首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The North Anatolian Fault Zone (NAFZ), which marks the boundary between Anatolia and the Eurasian plate, is one of the world's most seismically active structures. Although the eastern part of NAFZ has high seismic hazard, there is a lack of geodetic information about the present tectonics of this region. Even though many scientists would like to study this area, geographical and logistical problems make performing scientific research difficult. In order to investigate contemporary neotectonic deformation on the eastern NAFZ and in its neighborhood, a relatively dense Global Positioning System (GPS) monitoring network was established in 2003. Geodetic observations were performed in three GPS campaigns in an area of 350 km × 200 km with 12-month intervals. In addition, 14 new GPS stations were measured far from the deforming area. Since this region includes the intersection of the NAFZ and the East Anatolian Fault Zone (EAFZ), deformation is complex and estimating seismic hazard is difficult. One important segment is the Yedisu segment and it has not broken since the 1784 earthquake. After the 1992 Erzincan and 2003 Pulumur earthquakes, the Coulomb stress loading on the Yedisu segment of the NAFZ has increased significantly, emphasizing the need to monitor this region. We computed the horizontal velocity field with respect to Eurasia and strain rates field as well. GPS-derived velocities relative to Eurasia are in the range of 16–24 mm/year, which are consistent with the regional tectonics. The principal strain rates were derived from the velocity field. Results show that strain is accumulating between the NAFZ and EAFZ along small secondary fault branches such as the Ovacik Fault (OF).  相似文献   

2.
GPS studies in Turkey date back to the early 1990s, but were mostly focused on the seismically active North Anatolian Fault System (NAFS), or on the more populated Western Anatolia. Relatively few studies were made of the seismically less-active East Anatolian Fault System (EAFS), although it has the potential to produce large earthquakes. In this study, we present the results of a combination of geodetic and seismological data around the Karliova Triple Junction (KTJ), which lies at the intersection of the North- and East Anatolian Fault Systems. In particular, the geodetic slip rates obtained through block modeling of GPS velocities were compared with b-values to assess seismicity in the region. Yedisu segment, one of the best-known seismic gaps in Turkey, was specifically analyzed. The relatively low b-values across Yedisu segment verify the accumulation of seismic energy in this segment, and the GPS-derived geodetic slip rates suggest that it has the potential to produce an earthquake of Mw 7.5 across an 80-km rupture zone.Additionally, analysis of earthquake data reveals that the study area has a ductile or rigid–ductile behavior with respect to its surroundings, characterized by varying b-values. Although, seismic events of moderate- to high magnitudes are confined along the major fault zones, there are also low-seismicity zones along the eastern part of the Bitlis Suture Zone and around Yedisu. Since the high seismicity areas within the region may not accumulate sufficient stress for a large earthquake to occur, it is considered that the deformation in such areas occurs in a ductile manner. On the other hand, the areas characterized by low b-values may have the capacity of stress accumulation, which could lead to brittle deformation.  相似文献   

3.
Oriented collapse of columns, large-scale destruction debris and temporary abandonment of the area deduced from an archaeological excavation provide evidence for a major (intensity IX) earthquake in Patras, Greece. This, and possibly a cluster of other earthquakes, can be derived from archaeological data. These earthquakes are not included in the historical seismicity catalogues, but can be used to put constraints to the seismic risk of this city. Patras was affected by a cluster of poorly documented earthquakes between 1714 and 1806. The city seems to be exposed to risks of progressive reactivation of a major strike-slip fault. A magnitude 6.4 earthquake in 2008 has been related to it. This fault has also been associated with a total of four events in the last 20 years, a situation reminiscent of the seismic hazard at the western edge of the North Anatolian Fault.  相似文献   

