首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chemically unusual ground water can provide an environment for novel communities of bacteria to develop. Here, we describe a diverse microbial community that inhabits extremely alkaline (pH > 12) ground water from the Lake Calumet area of Chicago, Illinois, where historic dumping of steel slag has filled in a wetland. Using microbial 16S ribosomal ribonucleic acid gene sequencing and microcosm experiments, we confirmed the presence and growth of a variety of alkaliphilic beta-Proteobacteria, Bacillus, and Clostridium species at pH up to 13.2. Many of the bacterial sequences most closely matched those of other alkaliphiles found in more moderately alkaline water around the world. Oxidation of dihydrogen produced by reaction of water with steel slag is likely a primary energy source to the community. The widespread occurrence of iron-oxidizing bacteria suggests that reduced iron serves as an additional energy source. These results extend upward the known range of pH tolerance for a microbial community by as much as 2 pH units. The community may provide a source of novel microbes and enzymes that can be exploited under alkaline conditions.  相似文献   

2.
The hydrogeology of the chemical waste disposal site in the closed basin at Alkali Lake, Oregon has been examined. Interest in the site is due to the burial (November 1976) of 25,000 drums of herbicide manufacturing residues in unlined trenches on the playa of the basin. Included in the wastes were large amounts of chlorophenols and polymeric chlorophenoxyphenols. The flow of the alkaline (pH ∼10) ground water in the site area is driven by: (1) springs which create a mound east of the site; and (2) the sump effect of “West Alkali Lake,” a topographic low to the west of the site. Porosity, bulk mass densities, and grain-size distributions were determined. At one piezometer, the depth to ground water ranged between 0.9 m and 2.2 m. With the bottoms of the trenches in which the chemicals were buried between 0.60 and 0.75 m below the level of the ground surface, the bottom portions of the trenches may, at least occasionally, be in direct contact with the ground water.  相似文献   

3.
Batch leaching methods have been used for several decades to estimate the potential release of contaminants from soils. Four batch leaching procedures (toxicity characteristic leaching procedure, synthetic precitation leaching procedure, deionized water leaching procedure, and California waste extraction test) were evaluated for their ability to realistically quantify the mobility of metals from previously contaminated glaciated soils. The study was conducted using soils from four different sites (three in Connecticut and one in Maine). The results of the batch leaching procedures were compared with a set of continuous column leaching experiments performed at two different flowrates and two influent pH values. The results suggested that the synthetic precipitation leaching procedure (SPLP) was more realistic than the toxicity characteristic leaching procedure (TCLP), but still a conservative leaching estimate for evaluating the potential for metal mobility in glaciated soils. This study suggests that using SPLP as a test for estimating metal cleanup levels will result in lower remediation costs relative to TCLP or waste extraction test (WET), but still maintain a high level of confidence in the protection of ground water quality.  相似文献   

4.
B. G. Katz 《水文研究》1989,3(2):185-202
During 1983 and 1984, wet precipitation was primarily a solution of dilute sulphuric acid, whereas calcium and bicarbonate were the major ions in springs and ground water in two small watersheds with a deciduous forest cover in central Maryland. Dominant ions in soil water were calcium, magnesium, and sulphate. The relative importance of mineral weathering reactions on the chemical composition of these subsurface waters was compared to the contribution from wet precipitation, biological processes, and road deicing salts. Mineral reaction models, developed from geochemical mass-balance relationships, involved reactions of primary and secondary minerals in metabasalt and metarhyolite with hydrogen ion. Geochemical weathering reactions account for the majority of total ion equivalents in soil water (46 per cent), springs (51 per cent), and ground water (68 to 77 per cent). The net contribution of total ion equivalents from biological processes was 20 and 16 per cent for soil water and springs, respectively, but less than 10 per cent for ground water. The contribution of total ion equivalents from deicing salts (10 to 20 per cent) was related to proximity to roads. Strong acids in precipitation contributed 44 per cent of the total amount of hydrogen ions involved in mineral-weathering reactions for ground water in contact with metarhyolite compared to 25 per cent for ground water in contact with metabasalt, a less resistant rock type to weathering.  相似文献   

