首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
Conditions for the formation of large meander (LM) of the Kuroshio are inferred from observational data, mainly obtained in the 1990s. Propagation of the small meander of the Kuroshio from south of Kyushu to Cape Shiono-misaki is a prerequisite for LM formation, and three more conditions must be satisfied. (1) The cold eddy carried by small meander interacts with the cold eddy in Enshu-nada east of the cape. During and just after the propagation of small meander, (2) the Kuroshio axis in the Tokara Strait maintains the northern position and small curvature, and (3) current velocity of the Kuroshio is not quite small. If the first condition is not satisfied, the Kuroshio path changes little. If the first condition is satisfied, but the second or third one is not, the Kuroshio transforms to the offshore non-large-meander path, not the LM path. All three conditions must be satisfied to form the large meander. For continuance of the large meander, the Kuroshio must maintain the small curvature of current axis in the Tokara Strait and a medium or large range of velocity and transport. These conditions for formation and continuance may be necessary for the large meander to occur. Moreover, effects of bottom topography on position and structure of the Kuroshio are described. Due to topography, the Kuroshio changes horizontal curvature and vertical inclination of current axis in the Tokara Strait, and is confined into either of two passages over the Izu Ridge at mid-depth. The former contributes to the second condition for the LM formation.  相似文献   

2.
The occurrence of the small meander of the Kuroshio, generated south of Kyushu and propagating eastward, was examined using sea level data collected during 1961–1995 along the south coast of Japan. Intra-annual variation of the sea level was expanded by the frequency domain empirical orthogonal function (FDEOF) modes, and it was found that the second and third modes are useful for monitoring the generation and propagation of the small meander. The third FDEOF for periods of 10–100 days has a phase reversal between Hosojima and Tosa-shimizu with significant amplitude west of Kushimoto, and the amplitude of its time coefficient is large during the non-large-meander (NLM) period and has a significant peak when the small meander exists southeast of Kyushu. The second FDEOF for periods of 20–80 days has a phase reversal between Kushimoto and Uragami, and the amplitude of its time coefficient is large when the small meander propagates to the south of Shikoku. The third FDEOF mode allowed us to conclude that the small meander occurred 42 times from July 1961 to May 1995, most of them (38) occurring during the NLM periods. The second FDEOF mode permits the conclusion that half of the 38 small meanders reached south of Shikoku. Of these, five small meanders influenced transitions of the Kuroshio path from the nearshore NLM path; one caused the offshore NLM path and four brought about the large meander. About one-tenth of the total number of small meanders are related to the formation of the large meander.  相似文献   