4.
The collision between the Arabian and Eurasian plates in eastern Turkey causes the Anatolian block to move westward. The North Anatolian Fault (NAF) is a major strike-slip fault that forms the northern boundary of the Anatolian block, and the Erzincan Basin is the largest sedimentary basin on the NAF. In the last century, two large earthquakes have ruptured the NAF within the Erzincan Basin and caused major damage (M s = 8.0 in 1939 and M s = 6.8 in 1992). The seismic hazard in Erzincan from future earthquakes on the NAF is significant because the unconsolidated sedimentary basin can amplify the ground motion during an earthquake. The amount of amplification depends on the thickness and geometry of the basin. Geophysical constraints can be used to image basin depth and predict the amount of seismic amplification. In this study, the basin geometry and fault zone structure were investigated using broadband magnetotelluric (MT) data collected on two profiles crossing the Erzincan Basin. A total of 24 broadband MT stations were acquired with 1–2 km spacing in 2005. Inversion of the MT data with 1D, 2D and 3D algorithms showed that the maximum thickness of the unconsolidated sediments is ~3 km in the Erzincan Basin. The MT resistivity models show that the northern flanks of the basin have a steeper dip than the southern flanks, and the basin deepens towards the east where it has a depth of 3.5 km. The MT models also show that the structure of the NAF may vary from east to west along the Erzincan Basin.  相似文献   

5.
The Mw 6.2 (Mj 6.8) Nagano (Japan) earthquake of 22 November 2014 produced a 9.3-km long surface rupture zone with a thrust-dominated displacement of up to 1.5 m, which duplicated the pre-existing Kamishiro Fault along the Itoigawa–Shizuoka Tectonic Line (ISTL), the plate-boundary between the Eurasian and North American plates, northern Nagano Prefecture, central Japan. To characterize the activity of the seismogenic fault zone, we conducted a paleoseismic study of the Kamishiro Fault. Field investigations and trench excavations revealed that seven morphogenic paleohistorical earthquakes (E2–E8) prior to the 2014 Mw 6.2 Nagano earthquake (E1) have occurred on the Kamishiro Fault during the last ca. 6000 years. Three of these events (E2–E4) are well constrained and correspond to historical earthquakes occurring in the last ca. 1200 years. This suggests an average recurrence interval of ca. 300–400 years on the seismogenic fault of the 2014 Kamishiro earthquake in the past 1200 years. The most recent event prior to the 2014 earthquakes (E1) is E2 and the penultimate and antepenultimate faulting events are E3 and E4, respectively. The penultimate faulting event (E3) occurred during the period of AD 1800–1400 and is associated with the 1791 Mw 6.8 earthquake. The antepenultimate faulting event (E4) is inferred to have occurred during the period of ca. AD 1000–700, likely corresponding to the AD 841 Mw 6.5 earthquake. The oldest faulting event (E8) in the study area is thought to have occurred during the period of ca. 5600–6000 years. The throw rate during the early Holocene is estimated to be 1.2–3.3 mm/a (average, 2.2 mm/a) with an average amount of characteristic offset of 0.7–1.1 m produced by individual event. When compared with active intraplate faults on Honshu Island, Japan, these slip rates and recurrence interval estimated for morphogenic earthquakes on the Kamishiro Fault along the ISTL appear high and short, respectively. This indicates that present activity on this fault is closely related to seismic faulting along the plate boundary between the Eurasian and North American plates.  相似文献   

6.
Characteristics of seismic activity along the North Anatolian Fault Zone are analyzed between 1970 and 2010. Magnitude completeness changes between 2.7 and 2.9 in the North Anatolian Fault Zone. The frequency-magnitude distribution of earthquakes is well represented with a b-value typically close to 1. A clear decrease in temporal distribution of b-value is observed before the strong main shocks. Correlation dimension values are relatively large and the seismic activity is more clustered at larger scales in the North Anatolian Fault Zone.  相似文献   

7.
柯坪推覆构造的根部断裂记录到的地震活动相对较弱,以至于多数学者认为该断裂晚第四纪以来活动性不强。笔者根据遥感影像解译和野外调查得到迈丹断裂的几何展布,确认F3阿合奇段为最新地表破裂带,并通过一系列河流阶地的左旋位移测量确定其晚更新世以来有过走滑活动。结合地貌测量和探槽开挖得到断层垂直错距,探槽揭示的古地震事件发生在距今(1.76±0.22)ka之后,根据现场考察获得的活动构造定量数据,依据不同震级与地表破裂关系式推算出该次古地震震级为7.5级。研究成果可能对区域活动断裂的研究以及区域活动构造图像的完整性提供基础资料,同时最新地表破裂证据的发现可能有助于更新认识该断裂的危险性。  相似文献   

