoons. The structures of the tropical monsoons are commonly characterized by a pair of upper-level double anticyclones residing in the subtropics of both hemispheres; notably the winter hemispheric anticyclone has a barotropic structure and is a passive response. Two types of upper-level teleconnection patterns are identified. One is a zonal wave train emanating from the double anticyclones downstream along the westerly jets in both hemispheres, including Indian, Northern African and Australian monsoons; the other is a meridional wave train emanating from the double anticyclones polewards, such as the South American and western North Pacific monsoons. Over the past 55 years all regional summer monsoons have non-stationary relationship with ENSO except the Australian monsoon. The regional monsoon–ENSO relationship is found to have common changing points in 1970s. The relationships were enhanced for the western North Pacific, Northern African, North American and South American summer monsoons, but weakened for the Indian summer monsoon (with a recovery in late 1990s). Regardless the large regional differences, the monsoon precipitations over land areas of all tropical monsoon regions are significantly correlated with the ENSO, suggesting that ENSO drives global tropical monsoon rainfall variability. These results provide useful guidance for monitoring sub-seasonal to seasonal variations of the regional monsoons currently done at NCEP and for assessment of the climate models’ performances in representing regional and global monsoon variability.  相似文献   

11.

The El Niño/Southern Oscillation (ENSO) strongly influences the large-scale atmospheric circulation over the extratropical North Pacific during boreal winter, which has an important impact on North American winter climate. This study analyses the interdecadal variability of the ENSO teleconnection to the wintertime extratropical North Pacific, over the period 1900–2010, using a range of observationally derived datasets and an ensemble of atmospheric model simulations. The observed teleconnection strength is found to vary substantially over the 20th century. Specifically, 31-year periods in the early-century (1912–1942), mid-century (1946–1976) and the late-century (1980–2010) are identified in the observations when the ENSO teleconnection to the North Pacific circulation are found to be particularly strong, weak and strong respectively. The ENSO teleconnection to the North Pacific in the atmospheric model ensemble is weak in the mid-century period and substantially stronger in the late-century, closely following the variability in the observed ENSO-North Pacific teleconnection. In the early-century, however, the atmospheric model also exhibits a weak teleconnection to the North Pacific, unlike in observations. In a subset of the model realisations that exhibit similar ENSO-North Pacific teleconnection as in observations during the early-century period there are large differences in extratropical circulation but not in equatorial Pacific precipitation anomalies, in contrast to the late-century period. This suggests that the high correlation in the early century period is largely due to internal extratropical variability. The important implications of these results for seasonal predictability and the assessment of seasonal forecasting systems are discussed.

  相似文献   

12.
采用美国联合台风警报中心(JTWC)提供的北印度洋1977-2008年热带气旋资料、NOAA提供的1982-2008年高分辨率合成资料和NCEP提供的1982-2008年全球再分析资料,对北印度洋上167个热带气旋个例进行了统计分析,结果表明:1)北印度洋热带气旋通常发生在阿拉伯海东部和孟加拉湾中部,阿拉伯海上活动的热...  相似文献   

13.
文章分析了1949—2010年发生在西北太平洋上的热带气旋的空间分布特征。并利用趋势分析、小波分析和滑动t检验方法分析了热带气旋的年际变化特征、季节变化特征、周期特征和突变特征。结果表明:西北太平洋热带气旋多生成于5~25°N,110~170°E的海域。频数的年际变化存在三个阶段,月际变化明显,集中出现在7—10月。整个时域上10~15a的波动明显,并经历了三次突变过程。62a间强热带风暴生成最多,台风次之,热带风暴最少。热带气旋强度的年变化不明显。热带气旋强度越强,频数最大值的月份出现越晚。亚洲季风和西太平洋副高对热带气旋的产生起很大的作用。  相似文献   

14.
The seasonal patterns of total cloud amount (TCA) responsible for El Ni?o/La Ni?a-Southern Oscillation (ENSO) Sea Surface Temperature (SST) anomalies were investigated using the ISCCP-D2 cloud and NOAA OI.v2 SST datasets for the period of July 1983 to June 2008. The results show three main ENSO-sensitive regions obtained by spatial overlapping of seasonal correlations, two in the western tropical Pacific and one in the central tropical Pacific. These regions were named WTP1, WTP2, and CTP. In all three regions, except the JJA (June?CAugust) WTP2, the TCA changes were significantly correlated with the Ni?o 3.4 anomalies during the four seasons (December?CJanuary?CFebruary (DJF), March?CApril?CMay, JJA, and September?COctober?CNovember (SON)). Remarkable differences in the seasonal variability of TCA were observed in these regions. In the WTP1, the DJF TCA always remained the highest value among the four seasons in all years. In the WTP2, the maximum TCA occurred during JJA in most years. In the CTP, the extreme value of TCA was mainly observed in DJF or SON near the peak time of ENSO. Seasonal cross-correlation analyses also showed significant relations between TCA and Ni?o 3.4 SST in these regions, which may be helpful for forecasting the evolution of ENSO.  相似文献   

15.
西北太平洋台风季节预报的数值模拟   总被引:2,自引:1,他引:1  
利用中尺度气象模式WRF(weather research and forecasting)对2006年7月1日-9月30日的西北太平洋夏季台风进行了动力季节预报试验。结果表明:1)在对3个月以内的台风作动力季节预报试验时,WRF模式模拟的台风总个数与实况接近,模式模拟的总登陆台风数与实况相比偏小。从各月模拟情况看,台风总数与登陆数的模拟均与实况有差距。WRF模式对台风强度的模拟总体偏弱。2)WRF在模拟2006年7q月台风以及平均高度场、水平风垂直切变时,7月与实况接近,随时间增长,与实况的差别明显增大.WRF模式具有一定的台风动力季节预报能力,但其预报时限有待探讨。  相似文献   