3.
The generation of small meanders of the Kuroshio south of Kyushu has been investigated using a high-resolution ocean general circulation model of the North Pacific Ocean. The small cyclonic meander develops in the region east of the Tokara Strait with a period of about one month, then propagates downstream along the Kuroshio path to the longitude of the Kii Peninsula, which is similar to the so-called trigger meanders for the formation of the large-meander of the Kuroshio south of Japan. It turns out that the generation of the small meander is a local phenomenon, strongly associated with anticyclonic eddies that propagate northeastward along the Kuroshio path in the East China Sea. The vorticity balance indicates that the accumulation of positive vorticity during the developing phase of the small meander occurs mainly from the balance between the stretching and the advection terms. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
The influences of mesoscale eddies on variations of the Kuroshio path south of Japan have been investigated using time series of the Kuroshio axis location and altimeter-derived sea surface height maps for a period of seven years from 1993 to 1999, when the Kuroshio followed its non-large meander path. It was found that both the cyclonic and anticyclonic eddies may interact with the Kuroshio and trigger short-term meanders of the Kuroshio path, although not all eddies that approached or collided with the Kuroshio formed meanders. An anticyclonic eddy that revolves clockwise in a region south of Shikoku and Cape Shionomisaki with a period of about 5–6 months was found to propagate westward along about 30°N and collide with the Kuroshio in the east of Kyushu or south of Shikoku. This collision sometimes triggers meanders which propagate over the whole region south of Japan. The eddy was advected downstream, generating a meander on the downstream side to the east of Cape Shionomisaki. After the eddy passed Cape Shionomisaki, it detached from the Kuroshio and started to move westward again. Sometimes the eddy merges with other anticyclonic eddies traveling from the east. Coalescence of cyclonic eddies, which are also generated in the Kuroshio Extension region and propagate westward in the Kuroshio recirculation region south of Japan, into the Kuroshio in the east of Kyushu, also triggers meanders which mainly propagate only in a region west of Cape Shionomisaki. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
The variation of velocity and potential vorticity (PV) of the Kuroshio at the PN line in the East China Sea and the TK line across the Tokara Strait were examined in relation to the path variations of the Kuroshio in the southern region of Japan, using quarterly data from a conductivity-temperature-depth profiler and a shipboard acoustic Doppler current profiler during 1987–97. At the PN line the Kuroshio has a single stable current core located over the continental slope and a significant maximum of PV located just onshore of the current axis in the middle part of the main pycnocline. On the other hand, the Kuroshio at the TK line has double current cores over the two gaps in the Tokara Strait; the northern core has a much larger velocity than the southern core on average during periods of the large meander of the Kuroshio, while the difference in strength between the double cores is small during the non-large-meander (NLM) period. At the TK line, PV in the middle pycnocline is variable; it is small and nearly uniform throughout the section for 40% of the total observations, while it has a significant maximum near the northern core for 30% and two maxima corresponding to the double current cores for 23%. The small, nearly uniform PV occurs predominantly during the NLM period, and is closely related to the generation of the small meander of the Kuroshio southeast of Kyushu. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
Three Kuroshio small meanders off the southeast coast of Kyushu that occurred during 1994 to 1995 were investigated by using satellite-derived sea surface temperature (SST) and sea surface height (SSH) maps, World Ocean Circulation Experiment (WOCE) Hydrographic Program (WHP) repeat section and Japan Meteorological Agency (JMA) hydrographic observations. Based on the satellite data, we observed that the three small meanders are formed by different processes: the triggering and growth of these meanders are caused by a cyclonic eddy propagating from the Kuroshio recirculation region or Kuroshio front meanders traveling from the East China Sea. Investigation of the two small meanders in 1994 and 1995 spring that are captured by the WHP observation showed quite consistent hydrographic features. On the nearshore side of the meandering Kuroshio, a countercurrent appears, associated with vertically uniform upward lifts of the isopycnals from sea surface to bottom at the boundary between the countercurrent and the Kuroshio. In the countercurrent region, the waters in the density ranges of the North Pacific subtropical mode water (NPSTMW) and the North Pacific Intermediate Water (NPIW) are more saline and less saline than typical waters that the Kuroshio carries in a non-small meander state, respectively. There are indications that high-salinity NPSTMW and low-salinity NPIW distributed off the Kuroshio was supplied to the countercurrent region. In the meandering Kuroshio flow, while there is no notable change in properties around the NPSTMW density range, salinity of the NPIW is significantly higher than that carried by the Kuroshio in a non-small meander state, but not higher than that in the Kuroshio at the Tokara Strait, which suggests that saline NPIW from the Tokara Strait, less mixed with low-salinity NPIW off the Kuroshio, may be carried by the meandering Kuroshio. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
The sea level difference between Naze and Nishinoomote and sea level anomalies (the residuals after removal of seasonal variations) around the Nansei Islands were examined in relation to the large meander in the Kuroshio south of central Japan. They are indices of surface velocity and geostrophic transport of the Kuroshio in the Tokara Strait and in the East China Sea, respectively. All of them were large during the meandering period, and each of them reached a maximum before or after the generation of the large meander in 1975. Thus the surface velocity and the geostrophic transport of the Kuroshio in the Tokara Strait and the East China Sea were large during the meandering period. The sea level difference between Naze and Nishinoomote (or Makurazaki) shows that the surface velocity and geostrophic transport in the Tokara Strait were significantly larger during the extinction stage in 1963 and during the generation stage in 1975 and were correlated with the position of the Kuroshio east of Kyûshû in 1974 and 1975 before the generation of the large meander.The surface velocity of the Kuroshio southeast of Yakushima (E-line) based on dynamic calculation referred to 1,000 db was weak during the meandering period, and was out of phase with the variation of surface velocity in the Tokara Strait monitored by tide gauge data. The analysis of GEK and hydrographic data shows that southwestward flow existed below 600 m in the slope region on the E-line and weakened during the meandering period. Thus, the out-of-phase variation in surface velocity mentioned above seems to be partly explained by the variation in velocity on the reference level at the E-line.  相似文献   