8.
The 1939 Erzincan Earthquake (M = 7.8), occurred on the North Anatolian Fault Zone (NAFZ), was one of the most active strike-slip faults in the world, and created a 360-km-long surface rupture. Traces of this surface rupture are still prominently observed. In the absence of detailed mapping to resolve the fault characteristics, detailed observations have been conducted at 20 different points on the 70-km-long Kelkit Valley Segment (KVS) of the NAFZ's between Niksar and Koyulhisar. Field data defining fault character and slip amounts were found at eight points and show right-lateral slip varying between 1.8 and 4.25 m and the vertical slip varying between 0.5 and 2.0 m.The KVS developed in the most morphologically prominent and narrowest part of the NAFZ. Therefore, the chances of finding evidence of more than one historical earthquake in trenches opened to investigate palaeoseismological aspects are higher. Faults observed in foundation and channel excavations opened for energy purposes in the Reşadiye region show this clearly and evidence for up to four seismic events including the 1939 Erzincan Earthquake have been discovered. Further studies are required to discover whether right-lateral deformation on at some locations on this segment is surface ruptures associated with the 1939 earthquake or later creep.  相似文献   

9.
A high-resolution Holocene seismic history of the Dead Sea Transform (DST) is established from laminated sedimentary cores recovered at the shores of the Dead Sea. Radiocarbon dating and annual laminae counting yield excellent agreement between disturbed sedimentary structures (identified as seismites) and the historical earthquake record: All recent and historical strong events of the area were identified, including the major earthquakes of A.D. 1927, 1837, 1212, 1033, 749, and 31 B.C. The total of 53 seismites recognized along the entire Holocene profile indicate varying recurrence intervals of seismic activity between a few and 1000 years, with a conspicuous minimum rate at 2100-31 B.C. and a noticeable maximum during the past six to eight centuries. Most of the epicenters of the correlated earthquakes are situated very close to the Dead Sea (within 150 km) or up to 400 km north of it along the DST. Between 1000 B.C. and A.D. 1063, and from A.D. 1600 to recent time the epicenters are all located on the northern segment of the DST, whereas prior to 1000 B.C. and between A.D. 1000 and 1600 they appear to scatter along several segments of the DST. We establish how the local intensity exerts a control on the formation of seismites. At historically estimated intensities greater than VII, all well documented earthquakes are correlated, whereas at intensities smaller than VI none are matching.The periods with enhanced earthquake rate along the DST correlate with those along the North Anatolian Fault as opposed to the intervening East Anatolian Fault. This may indicate some elastic coupling on plate-boundary scale that may also underlie escape and extrusion tectonics, typical of continental collision.  相似文献   

10.
Western Turkey has a long history of destructive earthquakes that are responsible for the death of thousands of people and which caused devastating damage to the existing infrastructures, and cultural and historical monuments. The recent earthquakes of Izmit (Kocaeli) on 17 August, 1999 (M w  = 7.4) and Düzce (M w  = 7.2) on 12 November, 1999, which occurred in the neighboring fault segments along the North Anatolian Fault (NAF), were catastrophic ones for the Marmara region and surroundings in NW Turkey. Stress transfer between the two adjacent fault segments successfully explained the temporal proximity of these events. Similar evidence is also provided from recent studies dealing with successive strong events occurrence along the NAF and parts of the Aegean Sea; in that changes in the stress field due to the coseismic displacement of the stronger events influence the occurrence of the next events of comparable size by advancing their occurrence time and delimiting their occurrence place. In the present study the evolution of the stress field since the beginning of the twentieth century in the territory of the eastern Aegean Sea and western Turkey is examined, in an attempt to test whether the history of cumulative changes in stress can explain the spatial and temporal occurrence patterns of large earthquakes in this area. Coulomb stress changes are calculated assuming that earthquakes can be modeled as static dislocations in elastic half space, taking into account both the coseismic slip in large (M ≥ 6.5) earthquakes and the slow tectonic stress buildup along the major fault segments. The stress change calculations were performed for strike-slip and normal faults. In each stage of the evolutionary model the stress field is calculated according to the strike, dip, and rake angles of the next large event, whose triggering is inspected, and the possible sites for future strong earthquakes can be assessed. A new insight on the evaluation of future seismic hazards is given by translating the calculated stress changes into earthquake probability using an earthquake nucleation constitutive relation, which includes permanent and transient effects of the sudden stress changes.  相似文献   

