首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
建立了一种GPS卫星实时轨道确定的新算法。该算法用法方程叠加方法更新卫星轨道参数,然后根据卫星轨道与卫星轨道参数之间的数值微分关系计算新的卫星轨道,并详细分析了用中国GPS跟踪网数据实时定轨的结果。  相似文献   

2.
模糊度固定是全球导航卫星系统(global navigation satellite system,GNSS)高精度数据处理的关键。不同于传统的双差模糊度固定,非差模糊度固定无需构建双差模糊度,更为简单高效。将非差模糊度固定引入北斗三号全球卫星导航系统(BeiDou-3 global navigation satellite system,BDS-3)中地球轨道卫星实时滤波定轨,分析非差模糊度固定对实时滤波轨道收敛速度及精度的影响。利用国际GNSS服务组织全球测站网观测数据进行实时滤波精密定轨实验,以德国地学研究中心的事后快速轨道为参考评定精度。结果表明:非差模糊度固定对收敛速度影响很小,但可以有效提升轨道切向、法向精度;相比浮点解轨道,固定解轨道径向、切向、法向精度分别提高1.0%、18.5%、19.5%,误差均方根分别达到6.0、7.4、6.2 cm;受切向、法向影响,中国空间技术研究院类型卫星轨道精度优于上海微小卫星工程中心类型卫星轨道;顾及窄巷固定率与轨道精度的相关性,窄巷固定率可以作为实时轨道质量的重要指标之一。实时滤波轨道精度的进一步提升有赖于BDS-3数据处理模型的持续精...  相似文献   

3.
联合地面和星载数据精密确定GPS卫星轨道   总被引:1,自引:0,他引:1  
给出了联合定轨的数学模型,从6个试验的结果说明低轨卫星的星载GPS观测值对GPS卫星精密定轨的贡献。单天解的结果表明,相对于仅使用43个地面跟踪站的定轨结果,增加3颗低轨卫星的观测数据可以使GPS卫星的轨道准确度平均提高40%,即使仅用21个地面站和3颗低轨卫星也可以使GPS卫星的轨道与IGS最终轨道之差的RMS在5cm左右。  相似文献   

4.
附加Helmert变换参数的低轨卫星约化动力学精密定轨   总被引:1,自引:0,他引:1  
在运动学精密定轨以及动力学轨道积分的基础上,提出基于Helmert变换的约化动力学精密定轨模型.该模型对动力积分轨道以及运动学轨道建立Helmert变换,进而修正轨道积分中的卫星初始轨道以及各种动力学参数.应用该模型,文章采用的约化动力学精密定轨包含两个部分:运动学精密定轨以及基于Helmert变换的动力学轨道平滑.对CHAMP、GRACE两个星期的观测数据进行计算,结果显示:在引入Helmert变换平移参数的参数设置下,相对于运动学轨道,约化动力学轨道的精度平均提高了约30%;对于CHAMP卫星,约化动力学轨道与参考轨道差值在XYZ 3个方向RMS的平均值分别为(0.14,0.14,0.16) m,差值3D RMS的平均值为0.26 m;对于GRACE-A卫星,约化动力学轨道与参考轨道差值在XYZ 3个方向RMS的平均值分别为(0.17,0.15,0.13) m,差值3D RMS的平均值为0.26 m.文中还详细讨论和分析了模型中不同参数设置下轨道精度的情况.  相似文献   

5.
针对DORIS测站和卫星USO频率偏差引起的测量数据不准确的问题,提出了一种频偏估计方法,消除了测量数据中的最大误差项。在摄动加速度模型仅考虑40×40阶重力场、固体潮和日月三体引力的条件下,利用该方法处理了SPOT-5卫星10d的测量数据。结果表明,实时轨道的径向精度优于30cm,与SPOT-5卫星的实时轨道精度相当;3D精度优于80cm,达到了SPOT-5卫星的设计精度。  相似文献   

6.
随着GNSS应用的不断发展,实时位置服务已经成为国内外研究热点,而北斗卫星导航系统的实时服务尚处于发展阶段。本文基于卫星精密定轨基本原理,讨论了北斗导航卫星实时轨道确定策略;研究了基于北斗卫星质心和天线相位中心的SSR轨道改正值生成方法,并给出了一种适合北斗导航卫星的IODE值表达方式;基于国家基准站和全球MGEX站数据,进行了北斗导航卫星的实时轨道解算测试,结果表明,GEO卫星1D RMS精度优于400 cm,平均精度为223 cm,其径向精度优于20 cm;IGSO卫星精度优于30 cm,平均精度为22 cm,其径向精度优于10 cm;MEO卫星精度优于30 cm,平均精度为15 cm,其径向精度优于10 cm。  相似文献   

