首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 218 毫秒
1.
以青藏高原昆仑山垭口不同深度土壤样品为研究对象,研究了可培养细菌数量及多样性。结果表明:可培养细菌数量与多样性在一定程度上均与土壤深度呈负相关关系。可培养细菌数量以表层土壤最多,而细菌多样性最低。基于16S rDNA基因序列分析共发现了6个门,18个属,21种细菌,其中表层土壤Arthrobacter siccitolerans为绝对优势种,比例达95%;冻土区(0~82.15m)之间不同土样Mycetocola miduiensis菌株所占比例较大;而冻土层以下没有明显的优势菌。冗余分析(RDA)显示:可培养细菌数量主要受土壤有机碳影响,土壤含水量则是影响细菌多样性的主要因素。  相似文献   

2.
不同海拔表层土壤微生物数量消长的机理   总被引:3,自引:3,他引:0  
以乌鲁木齐河源区不同海拔表层土壤样品为研究材料,利用荧光显微计数技术、寡营养恢复培养技术等,研究了微生物的数量与土壤理化参数和植被类型的关联度.结果表明:表层土壤中可培养细菌数与表土含水量、总C、总N和pH值相关性不显著,与相应的植被类型明显相关,可培养细菌数从大到小所对应的植被为:苔草嵩草芨芨草针阔叶混交林云杉车前草山莓草;在相同植被类型下,可培养细菌数量表现出随海拔升高而降低的趋势.植被类型是影响土壤可培养细菌数量的主要因素,但海拔变化对可培养细菌数量的影响也不可忽略.  相似文献   

3.
青藏高原多年冻土微生物的培养和计数   总被引:20,自引:9,他引:11  
以青藏高原腹地北麓河流域的两个6m钻孔为对象,对多年冻土中保存的微生物进行初步培养和总数测定,并分析了微生物与土壤环境之间的关系.结果表明,两个钻孔中可以培养的微生物数目在3.6×106~5.0×102之间;随着深度增加,冻土年代递增,可以培养的数目显著减少.表层冻土属于季节冻土,可培养的微生物种群较多.总的土壤微生物数目(包括可以培养和不能培养的微生物)随深度递减,两个孔在3.8×109~1.0×107之间.相关性分析表明,土壤中可以培养的微生物以及总的微生物与土壤的pH值、电导率、总有机质和全氮没有显著的相关关系,而与土壤深度关系密切.两个钻孔间的地表植被虽然差异明显,但从可培养的微生物数量和土壤微生物总数比较看来,两孔间没有明显的不同.  相似文献   

4.
青藏公路沿线土壤微生物数量变化及其影响因素研究   总被引:4,自引:3,他引:1  
以青藏公路沿线土壤为研究对象, 研究了土壤可培养微生物数量的变化特征及影响因子. 结果表明: 青藏公路沿线土壤可培养微生物数量为0.77×106~2.44×107CFU·g-1dw; 沿青藏公路从南(申格里贡山)到北(西大滩), 土壤可培养细菌与真菌数量表现为先迅速减少, 然后渐趋平缓; 可培养放线菌数量先减少后增加; 土壤总氮、 有机碳和含水量逐渐降低, 而pH值逐渐升高. C/N比率与真菌/细菌比率变化趋势相似, 均为先增加后减少. 土壤可培养微生物数量与理化因子的相关性分析结果表明: 青藏公路沿线土壤微生物数量主要受纬度和土壤理化性质的影响, 表现为微生物数量与纬度和pH值显著负相关, 而与总氮、 有机碳和含水量极显著正相关.  相似文献   

5.
在气候变暖及人类活动的双重干扰下,疏勒河上游冻土发生了显著退化,如活动层厚度加大、植被退化等,而冻土退化对微生物的影响一直是科研人员关注的热点话题。以疏勒河上游不同季节(4月、6月、9月)、不同退化程度冻土为研究对象,研究了可培养细菌多样性特征。通过16S rDNA基因测序及构建系统发育树表明,研究区域可培养细菌归类为27个属,分属于α-变形菌门,γ-变形菌门,放线菌门,厚壁菌门和拟杆菌门,其中放线菌门为优势类群。从属水平来讲,可培养细菌以节杆菌属和微球菌属为主,其含量随冻土退化程度加深分别呈下降和升高趋势。土壤细菌多样性与环境因子的相关性分析表明,可培养细菌多样性与土壤含水量、总氮极显著正相关,与有机碳显著正相关。这些结果表明,伴随着冻土退化而发生的地上植被逆向演替过程中,青藏高原不同类型冻土间已产生较大的环境异质性如土壤碳氮及含水量,进一步可能导致冻土微生物多样性分异。研究结果为利用微生物综合评价青藏高原不同类型冻土的生态环境提供了数据基础。  相似文献   