8.
Properties of the index of position of the Kuroshio axis in the Tokara Strait, named the Kuroshio position index (KPI), were examined using sea-level data during 1984–92. The index is KPI=(X+M x )/(Y+M y whereX(Y) is the anomaly of sea-level difference of Nakanoshima (Naze) minus Nishinoomote from the 1984–92 meanM x (M y ). The correlation with the latitude of the Kuroshio axis in the Tokara Strait concluded that the KPI withM x /M y =0.83 and realisticM y (100±40 cm) best indicates the position of the Kuroshio axis in the strait. The KPI withM x =83 cm andM y =100 cm was newly called the KPI as the best index. Using daily values of this KPI, the relation between the position of the Kuroshio in the strait and the large meander of the Kuroshio shown by Kawabe (1995) was confirmed and studied in detail. A large meander forms (ends) 3.3 (5.1) months after a northward (southward) shift of the Kuroshio in the Tokara Strait. Yet, a temporary southward shift with a duration of ten to twenty days does not finish the large-meander (LM) path. At the LM formation, a small meander southeast of Kyushu begins to move eastward associated with the northward shift. The processes of LM formation and decay are started by the meridional move of the Kuroshio axis in the Tokara Strait. The Kuroshio axis at the FES line during the LM path is located farther north by 7 latitude than that during the non-large-meander (NLM) path. The latitude during the LM formation (decay) stage is a little higher (lower) than that during the LM (NLM) period, though the Kuroshio still takes an NLM (LM) path.  相似文献   

9.
Temporal variations of the Kuroshio volume transport in the Tokara Strait and at the ASUKA line are decomposed by phase-propagating Complex EOF modes of high-resolution sea surface dynamic topography (SSDT) field during the first tandem period of TOPEX/POSEIDON and ERS-1 (from October 1992 to December 1993). Both variations are dominated by a mode with nearly semi-annual cycle, which indicates a series of interactions between the Kuroshio and meso-scale eddies. Namely, northern part of a westward-propagating meso-scale eddy at 23°N is captured into the southern side of the Kuroshio at the south of Okinawa, then it moves downstream along the Kuroshio path passing the Tokara Strait, and reaches to the ASUKA line where it merges with another eddy propagating from the east at 30°N. The variation at the ASUKA line is, however, less dominated by this mode; instead, it includes the SSDT variations in the south of Shikoku and the east of Kyushu which would be directly affected by eddies from the east without passing the Tokara Strait. On the other hand, the same analysis for movements of the Kuroshio axis in the Strait indicates that they are governed by short-term variations locally confined to the Kuroshio in the East China Sea without being induced by meso-scale eddies. This results, however, seem to depend strongly on a time scale of interest. It is suggested that the long-term movements of the Kuroshio axis in the Strait would demonstrate coincidence with SSDT variation in the south of Japan.  相似文献   