5.
The eruptions of the Soufrière Hills volcano on Montserrat (Lesser Antilles) from 1995 to present have draped parts of the island in fresh volcaniclastic deposits. Volcanic islands such as Montserrat are an important component of global weathering fluxes, due to high relief and runoff and high chemical and physical weathering rates of fresh volcaniclastic material. We examine the impact of the recent volcanism on the geochemistry of pre-existing hydrological systems and demonstrate that the initial chemical weathering yield of fresh volcanic material is higher than that from older deposits within the Lesser Antilles arc. The silicate weathering may have consumed 1.3% of the early CO2 emissions from the Soufrière Hills volcano. In contrast, extinct volcanic edifices such as the Centre Hills in central Montserrat are a net sink for atmospheric CO2 due to continued elevated weathering rates relative to continental silicate rock weathering. The role of an arc volcano as a source or sink for atmospheric CO2 is therefore critically dependent on the stage it occupies in its life cycle, changing from a net source to a net sink as the eruptive activity wanes. While the onset of the eruption has had a profound effect on the groundwater around the Soufrière Hills center, the geochemistry of springs in the Centre Hills 5 km to the north appear unaffected by the recent volcanism. This has implications for the potential risk, or lack thereof, of contamination of potable water supplies for the island’s inhabitants.  相似文献   

6.
Slag material was dumped in two sites off southwestern Taiwan by the China Steel Corporation during 1984–1995. By geochemically analyzing four sediment cores, we investigated the impact of slag on the sediment chemistry. Elemental profiles from the dumping sites show a strong depletion in detrital elements and enrichment in alkaline and redox-sensitive elements, especially for the top ~20 cm of sediments. The relative enrichment factor (EFrel) exhibits wider range for Ca (0.73–13.33), Fe (0.88–3.03), Mg (0.94–9.58) and Mn (1.22–33.30) due to contamination of sediments by slag. Sediment weathering indicators also show a distinct change with lower values in sediments influenced by dumping due to Ca and Sr addition. Higher EFrel for As, Cd and Pb in the top sections of the cores indicate an additional modern/industrial input of these elements since ~1950. Our study suggests that slag dumping may have a localized effect on biogeochemical processes by inducing the diagenetic remobilization of certain elements.  相似文献   

7.
Sub-Saharan Africa faces significant challenges in dealing with ground water pollution. These countries can look to successes and missteps on other continents to help choose their own individual paths to ensuring reliable and clean supplies of ground water. In the large view, sub-Saharan Africa can define specific levels of acceptable risk in water quality that drive cleanup efforts and are amenable to acceptance across national and geographic boundaries. Ground water quality databases must be expanded, and data must be available in an electronic form that is flexible, expandable, and uniform, and that can be used over wide geographic areas. Guidance from other continents is available on well construction, sampling and monitoring, interim remediation, technical impracticability, monitored natural attenuation, and many specific issues such as how to deal with small waste generators and septic contamination of water supply wells. It is important to establish a common African view on the appropriateness of other nations’ ground water quality guidance for African issues, economic conditions, and community circumstances. Establishing numerical, concentration-based, water quality action levels for pollutants in ground water, which many neighboring African nations could hold comparable, would set the stage for risk-based remediation of contaminated sites. Efforts to gain public, grass-roots understanding and support for stable and balanced enforcement of standards are also key. Finally, effective capacity building in the region could be an eventual solution to ground water quality problems; with increased numbers of trained environmental professionals, ground water throughout the region can be protected and contaminated sites cleaned up.  相似文献   

8.
The aim of this study was to assess trace metal contamination of drinking water in the Pearl Valley, Azad Jammu and Kashmir (Pakistan). The objectives were to determine physical properties and the dissolved concentration of five trace metals, i. e., lead, copper, nickel, zinc, and manganese, in drinking water samples collected from various sites of municipal water supply, natural water springs and wells in the valley. Concentrations of the metals in the water samples were determined by flame atomic absorption spectrometry. Results showed physical parameters, i. e., appearance, taste and odor within acceptable limits and pH was between 5.5 and 7.0. The observed concentrations of the metals varied between sources of water samples and between sampling sites. Maximum dissolved concentration observed was 4.7 mg/L for Pb and Mn, 4.6 mg/L for Zn, 2.9 mg/L for Ni and 2.8 mg/L for Cu. The observed concentrations of the metals were compared with the World Health Organization's guideline values for drinking water. Overall, the quality of water samples taken from the water springs at Mutyal Mara and Bonjosa was good; however, the water quality was unsuitable for drinking in Kiraki, Kharick, and Pothi Bala localities particularly. Finally, the authors discuss possible causes for increased concentrations of the trace metals in drinking water in the study area.  相似文献   