7.
星载GPS地球静止轨道卫星自主定轨的新算法   总被引:1,自引:0,他引:1  
针对地球静止轨道卫星的特点,提出了一种自主定轨的新算法——积分滤波算法,即利用Kalman滤波进行动力学模型数值积分与GPS定轨的有效融合。讨论了该算法的基本过程及其中Kalman滤波的数学模型和重要参数。最后给出了仿真实验过程和结果,证明了该算法的可行性。  相似文献   

8.
介绍RADIOASTRON卫星的最新资料数据,如卫星的轨道参数、科学目标等,根据这些资料,进行模拟仿真试验,分析跟踪站对卫星的跟踪覆盖情况.RADIOASTRON卫星利用跟踪站获得的多普勒测速数据进行精密定轨,根据多普勒定轨原理,初步分析卫星的定轨情况.  相似文献   

9.
GPS卫星实时精密定轨及初步结果分析   总被引:1,自引:1,他引:0  
提出了导航卫星实时精密定轨的滑动窗口短弧法方程综合方法.通过对全球70个IGS站的观测数据进行仿实时解算的结果表明,与IGS事后精密轨道相比,实时轨道精度达5 cm左右,达到IGS事后快速轨道精度的水平.  相似文献   

10.
针对地球静止轨道卫星的特点,提出了一种自主定轨的新算法--积分滤波算法,即利用Kalman滤波进行动力学模型数值积分与GPS定轨的有效融合.讨论了该算法的基本过程及其中Kalman滤波的数学模型和重要参数.最后给出了仿真实验过程和结果,证明了该算法的可行性.  相似文献   

11.
针对中国实时精密定位服务系统的建设,提出了一种具有全球先验信息的导航卫星轨道确定方法,其关键点在于先验轨道信息权函数的确定。首先在预报轨道误差特性分析的基础上,给出了采用一阶高斯-马尔科夫模型进行先验信息权函数的建立方法;然后对先验信息和区域观测数据赋予相应权,进行联合定轨。  相似文献   

12.
地球静止轨道(GEO)卫星频繁的轨道机动对高精度、实时不间断的导航服务需求提出新的更高要求,如何在短弧跟踪条件下提高GEO卫星轨道快速恢复能力,是提升导航系统服务精度的关键因素。针对该问题,提出基于9参数星历拟合的GEO卫星短弧运动学定轨方法,详细推导定轨的数学模型与偏导模型,针对GEO卫星星历参数拟合中的奇异问题,提出相应的解决方法和措施。利用COMPASS GEO卫星实测自发自收数据进行短弧定轨试验与分析,结果表明:①10 min短弧运动学定轨的位置精度优于19 m,速度精度为4 mm/s,速度精度明显优于MEO卫星;②预报5 min的位置精度为17.760 m,预报10 min的位置精度为18.168 m;③解决GEO卫星频繁轨控所带来的轨道快速恢复问题,满足短弧跟踪条件下RDSS的服务需求。  相似文献   

13.
陈刘成  韩春好  唐波 《测绘科学》2007,32(4):8-9,31
为了减弱由于广播星历拟合引起的误差,本文提出了一种基于动力学轨道改进的GLONASS卫星位置算法。该算法仅采用GLONASS广播星历信息就能够提高GLONASS卫星位置坐标的计算精度。算例表明,该方法能够有效减弱GLONASS卫星广播星历的拟合误差,卫星位置的精度损失从0.5m降到mm级;外推2-3h,精度损失也仅在cm级水平。  相似文献   

14.
为确保高精度星载GPS实时定轨算法能够应用于较低轨道卫星,提出了用地球引力近似函数法(GAAF)代替传统球谐函数递推法来计算地球引力加速度,在不降低实时定轨精度的同时,大幅减小高阶次重力场模型的轨道积分计算负荷,以满足计算能力有限的星载处理器的在轨处理要求。分析了影响GAAF计算精度的两个因素:伪中心位置拟合多项式的次数选取和经纬度格网大小的最优确定。用CHAMP卫星的实测GPS数据模拟实时定轨试验,结果表明,采用二次及以上伪中心拟合多项式,格网纬度小于0.75°、经度小于1.5°的GAAF时,实时定轨的轨道精度要优于70×70阶次重力场模型直接参与实时定轨,且大幅降低实时定轨的计算负荷。  相似文献   