11.
The Xianshuihe Fault, the boundary of Bayan Har active tectonic block and Sichuan-Yunnan active tectonic block, is one of the most active fault zones in the world. In the past nearly 300 years, 9 historical earthquakes of magnitude ≥ 7 have been recorded. Since 2008, several catastrophic earthquakes, such as Wenchuan MS8 earthquake, Yushu MS7.1 earthquake and Lushan MS7 earthquake, have occurred on the other Bayan Har block boundary fault zones. However, only the Kangding MS6.3 earthquake in 2014 was documented on the Xianshuihe Fault. Thus, the study of surface deformation and rupture behavior of large earthquakes in the late Quaternary on the Xianshuihe Fault is of fundamental importance for understanding the future seismic risk of this fault, and even the entire western Sichuan region. On the basis of the former work, combined with our detailed geomorphic and geological survey, we excavated a combined trench on the Qianning segment of Xianshuihe fault zone which has a long elapse time. Charcoal and woods in the trench are abundant. 30 samples were dated to constrain the ages of the paleoseismic events. Five events were identified in the past 9  000 years, whose ages are:8070-6395 BC, 5445-5125 BC, 4355-4180 BC, 625-1240 AD and the Qianning earthquake in 1893. The large earthquake recurrence behavior on this segment does not follow the characteristic earthquake recurrence model. The recurrence interval is 1000~2000 years in early period and in turn there is a quiet period of about 5 000 years after 4355-4180 BC event. Then it enters the active period again. Two earthquakes with surface rupture occurred in the past 1000 years and the latest two earthquakes may have lower magnitude. The left-lateral coseismic displacement of the 1893 Qianning earthquake is about 2.9m.  相似文献   

12.
The 2008 Wenchuan earthquake occurred along the Longmen Shan fault zone, only five years later, another M7 Lushan earthquake struck the southern segment where its seismic risk has been highly focused by multiple geoscientists since this event. Through geological investigations and paleoseismic trenching, we suggest that the segment along the Shuangshi-Dachuan Fault at south of the seismogenic structure of the Lushan earthquake is active during Holocene. Along the fault, some discontinuous fault trough valleys developed and the fault dislocated the late Quaternary strata as the trench exposed. Based on analysis of historical records of earthquakes, we suggest that the epicenter of the 1327 Tianquan earthquake should be located near Tianquan and associated with the Shuangshi-Dachuan Fault. Furthermore, we compared the ranges of felt earthquakes(the 2013 M7 Lushan earthquake and the 1970 MS6.2 Dayi earthquake)and suggest that the magnitude of the 1327 Tianquan earthquake is more possible between 6½ and 7. The southern segment of the Longmen Shan fault zone behaves as a thrust fault system consisting of several sub-paralleled faults and its deep structure shows multiple layers of decollement, which might disperse strain accumulation effectively and make the thrust system propagate forward into the foreland basin, creating a new decollement on a gypsum-salt bed. The soft bed is thick and does not facilitate to constrain fault deformation and accumulate strain, which produces a weak surface tectonic expression and seismic activity along the southern segment, this is quite different from that of the middle and northern segments of the Longmen Shan fault zone.  相似文献   

13.
Anqiu-Juxian Fault is an important fault in the Tanlu fault zone, with the largest seismic risk, the most recent activity date and the most obvious surface traces. It is also the seismogenic fault of the Tancheng M8 1/2 earthquake in 1668. There are many different views about the southern termination location of surface rupture of the Tancheng earthquake and the Holocene activity in Jiangsu segment of this fault. Research on the latest activity time of the Jiangsu segment of Anqiu-Juxian Fault, particularly the termination location of surface rupture of the Tancheng earthquake, is of great significance to the assessment of its earthquake potential and seismic risk. Based on trench excavation on the Jiangsu segment of Anqiu-Juxian Fault, we discuss the time and characteristics of its latest activity. Multiple geological sections from southern Maling Mountain to Chonggang Mountain indicate that there was an ancient seismic event occurring in Holocene on the Jiangsu segment of Anqiu-Juxian Fault. We suggest the time of the latest seismic event is about(4.853±0.012)~(2.92±0.3)ka BP by dating results. The latest activity is characterized by thrust strike-slip faulting, with the maximum displacement of 1m. Combined with the fault rupture characteristics of each section, it is inferred that only one large-scale paleo-earthquake event occurred on the Jiangsu segment of Anqiu-Juxian Fault since the Holocene. The upper parts of the fault are covered by horizontal sand layers, not only on the trench in the west of Chonggang mountain but also on the trench in Hehuan Road in Suqian city, which indicates that the main part of the Jiangsu segment of Anqiu-Juxian Fault was probably not the surface rupture zone of the 1668 Tancheng M8 1/2 earthquake. In short, the Jiangsu segment of Anqiu-Juxian Fault has experienced many paleo-earthquake events since the late Pleistocene, with obvious activity during the Holocene. The seismic activities of the Jiangsu segment of Anqiu-Juxian Fault have the characteristics of large magnitude and low frequency. The Jiangsu segment of Anqiu-Juxian Fault has the deep tectonic and seismic-geological backgrounds of big earthquakes generation and should be highly valued by scientists.  相似文献   