9.
Jun Xiao  Fei Zhang  Zhangdong Jin 《水文研究》2016,30(25):4855-4869
Hydrochemistry methods were used to decipher the weathering and geochemical processes controlling solute acquisition of river waters in the dry season in the middle Loess Plateau (MLP), one of the most severely eroded areas and turbid riverine systems in the world. River waters were neutral to slightly alkaline with pH varying from 7.6 to 9.6. The total dissolved solids decreased from northwest to southeast with a mean value of 804 mg/l, much higher than the global average and other large rivers in China. Ternary diagram showed that river waters were dominated by Na+, HCO3?, and Cl? with the main water‐type of HCO3?–Cl?–Na+. Saturation index values, Mg2+, Ca2+, and HCO3? analyses indicated the preferential Ca2+ removal by calcite precipitation. Gibbs plots and stoichiometry plots indicated that the dissolved solutes were mainly derived from rock weathering with minor anthropogenic and atmospheric inputs. Samples in the northwestern basin are also influenced by evaporation. A forward model of mass budget calculation showed that, owing to high soluble characteristics, evaporite dissolution was a major feature of river waters and contributed 41% to the total dissolved cations on average, while carbonate and silicate weathering contributed 28%,and 25% on average, respectively. Besides evaporite dissolution, cation exchange is also responsible for the high concentrations of Na+ in river water. Spatial variations showed that evaporite dissolution and silicate weathering were higher in the northern basin, whereas carbonate weathering was higher in the southern basin. Different from most rivers in the world, the physical erosion rates (varying from 117.7 to 4116.6 t/km2y) are much higher than the chemical weathering rates (varying from 3.54 to 6.76 t/km2y) in the MLP because of the loose structure of loess and poor vegetation in the basin. In the future, studies on comparison of water geochemistry in different seasons and on influence of different types of land use and soil salinization on water geochemistry, denudation rates, and water quality should be strengthened in the MLP. These results shed some lights on processes responsible for modern loess weathering and also indicate the importance of time‐series sampling strategy for river water chemistry. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
Although there has been recent focus on understanding spatial variability in hyporheic zone geochemistry across different morphological units under baseflow conditions, less attention has been paid to temporal responses of hyporheic zone geochemistry to non‐steady‐state conditions. We documented spatial and temporal variability of hyporheic zone geochemistry in response to a large‐scale storm event, Tropical Storm Irene (August 2011), across a pool–riffle–pool sequence along Chittenango Creek in Chittenango, NY, USA. We sampled stream water as well as pore water at 15 cm depth in the streambed at 14 locations across a 30 m reach. Sampling occurred seven times at daily intervals: once during baseflow conditions, once during the rising limb of the storm hydrograph, and five times during the receding limb. Principal component analysis was used to interpret temporal and spatial changes and dominant drivers in stream and pore water geochemistry (n = 111). Results show the majority of spatial variance in hyporheic geochemistry (62%) is driven by differential mixing of stream and ground water in the hyporheic zone. The second largest driver (17%) of hyporheic geochemistry was temporal dilution and enrichment of infiltrating stream water during the storm. Hyporheic sites minimally influenced by discharging groundwater (‘connected’ sites) showed temporal changes in water chemistry in response to the storm event. Connected sites within and upstream of the riffle reflected stream geochemistry throughout the storm, whereas downstream sites showed temporally lagged responses in some conservative and biogeochemically reactive solutes. This suggests temporal changes in hyporheic geochemistry at these locations reflect a combination of changes in infiltrating stream chemistry and hyporheic flowpath length and residence time. The portion of the study area strongly influenced by groundwater discharge increased in size throughout the storm, producing elevated Ca2+ and concentrations in the streambed, suggesting zones of localized groundwater inputs expand in response to storms. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
湖泊沉积物的重金属污染防治一直是环境领域的热点问题.本研究采用氨基生物炭作为覆盖材料,利用梯度扩散薄膜技术(DGT),研究了上覆水不同pH及水流扰动条件下Cu(Ⅱ)、Pb(Ⅱ)在沉积物水界面间的原位释放特征,以及氨基生物炭对湖泊沉积物重金属污染的原位修复效果.研究结果表明,在0 r/min或100 r/min水动力条件下,可移动态重金属离子有不断由沉积物向其他介质扩散的趋势,1.81 kg/m 2的氨基生物炭覆盖强度可降低Cu(Ⅱ)、Pb(Ⅱ)释放通量达89%以上,有效减小了水环境中重金属的潜在生态风险.在pH=5的酸性及pH=9的碱性水环境中原位修复效果较差,水体中大量的H+或络合物均会削弱氨基生物炭对重金属离子的吸附,当上覆水在pH=7的中性条件时原位修复效果最佳.100 r/min水流扰动下的上覆水Cu(Ⅱ)、Pb(Ⅱ)含量在释放平衡时较0 r/min条件下高出0.036~0.096μg/mL,说明高强度的水流扰动易造成覆盖材料的扬起和浮动,导致覆盖材料与重金属发生解吸.  相似文献   