15.
GNSS是实时定位导航最重要的方法,精密卫星轨道钟差产品是GNSS高精度服务的前提。国际GNSS服务中心(IGS)及其分析中心长期致力于GNSS数据处理的研究及高精度轨道和钟差产品的提供。GFZ作为分析中心之一,提供GBM多系统快速产品。本文基于2015—2021年GBM提供的精密轨道产品,阐述了数据处理策略,分析了轨道的精度,介绍了非差模糊度固定的原理和对精密定轨的影响。结果表明:GBM快速产品中的GPS轨道精度与IGS后处理精密轨道相比的精度约为11~13 mm,轨道6 h预报精度约为6 cm;GLONASS预报精度约为12 cm,Galileo在该时期的精度均值为10 cm,但是在2016年底以后精度提升到5 cm左右;北斗系统的中轨卫星(medium earth orbit,MEO)在2020年以后预报精度约为10 cm;北斗的静止轨道卫星(geostationary earth orbit,GEO)卫星和QZSS卫星的预报精度在米级;卫星激光测距检核表明,Galileo、GLONASS、BDS-3 MEO卫星轨道精度分别为23、41、47 mm;此外,采用150 d观测值的试验结果表明,采用非差模糊度固定能显著改善MEO卫星轨道精度,对GPS、GLONASS、Galileo、BDS-2和BDS-3的MEO卫星的6 h时预报精度改善率分别为9%~15%、15%~18%、11%~13%、6%~17%和14%~25%。  相似文献   

16.
连续、稳定、高精度的实时卫星轨道产品是北斗国际化、规模化、智能化应用的重要前提.当前,北斗卫星导航系统(BDS)的实时精密轨道产品多基于“批处理解算+轨道预报”的超快速模式获得,存在连续性较差、稳定性较低、精度不高等问题.为此,本文采用平方根信息滤波(SRIF)方法对北斗卫星精密轨道进行实时逐历元解算.实验结果表明:相比于超快速定轨模式,基于实时滤波方法的轨道产品能够有效避免边界跳变,具有更好的连续性和稳定性;同时,实时滤波定轨方法能够显著提高BDS的轨道精度,其中中轨道地球卫星(MEO)和倾斜地球同步轨道卫星(IGSO)的三维轨道误差分别减小了46%和68%,卫星激光测距(SLR)检核精度也普遍优于预报轨道.  相似文献   

17.
由于地基定轨系统的局限性,提出基于全球导航卫星系统(GNSS)的高轨卫星定轨方法,并设计实现了高轨卫星天基定轨仿真软件。结合高轨卫星天基定轨的特点和GNSS的建设现状,研究卫星可见性算法和星间观测模型,综合轨道积分和Kalman滤波方法的优点,提出确定高轨卫星轨道的积分滤波方法。仿真结果表明基于GNSS完成天基定轨增加了卫星的观测量,提高了定轨精度。最后在理论研究的基础上,自主开发了集STK、Matlab和Visual C++为一体的高轨卫星天基定轨仿真平台。为北斗系统应用于高轨卫星天基定轨提供了理论上的参考依据和模拟工具。  相似文献   

18.
提出了一种利用星间单差法消除接收机钟差的GEO卫星精密定轨方案。通过仿真,详细探讨了相关原理、参数设置、测站分布以及单差选星等关键问题。仿真研究表明,该方法消去了接收机钟差、大部分与测站相关的系统误差以及用模型未完全改正的对流层及电离层延迟残差,能够直接解算卫星轨道参数,减轻测站接收机时钟同步的负担;通过方案对比,确定了一种优化方案,选取合适的卫星对,在现有条件下采用合适的测站分布,利用星间单差方法解算22参数,可以获得高精度的GEO卫星轨道。  相似文献   

19.
中低轨卫星定轨精度分析   总被引:4,自引:0,他引:4  
针对轨道高度为1 000 km 左右的近圆轨道卫星进行动力学定轨分析。通过对大气模型、地球重力场模型、系统误差、测轨站站址误差等对定轨的影响进行分析, 分析了影响中等轨道的主要误差源。该卫星轨道确定精度为外推三圈优于200 m 。  相似文献   

20.
随着北斗卫星导航系统(BeiDou navigation satellite system,BDS)的建设与运行,低轨卫星开始搭载GPS/BDS双系统接收机以实现卫星轨道确定.利用风云三号C(FengYun-3C,FY3C)卫星星载GPS/BDS双频伪距与载波相位观测数据,设置4种仿真试验方案,分别进行星载GPS/BDS在轨实时定轨数据处理,重点进行BDS观测数据对伪距实时定轨和载波相位实时定轨的精度影响分析和算法耗时分析.结果表明,采用伪距观测值,可获得1.0m的位置精度和1.0 mm/s的速度精度;采用载波相位观测值,可获得0.3 m的位置精度和0.3 mm/s的速度精度,且引入BDS观测值后,伪距实时定轨精度降低,相位实时定轨精度有所改善.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号