14.
《Journal of Geodynamics》1999,27(4-5):451-468
The seismic activity of the Sinai subplate region on the basis of both historical (2200B.C.–1900 A.D.) and recent (1900–1995) earthquake catalogs have been evaluated.Moderateand large earthquakes occurred mainly at the subplate boundaries, Dead Sea Fault (DSF) systemin the east, Cyprean arc in the north, and Suez rift in the southwest.Along the Dead Sea Fault system the activity concentrated at the southern andcentralsegments. The earthquake distribution appears to have a tendency to cluster in time andspace.The swarms (February, 1983; April, 1990; August, 1993 and November, 1995) in the GulfofAqaba indicate that the southern segment of the Dead Sea Fault system is the mostseismogenicthrough the last two decades. North of the Dead Sea depression the seismic activitytends to haveoccurred with NW trend to extend under the Levantine Sea. Although the northernsegment ofthe Dead Sea Fault system is well defined from geological, geophysical and historicalearthquakeactivity recent seismic activity is practically absent especially north of Latitude 34°N.In the eastern Mediterranean the seismicity is much higher in the area of the Hellenicarcthan in the Cyprean arc. Moreover, the activity occurs in a wide belt suggesting that theplateboundary is a deformation zone instead of a single line.The seismic activity in the Gulf of Suez is scattered and does not have any distincttrend.However, three active zones are delineated. At the mouth of the gulf most of activityisconcentrated where the Sinai triple junction (Africa, Arabia, Sinai) is situated. The centralpartand the northern part of the gulf include the adjacent area as far as the river Nile. Actually,theactivity is markedly decreased from south to north.Although there is no seismological evidence that the Suez rift continues into theeasternMediterranean, the activity in the Gulf of Suez region cannot be ignored.The parameters of magnitude-frequency relation (a, b) indicate thatthelevel of earthquake activity in the Sinai subplate region is generally moderate. Moreover,theenergy release curve shows a regular trend and reflects occasional high activity. © 1999ElsevierScience Ltd. All rights reserved.  相似文献   

15.
The 2010 Mentawai earthquake (magnitude 7.7) generated a destructive tsunami that caused more than 500 casualties in the Mentawai Islands, west of Sumatra, Indonesia. Seismological analyses indicate that this earthquake was an unusual “tsunami earthquake,” which produces much larger tsunamis than expected from the seismic magnitude. We carried out a field survey to measure tsunami heights and inundation distances, an inversion of tsunami waveforms to estimate the slip distribution on the fault, and inundation modeling to compare the measured and simulated tsunami heights. The measured tsunami heights at eight locations on the west coasts of North and South Pagai Island ranged from 2.5 to 9.3 m, but were mostly in the 4–7 m range. At three villages, the tsunami inundation extended more than 300 m. Interviews of local residents indicated that the earthquake ground shaking was less intense than during previous large earthquakes and did not cause any damage. Inversion of tsunami waveforms recorded at nine coastal tide gauges, a nearby GPS buoy, and a DART station indicated a large slip (maximum 6.1 m) on a shallower part of the fault near the trench axis, a distribution similar to other tsunami earthquakes. The total seismic moment estimated from tsunami waveform inversion was 1.0 × 1021 Nm, which corresponded to Mw 7.9. Computed coastal tsunami heights from this tsunami source model using linear equations are similar to the measured tsunami heights. The inundation heights computed by using detailed bathymetry and topography data and nonlinear equations including inundation were smaller than the measured ones. This may have been partly due to the limited resolution and accuracy of publically available bathymetry and topography data. One-dimensional run-up computations using our surveyed topography profiles showed that the computed heights were roughly similar to the measured ones.  相似文献   