12.
李传琼  王鹏  陈波  李燕 《湖泊科学》2018,30(1):139-149
于2015年1月和7月在赣江干流和主要支流37个采样点共采集74个水样,分析赣江水系15种溶解态金属元素(Be、Al、V、Mn、Fe、Co、Ni、Cu、As、Mo、Cd、Sb、Tl、Pb、U)的空间分布特征和污染来源的贡献率.结果表明:多数水样的溶解态金属元素浓度符合水质标准,主要的超标元素是Fe,样品超标率为21.60%,其次为As(8.10%)、Mn(4.05%)、Tl(4.05%)和Al(1.35%).Be、Al、V、Fe、Co、Ni、Cu、U浓度在枯水期显著高于丰水期,其他元素差异不显著.依据溶解态金属元素的空间分布特征,赣江流域可分为3个区域:湘水、章水和赣江赣州市段(C1),桃江、袁水和锦江(C2),其他区域(C3);溶解态金属元素水平大小排序为C1C2C3,其中Be、Al、Cu、Mo、Sb、As浓度在C1最高,V、Mn、Fe、Ni、Cd浓度在C2最高.采矿废水、矿渣和农田土壤降雨淋滤、钢铁冶炼废水是赣江溶解金属元素的主要来源;Be、Al、Cu、Pb、U的污染源超过40%来自采矿废水,Cu、As、Mo、Cd的污染源超过35%来自矿渣和农田土壤降雨淋滤,V、Mn、Co、Ni的污染源超过41%来自钢铁冶炼废水.  相似文献   

13.
Contaminated sediments deposited within urban water bodies commonly exert a significant negative effect on overlying water quality. However, our understanding of the processes operating within such anthropogenic sediments is currently poor. This paper describes the nature of the sediment and early diagenetic reactions in a highly polluted major urban water body (the Salford Quays of the Manchester Ship Canal) that has undergone remediation focused on the water column. The style of sedimentation within Salford Quays has been significantly changed as a result of remediation of the water column. Pre‐remediation sediments are composed of a range of natural detrital grains, predominantly quartz and clay, and anthropogenic detrital material dominated by industrial furnace‐derived metal‐rich slag grains. Post‐remediation sediments are composed of predominantly autochthonous material, including siliceous algal remains and clays. At the top of the pre‐remediation sediments and immediately beneath the post‐remediation sediments is a layer significantly enriched in furnace‐derived slag grains, input into the basin as a result of site clearance prior to water‐column remediation. These grains contain a high level of metals, resulting in a significantly enhanced metal concentration in the sediments at this depth. Porewater analysis reveals the importance of both bacterial organic matter oxidation reactions and the dissolution of industrial grains upon the mobility of nutrient and chemical species within Salford Quays. Minor release of iron and manganese at shallow depths is likely to be taking place as a result of bacterial Fe(III) and Mn(IV) reduction. Petrographic analysis reveals that the abundant authigenic mineral within the sediment is manganese‐rich vivianite, and thus Fe(II) and Mn(II) released by bacterial reactions may be being taken up through the precipitation of this mineral. Significant porewater peaks in iron, manganese and silicon deeper in the sediment column are most probably the result of dissolution of furnace‐derived grains in the sediments. These species have subsequently diffused into porewater above and below the metal‐enriched layer. This study illustrates that the remediation of water quality in anthropogenic water bodies can significantly impact upon the physical and chemical nature of sedimentation. Additionally, it also highlights how diagenetic processes in sediments derived from anthropogenic grains can be markedly different from those in sediments derived from natural detrital material. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