16.
An empirical approach for analyzing tropical cyclone climate is presented. The approach uses lifetime-maximum wind speed and cyclone frequency to induce two orthogonal variables labeled “activity” and “efficiency of intensity”. The paired variations of activity and efficiency of intensity along with the opponent variations of frequency and intensity configure a framework for evaluating tropical cyclone climate. Although cyclone activity as defined in this framework is highly correlated with the commonly used exponent indices like accumulated cyclone energy, it does not contain cyclone duration. Empirical quantiles are used to determine threshold intensity levels, and variant year ranges are used to find consistent trends in tropical cyclone climatology. In the western North Pacific, cyclone activity is decreasing despite increases in lifetime-maximum intensity. This is due to overwhelming decreases in cyclone frequency. These changes are also explained by an increasing efficiency of intensity. The North Atlantic shows different behavior. Cyclone activity is increasing due to increasing frequency and, to a lesser extent, increasing intensity. These changes are also explained by a decreasing efficiency of intensity. Tropical cyclone trends over the North Atlantic basin are more consistent over different year ranges than tropical cyclone trends over the western North Pacific.  相似文献   

17.
The interdecadal change in the relationship between the El Niño–Southern Oscillation (ENSO) and atmospheric circulation over the North Pacific is investigated using both observational data and an atmospheric general circulation model. There are two prominent modes of winter mid-latitude atmospheric variability in the North Pacific: the West Pacific (WP) teleconnection and the Aleutian Low (AL). The relationship between ENSO and the WP-AL patterns changed notably around the late 1970s. From 1957 to 1975, during the mature phase of ENSO, significant sea surface temperature anomalies (SSTAs) occurred, mainly in the equatorial eastern Pacific Ocean; the associated atmospheric circulation anomaly pattern resembles the negative phase of a WP teleconnection pattern. In contrast, for the 1978–2011 period, significant negative SSTAs were observed in the western and extratropical Pacific in both hemispheres, with some significant positive SSTAs appearing over the eastern Pacific. This is in agreement with the defined regions of a mega-ENSO, the associated atmospheric circulation anomaly pattern resembles the AL mode. Further analysis suggests that a negative–positive anomaly pattern in the 500?hPa geopotential height throughout the entire North Pacific, possibly enhanced by the SSTAs in the extratropical North Pacific associated with the mature phase of ENSO, is responsible for modulating the relationship between ENSO and the North Pacific atmospheric circulation.  相似文献   

18.
An observational study covering the period 1950–2002 examines a seasonal reversal in the ENSO rainfall signal in the north-central Philippines. In boreal Summer of El Niño (La Niña) events, above (below) average rainfall typically occurs in this area. Rainfall anomalies of opposite sign develop across the country in the subsequent fall. This study investigates the seasonal evolution of the anomalous atmospheric circulation over the western North Pacific (WNP) during both El Niño and La Niña and places these features in the context of the large-scale evolution of ENSO events, including an analysis of changes in tropical cyclone activity affecting the Philippines. The results show that during boreal summer of El Niño (La Niña) events, a relatively narrow, zonally elongated band of enhanced (reduced) low-level westerlies develops across the WNP which serves to increase (decrease) the summer monsoon flow and moisture flux over the north-central Philippines and is associated with an increase (decrease) in the strength of the WNP monsoon trough via the anomalous relative vorticity. Tropical cyclone activity is shown to be enhanced (reduced) in the study region during boreal summer of El Niño (La Niña) events, which is related to the increase (decrease) of mid-level atmospheric moisture, as diagnosed using a genesis potential index. The subsequent evolution shows development of an anomalous anticyclone (cyclone) over the WNP in El Niño (La Niña) and the well-known tendency for below (above) average rainfall in the fall. Prolonged ENSO events also exhibit seasonal rainfall sign reversals in the Philippines with a similar evolution in atmospheric circulation.  相似文献   

19.
In this study,the relationship between tropical cyclone numbers in the Northwest Pacific,Southern Oscillation (SO) and some environmental variables observed over the global oceans has been examined.The major results indicate that the pattern of correlations between the tropical cyclone numbers and the environmental variables is in a sense analogous to that between the SO and the same environmental variables,but the correlation is weak.The study indicates that the relationship between tropical cyclone numbers and environmental variables is more complex,and the factors affecting the variation in tropical cyclone numbers in the Northwest Pacific should include not only ENSO events but also a long-term effect which is not related to ENSO.  相似文献   

20.
It is known that the wintertime North Pacific Oscillation (NPO) is an important extratropical forcing for the occurrence of an El Ni?o?Southern Oscillation (ENSO) event in the subsequent winter via the “seasonal footprinting mechanism” (SFM). This study reveals that the Atlantic Multidecadal Oscillation (AMO) can notably modulate the relationship between the winter NPO and the following winter ENSO. During the negative AMO phase, the winter NPO has significant impacts on the following winter ENSO via the SFM. In contrast, the influence of the winter NPO on ENSO is not robust at all during the positive AMO phase. Winter NPO-generated westerly wind anomalies over the equatorial western Pacific during the following spring are much stronger during negative than positive AMO phases. It is suggested that the AMO impacts the winter NPO-induced equatorial westerly winds over the western Pacific via modulating the precipitation climatology over the tropical central Pacific and via modulating the connection of the winter NPO with spring sea surface temperature in the tropical North Atlantic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号