10.
A high-resolution ocean model forced with an annually repeating atmosphere is used to examine variability of the Kuroshio, the western boundary current in the North Pacific Ocean. A large meander (LM) in the path of the Kuroshio south of Japan develops and disappears in a highly bimodal fashion on decadal timescales. The modeled meander is comparable in timing and spatial extent to an observed feature in the region. Various characteristics of the LM are examined, including relative vorticity, transport, and velocity shear. The many similarities between the model and observations indicate that the meander results from intrinsic oceanic variability, which is represented in this climatologically forced model. Each LM is preceded by a smaller “trigger” meander that originates at the south end of Kyushu, moves up the coast, and develops into the LM. However, there are also many meanders very similar in character to the trigger meander that do not develop into LMs. Formation of an LM only occurs when a deep anticyclone associated with the trigger meander forms near Koshu Seamount. Furthermore, the major axis of that deep anticyclone must be oriented away from the coast, rather than alongshore. In the specific case of interaction of a trigger meander with a deep anticyclone with major axis oriented away from the coastline, LM formation occurs.  相似文献   

11.
张培军  王强 《海洋科学》2015,39(5):106-113
基于1.5层浅水方程模式,利用条件非线性最优参数扰动(CNOP-P)方法,研究模式参数的不确定性对黑潮大弯曲路径预报的影响。研究表明,单个模式参数误差如侧向摩擦系数误差、界面摩擦系数误差以及在不同季节具有不同约束的风应力大小误差,对黑潮大弯曲路径预报的影响较小,并且对背景流场的选取具有一定的敏感性;所有模式参数误差同时存在时对黑潮大弯曲路径预报具有一定的影响,并且预报结果在9个月左右不能被接受。因此,要提高黑潮大弯曲路径的预报技巧,模式中的参数需要给出更好的估计。  相似文献   

12.
Variations of current velocity of the Kuroshio are examined using the 1965–1983 sea-level difference between Naze and Nishinoomote, located on the offshore and onshore sides of the Kuroshio in the Tokara Strait south of Kyûshû.Interannual variations of Kuroshio velocity are large, especially at periods longer than five years and around 2.1 years. They are almost determined by those of sea level on the offshore side of the Kuroshio. They are highly coherent with the offshore sea level at periods longer than 1.7 years, and incoherent with the onshore sea level at periods longer than 2.8 years.The mean seasonal variation averaged for 19 years is at its maximum in July and at its minimum in the second half of October, with a sharp decrease in August and September. However, such a variation does not repeat every year. Amplitude, dominant period and phase are greatly different by year, and they can be roughly divided into four groups: small-amplitude group, semiannual-period group, and two annual-period groups with different phases. The only feature found in almost all years is a weak velocity from September to December.The amplitude of seasonal variation tends to be large in the formation years of the large meander (LM) of the Kuroshio and small during the LM period. It is also large in the years preceding El Niño, and diminishes remarkably in El Niño years.Kuroshio velocity in the Tokara Strait is incoherent with position of the Kuroshio axis over the Izu Ridge, but highly coherent with 70-day variations of coastal sea levels which are dominant during the LM period.  相似文献   

13.
Index and Composites of the Kuroshio Meander South of Japan   总被引:1,自引:0,他引:1  
Using the merged NOAA National Oceanographic Data Center (NODC)/Japan Oceanographic Data Center (JODC)/Marine Information Research Center (MIRC) historical hydrographic dataset, a new Kuroshio large meander (LM) index is introduced. This index helps to distinguish between the LM events and other types of Kuroshio Current (KC) variability south of Japan. Observations, re-systematized according to the index, provide composite patterns of typical formation and decay of the LM. The patterns reveal a remarkable similarity between individual LMs and support the deterministic rather than the stochastic model of LM evolution on a time-scale of one year. A “trigger” meander (TM) occurs on composite maps six months prior to the LM formation as a 1° latitude southward shift of the KC axis south of Kyushu. When propagating eastward along the coast of Japan, TM gradually increases in area. In principal the emergence of LM takes only one month. East of TM and LM a remarkable onshore shift of the KC is noticed, supplying the coastal region with warm water. Other warm anomalies are found on the warm side of KC next to the propagating TM and in the larger warm eddy area southeast of Kyushu. Different LMs survive for different times and decay in some months after KC “jumps” across the Izu Ridge. Changes of water properties on isopycnals in the interior of LM can be roughly described by two-layer kinematics with an interface at σθ = 27 which suggests a strong inflow of deep Kuroshio waters into the LM core during the formation of the latter. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