6.
以疏勒河上游不同海拔芨芨草根际土壤样品为研究对象,研究了不同海拔土样中细菌分布特征及其影响因素. 结果表明:研究区域芨芨草根际土壤可培养细菌种群密度变化范围为1.7×107~10.8×107 CFU·g-1,平均值为6.4×107 CFU·g-1,随海拔的升高呈先下降后上升的趋势;可培养细菌数量与土壤全氮、脲酶、蔗糖酶含量呈极显著正相关关系,与有机碳、磷酸酶含量呈显著正相关关系;同时,pH值也是影响细菌数量与多样性的一个重要因素. 通过16S rDNA基因测序及构建系统发育树,研究区域可培养细菌归类为15个属,其中芽孢杆菌属和假单胞菌属为优势菌属.  相似文献   

7.
以青藏高原腹地不同植被类型多年冻土区土壤细菌为研究对象, 分析了可培养菌群数量、 多样性和生理代谢功能的变化及其与环境因子间的关系. 结果显示: 从沼泽草甸到高寒荒漠, 土壤水分、 总碳、 总氮含量逐渐降低, pH值升高, 可培养细菌数量在2.97×106~2.88×107 CFU·g-1, 与含水量、 总碳、 总氮显著正相关; Actinobacteria(51.4%)和γ-Proteobacteria(31.7%)为优势菌群, α-protebacteria仅在沼泽草甸中有分布, β-protebacteria、 Bacterioidetes丰度与含水量、 总碳、 总氮间显著正相关; 自沼泽到荒漠, 菌群代谢活性和Shannon功能多样性指数降低, pH与Shannon指数显著负相关, 继氨基酸类碳源之后, 多聚物逐渐成为被细菌群落主要利用的碳源种类. 研究表明, 伴随冻土退化地上植被逆向演替的过程, 青藏高原多年冻土地下土壤微生物群落丰度、 遗传和代谢功能多样性均发生了不同程度的响应.  相似文献   

8.
高寒草甸是青藏高原面积最大的草地类型, 对全球生态环境的影响十分巨大。然而在外界干扰下, 使得本身就很脆弱的高寒草甸发生了不同程度的退化。为探究翻耕补播对土壤微生物的影响, 以疏勒河上游不同季节(4月、 6月、 9月)原生高寒草甸、 退化草甸和翻耕补播草甸土壤为对象, 研究了土壤可培养细菌数量的季节变化及其影响因素。结果表明: 研究区域可培养细菌数量介于4.3×106 ~ 4.5×107 CFU·g-1之间, 不同季节退化草甸与翻耕补播草甸土壤细菌数量均显著低于原生高寒草甸, 且不同类型高寒草甸生态系统下可培养细菌具有明显的季节差异: 原生高寒草甸生态系统下土壤细菌在6月生物量最高, 4月最低; 而退化草甸与翻耕补播草甸土壤细菌生物量并没有表现出明显的季节波动; 相关分析表明, 可培养细菌数量与土壤全氮、 植被盖度及土壤含水量存在极显著正相关关系。研究发现, 翻耕补播措施并没有恢复该区域微生物数量, 研究结果对于认识高寒草甸生态系统的退化成因, 判断恢复措施的有效性和合理性具有重要意义。  相似文献   

9.
文茜  赵亮  石玉兰  杨思忠 《冰川冻土》2014,36(5):1306-1312
生物降解与土著微生物群落结构、功能及其变化密切相关. 目前, 对于东北冻土土壤中的适冷降解菌了解不足. 新建成的中俄输油管道穿越中国东北的多年冻土区, 为相关研究提供了契机. 实验利用454高通量测序分析了加格达奇冻土活动层土壤在受控原油污染前后的微生物群落结构. 结果显示: 污染后的Proteobacteria和Firmicutes相对丰度显著升高, 优势类群包括Alicyclobacillus、Sphingomonas、Nevskia以及Bacillus. 群落以芳烃降解菌或者耐受油污环境的细菌为主. 这种变化与原油(尤其是芳烃)组分的生态毒害作用有关. 较高浓度的原油污染下, 群落中可耐受油污环境的细菌丰度相对更高.  相似文献   

10.
1961-2002年新疆季节冻土多年变化及突变分析   总被引:13,自引:2,他引:11  
对新疆41 a(1961/1962-2001/2002年)冬季平均冻土深度、最大冻土深度、土壤10 cm深度封冻时段资料分析表明,随着全疆气候的变暖,各地的平均冻土深度、最大冻土深度趋向变浅,土壤封冻时间缩短.尤其是1986年以后,暖湿化特征十分明显,冻土深度和封冻时间变化更为显著.最大冻土深度南、北疆分别在1982/1983年和1986/1987年冬季发生了明显的突变.  相似文献   

11.
利用PYGV、 R2A、 NB和Czapek 4种培养基, 研究了不同海拔下黑河上游祁连山区土壤细菌群落结构的变化规律.结果表明: 可培养细菌数量为4.6×106~37.0×106CFU·g-1, 随海拔升高明显减少; 基于16S rRNA基因序列分析共发现了7个门、 19个属、 26种细菌, 其中Agreia pratensis, Mucilaginibacter ximonensis, 嗜冷冷杆菌(Cryobacterium psychrophilum)和氧化节杆菌(Arthrobacter oxydans)四种细菌是优势种; 嗜冷冷杆菌的相对丰度在高海拔地区明显增加, Agreia pratensis的相对丰度随海拔升高而降低; 细菌的多样性随海拔升高呈现出先升高后降低的趋势. 冗余分析(RDA)显示, 可培养细菌数量与海拔呈显著负相关, 细菌的多样性与植被指数和土壤理化性质均存在明显的相关关系, 说明可培养细菌数量主要受海拔的影响, 而植被和土壤理化性质是影响细菌群落多样性的主要因素.  相似文献   