14.
云南腾冲青海——酸性湖泊的环境特征   总被引:3,自引:0,他引:3  
火山口湖成因和持续酸性地下水补给是腾冲青海呈现酸性湖泊环境的地质基础,通过对青海环境的实际调查和水、土、生物样品的分析、鉴定,结果表明:湖水具较低pH值、极低的阳离子组成和矿化度;沉积物中Ca、Mg、Al、Fe等元素有明显流失;湖泊生物种群少且生物量低,缺失蓝藻和腹足类、瓣鳃类、甲壳类动物等为区别于一般中、碱性湖泊最显著的特点,酸性水介质湖泊系统元素地球化学行为的变化及其对生物的影响--生物贫化和耐酸种扩张,既是腾冲青海的基本特点,也是酸性湖泊环境形成的动力机制。  相似文献   

15.
2020年6月26日新疆于田县发生MS6.4地震, 地震发生前后对震中80 km内的两个温泉在2019年9月至2020年10月的水文地球化学的变化特征进行了研究, 结果表明: ①温泉水的来源为其周围昆仑山的冰川融水, ②克孜勒沙衣温泉补给高程6 km, 水化学类型为Na-HCO3、 部分平衡水、 温泉循环深度达到1.7 km左右, 其主要气体组分为N2, 幔源氦占10.6%。 ③乌什开布隆温泉补给高程为3.1 km, Ca·Na-HCO3·SO4型, 未成熟水, 可能与浅层冷水发生了混合作用, 循环深度仅达到0.5 km, 该温泉的水化学组分对周围的地震活动有明显的异常响应, 伽师MS6.4地震前, 区域应力的不断加载使断裂带内裂隙发生明显变化, 从而温泉流体行为发生变化, 使乌什开布隆温泉的离子浓度小幅度上升, 且Cl-含量在于田MS6.4地震后16天突增。 因此, 对乌什开布隆温泉及克孜勒沙衣温泉的流体地球化学特征进行连续监测, 可以为未来阿尔金断裂及西昆仑断裂的交会区地震危险性提供有效判断指标。  相似文献   

16.
Gas Works Park, in Seattle, Washington, is located on the site of a coal and oil gasification plant that ceased operation in 1956. During operation, many types of wastes, including coal, tar, and oil, accumulated on-site. The park soil is currently (1986) contaminated with compounds such as polynuclear aromatic hydrocarbons, volatile organic compounds, trace metals, and cyanide. Analyses of water samples from a network of observation wells in the park indicate that these compounds are also present in the ground water.
Polynuclear aromatic hydrocarbons and volatile organic compounds were identified in ground water samples in concentrations as large as 200 mg/L. Concentrations of organic compounds were largest where ground water was in contact with a non-aqueous phase liquid in the soil. Where no non-aqueous phase liquid was present, concentrations were much smaller, even if the ground water was in contact with contaminated soils. This condition is attributed to weathering processes in which soluble, low-molecular-weight organic compounds are preferentially dissolved from the non-aqueous phase liquid into the ground water. Where no non-aqueous phase liquid is present, only stained soils containing relatively insoluble, high-molecular-weight compounds remain. Concentrations of organic contaminants in the soils may still remain large.  相似文献   

17.
Geochemical data indicate that the Springfield Plateau aquifer, a carbonate aquifer of the Ozark Plateaus Province in central USA, has two distinct hydrochemical zones. Within each hydrochemical zone, water from springs is geochemically and isotopically different than water from wells. Geochemical data indicate that spring water generally interacts less with the surrounding rock and has a shorter residence time, probably as a result of flowing along discrete fractures and solution openings, than water from wells. Water type throughout most of the aquifer was calcium bicarbonate, indicating that carbonate‐rock dissolution is the primary geochemical process occurring in the aquifer. Concentrations of calcium, bicarbonate, dissolved oxygen and tritium indicate that most ground water in the aquifer recharged rapidly and is relatively young (less than 40 years). In general, field‐measured properties, concentrations of many chemical constituents, and calcite saturation indices were greater in samples from the northern part of the aquifer (hydrochemical zone A) than in samples from the southern part of the aquifer (hydrochemical zone B). Factors affecting differences in the geochemical composition of ground water between the two zones are difficult to identify, but could be related to differences in chert content and possibly primary porosity, solubility of the limestone, and amount and type of cementation between zone A than in zone B. In addition, specific conductance, pH, alkalinity, concentrations of many chemical constituents and calcite saturation indices were greater in samples from wells than in samples from springs in each hydrochemical zone. In contrast, concentrations of dissolved oxygen, nitrite plus nitrate, and chloride generally were greater in samples from springs than in samples from wells. Water from springs generally flows rapidly through large conduits with minimum water–rock interactions. Water from wells flow through small fractures, which restrict flow and increase water–rock interactions. As a result, springs tend to be more susceptible to surface contamination than wells. The results of this study have important implications for the geochemical and hydrogeological processes of similar carbonate aquifers in other geographical locations. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