14.
Sea level variations from 1974 through 1976 at 9 stations on the south coast of Japan (from west to east, Aburatsu, Tosa-shimizu, Muroto-misaki, Kushimoto, Uragami, Owase, Toba, Maisaka and Omaezaki) were analysed in relation to the large meander in the Kuroshio. From May to July in 1975, a small maximum in sea level variation was observed at every station west of Cape Shionomisaki from Aburatsu to Kushimoto. It propagated eastward along with the eastward propagation of a small meander in the Kuroshio until it reached Kushimoto, when the sea levels at Uragami and Owase started to rise sharply. This remarkable rise appeared at all stations in August when a large meander in the Kuroshio was established. The mean sea level at the stations east of Cape Shionomisaki from Uragami to Omaezaki rose by about 10 cm. The difference in sea level variations between the regions east and west of Cape Shionomisaki, which had been present before the rise, disappeared. A similar characteristic of sea level variation was also found in the generation stage of the large meander in 1959. The sea level variations along the south coast of Japan indicate that, prior to the generation of the large meander, the small meander in the Kuroshio was generated southeast of Kyushu and propagated eastward and that, just when this meander reached off Cape Shionomisaki, a large scale oceanic event covering over the whole region of the south coast of Japan occurred. This large scale event seems to be one of the necessary conditions for the generation of the large meander in the Kuroshio off Enshû-nada.  相似文献   

15.
The coastal sea level propagating westward along the south coast of Japan and the impact of the disturbance on the generation of the Kuroshio small meander have been examined. The propagation occurs in sea level variations for periods shorter than 10 days and is remarkable for periods of 4–6 days. Characteristics of the 4–6 day component have been studied using the extended empirical orthogonal function (EEOF). The first and second modes of EEOF are almost in-phase throughout the south coast of Japan. The higher four modes of EEOF are significantly excited when the Kuroshio takes the non-large-meander path, and propagate westward with phase speeds of 2.8 m s−1 (third and fourth modes) and 1.6 m s−1 (fifth and sixth modes) in the Kuroshio region west of Mera in the Boso Peninsula. The analysis shows that more than 70% of the small meanders generate in two months after a significant propagating disturbance reaches south of Kyushu when the velocity of the Kuroshio is high. This effect of coastal disturbance is examined by numerical experiments with a 2.5-layer model in which coastal disturbance is excited by vertical displacement of the upper interface. The result is that offshore displacement of the Kuroshio occurs southeast of Kyushu only in the case of significant upward displacement of the interface under the influence of a high Kuroshio velocity. The significant coastal disturbance, which is associated with upward displacement of the density interface, and a high Kuroshio velocity can therefore be important factors in generating small meanders.  相似文献   

16.
This study investigates the long-term variability of the Kuroshio path south of Japan. Sensitivity experiments using a data-assimilative model suggest that the duration of the large meander (LM) strongly depends on the Kuroshio transport; specifically, low transport leads to a long duration of the LM. Actually, we find a good correlation between the duration of the past LMs and the Sverdrup transport estimated by a wind-driven linear baroclinic vorticity model. Then we explore favorable conditions for the LM and find a close relationship between the Kuroshio Extension (KE) state and the LM. That is, a precondition for the LM that the Kuroshio path on the Izu Ridge is fixed at a deep channel located around 34°N is achieved during a stable KE state. In addition, westward propagating signals with negative anomalies in the Kuroshio region and high sea-surface height (SSH) state east of Taiwan are key for generation of a small meander southeast of Kyushu that triggers a subsequent LM. The signals related to the above conditions change the upstream Kuroshio transport and velocity, which are consistent with features indicated by the former observational studies. Using reanalysis data, we construct long-time series of indices for the three conditions, which explain well the past LMs. The indices suggest that long-term non-LM states around 1970 and in the 1990s were attributed to a low-SSH state east of Taiwan and an unstable KE state, respectively.  相似文献   