12.
环境因素主导着冰川前沿裸露地好氧异养细菌群落的分布   总被引:4,自引:4,他引:0  
冰川前沿裸露地有着暴露年代序列特性, 是研究微生物群落结构时空变化的理想地区.通过对1号冰川东支前沿裸露地的微生物学研究发现, 从冰土交界处到1675年的冰碛垄, 25 ℃下培养得到细菌数量从5.5×104 CFUs·g-1增加到3.3×106 CFUs·g-1, 而微生物总数的变化在暴露年代序列上都没有显著的相关关系; 细菌群落结构的主要改变发生在两个阶段, 暴露初期和植被盖度明显增加的时候.联系到这两个阶段正好是环境温度与土壤营养水平改变的时期, 此结果表明, 环境变化是冰川前沿裸露地微生物群落时空变化的主要驱动力.  相似文献   

13.
大兴安岭多年冻土区不同林型土壤微生物群落特征   总被引:1,自引:1,他引:0  
高纬度多年冻土区是全球变化的敏感区域,揭示不同林型土壤微生物群落的演变规律,对于理解气候变化对寒区生态系统的影响机制具有重要意义。以大兴安岭多年冻土区3种典型林型(落叶松林、樟子松林和白桦林)为研究对象,运用磷脂脂肪酸法(PLFA)系统研究土壤微生物群落结构间差异及与土壤因子的关系。结果表明:不同林型土壤中共检测到38种PLFA生物标记,含量较高的PLFA为16∶0、18∶0、19∶0和18∶2ω6c;各类群微生物中,细菌PLFA含量最高,占总磷脂脂肪酸的83.78%~90.55%,其次为真菌,放线菌最低;白桦林土壤总磷脂脂肪酸、革兰氏阴性菌、革兰氏阳性菌、真菌和放线菌的含量最高分别为22.03、5.13、4.90、1.88和0.77 nmol·g-1,而樟子松林最低分别为14.25、2.75、2.75、1.34和0.51 nmol·g-1。Shannon-Wiener多样性指数主要表现为白桦林 > 落叶松林 > 樟子松林。冗余分析结果为:土壤含水量、全氮、总有机碳与总磷脂脂肪酸、细菌、革兰氏阳性菌和革兰氏阴性菌呈显著正相关(P<0.05);铵态氮、硝态氮、全磷与真菌和放线菌呈显著正相关(P<0.05)。大兴安岭多年冻土区不同林型间土壤微生物群落特征存在显著差异,土壤含水量、全氮和总有机碳是影响多年冻土微生物群落结构的主要因素。  相似文献   

14.
多年冻土区线性工程的生态环境影响研究现状与展望   总被引:3,自引:1,他引:2  
在多年冻土区,线性工程(公路、铁路、输油管线、输电线路等)的修建和运营对沿途周边的冻土热状态、土壤理化性质、水文过程以及陆面过程产生显著影响,生态环境发生明显改变并对冻土的工程稳定性产生显著影响。冻土工程作用下的生态环境变化是冻土学近年来研究的热点之一,通过文献综述,对冻土区线性工程的主要特征,以及近几十年来工程影响下冻土环境和植被变化研究进展与现状进行了总结和归纳,在此基础上,探讨了多年冻土区工程建设存在的主要生态问题。目前,生态环境各要素对工程的反馈研究十分丰富,但是生态环境要素与工程相互作用的机理、过程的研究还需完善。在以后的研究中应重点拓展有效的监测手段,为冻土区生态环境监测和研究服务;同时,在深入理解寒区工程建设对生态环境作用机理、过程基础上,积极开展冻土区工程环境容量阈值评估以及生态环境变化预测研究,为寒区大规模工程建设与生态环境和谐发展提供理论支持与对策建议。  相似文献   

15.
对甘南玛曲沼泽湿地6个样地的微生物量与土壤酶活性及其土壤理化性质之间的关系进行了研究.结果表明:纤维素酶活性在冬季达到高峰,其余5种土壤酶活性分别在春季和秋季达到高峰;硝化细菌数量与过氧化氢酶、纤维素酶、脲酶、碱性磷酸酶有较显著的负相关关系;微生物量与酶活性之间存在极显著相关关系,其中微生物量因子中的放线菌、氨化细菌、硝化细菌和土壤酶活性因子中的酸性磷酸酶、碱性磷酸酶、中性磷酸酶是引起相关性的主要因素;酸性磷酸酶活性与土壤含水率、pH值、硝态氮含量、氨态氮含量都有密切的关系,过氧化氢酶活性可以通过有机质的含量来反映,脲酶活性可以通过土壤的含水率来反映,碱性磷酸酶活性可以通过电导率来反映.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号