18.
Design Screening Tools for Passive Funnel and Gate Systems   总被引:1,自引:0,他引:1  
The funnel and gate remediation concept (Star and Cherry 1993) represents a promising, yet relatively under-developed, technology for the passive control and in situ remediation of contaminated ground water. Effective design and implementation of such a system may, however, prove difficult under conditions of large or unpredictable variations in contaminant migration or ground water flow.
Numerical modeling of two-dimensional ground water flow has been used to predict the hydraulic performance of passive, straight, or winged funnel and gate configurations over a range of hydrogeologic and ambient ground water flow conditions. The results of these analyses were used to construct generic correlation diagrams relating upstream capture zone or gale through put to the barrier, gale, and aquifer characteristics. These diagrams serve as useful screening tools to (1) quantitatively estimate the capture zone of pre-determined funnel and gale configurations, or (2) develop preliminary funnel and gale designs that will yield a desired capture zone, independent of aquifer characteristics.  相似文献   

19.
Site closure for soil vacuum extraction (SVE) application typically requires attainment or specified soil concentration standards based on the premise that mass flux from the vadose zone to ground water not result in levels exceeding maximum contaminant levels (MCLs). Unfortunately, realization of MCLs in ground water may not be attainable at many sites. This results in soil remediation efforts that may be in excess of what is necessary for future protection of ground water and soil remediation goals which often cannot be achieved within a reasonable time period. Soil venting practitioners have attempted to circumvent these problems by basing closure on some predefined percent total mass removal, or an approach to a vapor concentration asymptote. These approaches, however, are subjective and influenced by venting design. We propose an alternative strategy based on evaluation of five components: (1) site characterization, (2) design. (3) performance monitoring, (4) rule-limited vapor transport, and (5) mass flux to and from ground water. Demonstration of closure is dependent on satisfactory assessment of all five components. The focus of this paper is to support mass flux evaluation. We present a plan based on monitoring of three subsurface zones and develop an analytical one-dimensional vertical flux model we term VFLUX. VFLUX is a significant improvement over the well-known numerical one-dimensional model. VLEACH, which is often used for estimation of mass flux to ground water, because it allows for the presence of nonaqueous phase liquids (NAPLs) in soil, degradation, and a lime-dependent boundary condition at the water table inter-face. The time-dependent boundary condition is the center-piece of our mass flux approach because it dynamically links performance of ground water remediation lo SVE closure. Progress or lack of progress in ground water remediation results in either increasingly or decreasingly stringent closure requirements, respectively.  相似文献   

20.
Contaminants may persist for long time periods within low permeability portions of the vadose zone where they cannot be effectively treated and are a potential continuing source of contamination to ground water. Setting appropriate vadose zone remediation goals typically requires evaluating these persistent sources in terms of their impact on meeting ground water remediation goals. Estimating the impact on ground water can be challenging at sites with low aqueous recharge rates where vapor-phase movement is the dominant transport process in the vadose zone. Existing one-dimensional approaches for simulating transport of volatile contaminants in the vadose zone are considered and compared to a new flux-continuity-based assessment of vapor-phase contaminant movement from the vadose zone to the ground water. The flux-continuity-based assessment demonstrates that the ability of the ground water to move contaminant away from the water table controls the vapor-phase mass flux from the vadose zone across the water table. Limitations of these approaches are then discussed with respect to the required assumptions and the need to incorporate three-dimensional processes when evaluating vapor-phase transport from the vadose zone to the ground water. The carbon tetrachloride plume at the U.S. Department of Energy Hanford Site is used as the example site where persistent vadose zone contamination needs to be considered in the context of ground water remediation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号