17.
Historical GEK data provided by JODC is analyzed to investigate the characteristic variation in velocity of the Kuroshio, with special reference to the formation of small meanders south of Kyûshû. It is found that, during or prior to the period of small meander formation, there is a tendency for an abrupt increase in the current velocity west of Yaku-Shima (Yaku-Island), representing an increase in the main current intensity upstream. Also, there are apparent time lags in the variation in current velocity along the path of the Kuroshio between the upstream and the downstream regions of the small meander area. Namely, it is apparent that the increase in Kuroshio velocity in the Satsunan Strait procedes that offshore of Shikoku during the period of the small meander formation, by the order of one month. These results indicate that a nonlinear effect due to the increase in current velocity is a possible cause of the generation of small meanders.  相似文献   

18.

Since September 2017, the Kuroshio has taken a large-meander (LM) path in the region south of Japan. We examined characteristics of the 2017–present LM path in comparison with previous LM paths, using tide gauge, altimetric sea surface height, and bottom pressure data. The 2017–present LM path was formed from a path passing through a channel south of Hachijo-jima Island, while a typical LM path originated from a path through a channel north of Miyake-jima Island. The meander trough of this atypical path was found to be shifted far to the east and to vary on a timescale of months. These characteristics are different from those of a typical LM path but they are similar to those of the 1981–1984 LM path. Therefore, we identified two types of LM path; a stable and unstable LM paths. The 2017–present unstable type large meander has a zonal scale greater than that of the 2004–2005 stable type large meander and protrudes from the eastern boundary of the Shikoku Basin, i.e., Izu-Ogasawara Ridge. No significant bottom pressure depression was observed, associated with the formation of the 2017–present LM path, indicating that baroclinic instability was not important in the formation of this LM path. Due to no significant bottom steering, even during the 2017–present LM period, a mesoscale current path disturbance occurred southeast of Kyushu, propagated eastward, and amplified the offshore displacement of the Kuroshio.

  相似文献   

19.
INTRODUCTIONBeing a current of high temperature and high salinity, the Kuroshio carries a large amount ofheat from low latitude tropical ocean to high latitude ocean, and plays an imPOrtant role in theheat balance in East Asia. The variability of the Kurosl,io can affect the climate of East Asia, aswell as the ocean environment and the fishery resources. A lot of studies showed that the variabilitiies of the Kuroshio were related to the global changes especially to the onset of ENSO.…  相似文献   

20.
Interannual variations of sea level at the Nansei Islands and volume transport of the Kuroshio during 1967–95 are calculated by integrating variations carried by windforced Rossby waves. Effects of eddy dissipation and ocean ridges are considered. Ridge effect is inferred by comparing between the calculated and observed sea levels. The calculation is satisfactory to sea levels and Kuroshio transport for the whole period. They are mostly caused by Rossby waves forced by wind and modified by the ridges, and are due to barotropic wave primarily and the first baroclinic wave secondly. The calculated Kuroshio transport well represents variations of several-year scales with maximums in respective duration of the large meander (LM) of the Kuroshio, as well as bi-decadal variation that transport was small during the non-LM period of 1967–75 and large during the LM-dominant period of 1975–91. Mean volume transport of the subtropical gyre is estimated at 57 Sv (1 Sv = 106 m3s–1) and divided by the Nansei Shoto Ridge into those of the Kuroshio in the East China Sea (25.5 Sv) and a subsurface current east of this ridge (31.5 Sv). The Subtropical Countercurrent and a southward deep current east of the Izu-Ogasawara Ridge are estimated at 16 Sv and 7 Sv, respectively. The calculated transports of the Kuroshio and other subtropical currents reach maximums at every El Niño event due to strong excitement of upwelling barotropic Rossby wave.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号