16.
The 2008 M w 7.9 Wenchuan produced a ~285–300-km-long coseismic surface rupture zone, including a 60-km-long segment along the Qingchuan fault, the northeastern segment of the Longmen Shan Thrust Belt (LSTB), Sichuan Basin, central China. Field investigations, trench excavations, and radiocarbon dating results reveal that (i) the Qingchuan fault is currently active as a seismogenic fault, along which four morphogenic earthquakes including the 2008 Wenchuan earthquake occurred in the past ca. 3500 years, suggesting an average millennium recurrence interval of morphogenic earthquakes in the late Holocene; (ii) the most recent event prior to the 2008 Wenchuan earthquake took place in the period between AD 1400 and AD 1100; (iii) the penultimate paleoseismic event occurred in the period around 2000 years BP in the Han Dynasty (206 BC–AD 220); (iv) the third paleoseismic event occurred in the period between 900 and 1800 BC; and (v) at least three seismic faulting events occurred in the early Holocene. The present results are comparable with those inferred in the central and southwestern segments of the LSTB within which the Wenchuan magnitude earthquakes occurred in a millennium recurrence interval, that are in contrast with previous estimates of 2000–10,000 years for the recurrence interval of morphogenic earthquakes within the LSTB and thereby necessitating substantial modifications to existing seismic hazard models for the densely populated region at the Sichuan region.  相似文献   

17.
—We present relocations of over 220 historical and recent earthquakes in the northwestern part of Irian Jaya, in the context of the large earthquakes of 1979 and 1996. Our results document continuous activity on a 420-km segment of the Sorong Fault, with a possible extension over an additional 330 km to the west. We also show that some level of activity did take place on the New Guinea Trench prior to the 1996 Biak earthquake, and relocate a large (M PAS = 7.4) event on 02 April 1947 to the trench, at 138°E. We speculate that the large earthquake of 26 May 1914 may also have taken place on the New Guinea Trench. We study the pattern of activity following the 1979 Yapen earthquake, which triggered stress release in the Pandaidori Islands, also the location of stress transfer following the 1996 Biak earthquake.  相似文献   

18.
The complete surface deformation of 2015 Mw 8.3 Illapel, Chile earthquake is obtained using SAR interferograms obtained for descending and ascending Sentinel-1 orbits. We find that the Illapel event is predominantly thrust, as expected for an earthquake on the interface between the Nazca and South America plates, with a slight right-lateral strike slip component. The maximum thrust-slip and right-lateral strike slip reach 8.3 and 1.5 m, respectively, both located at a depth of 8 km, northwest to the epicenter. The total estimated seismic moment is 3.28 × 1021 N.m, corresponding to a moment magnitude Mw 8.27. In our model, the rupture breaks all the way up to the sea-floor at the trench, which is consistent with the destructive tsunami following the earthquake. We also find the slip distribution correlates closely with previous estimates of interseismic locking distribution. We argue that positive coulomb stress changes caused by the Illapel earthquake may favor earthquakes on the extensional faults in this area. Finally, based on our inferred coseismic slip model and coulomb stress calculation, we envision that the subduction interface that last slipped in the 1922 Mw 8.4 Vallenar earthquake might be near the upper end of its seismic quiescence, and the earthquake potential in this region is urgent.  相似文献   

19.
Numerous historical reports of damaging earthquakes in the Levant have accumulated over the last 3000 years. Here, we screen that information and focus on the damaging earthquakes that affected Israel from the second millennia BCE to the 1927 CE Jericho earthquake and list the earthquakes by date, of major damage, type of sequence, and degree of size. The compilation results in three different lists: (i) 71 reliable earthquakes that in our opinion were most probably associated with the Dead Sea Transform (DST) and affected Israel and its close surroundings; (ii) 41 questionable earthquakes that should be re-evaluated or ignored; and (iii) 46 earthquakes that probably occurred but were erroneously associated with damage in Israel. What emerges from the list of the reliable earthquakes is that (i) Israel and its close surroundings suffered damage about 32 times during the last two millennia, that is, once in about 60 years, although not regularly; (ii) 21 of the earthquakes occurred during the last millennia, i.e., an event every ~45 years; and (iii) three intervals of increased reporting are noticed: between the fourth and the mid-eighth century, from the beginning of the eleventh to the end of the thirteenth century, and from the end of the eighteenth century up to the last entry in 1927, though this period may be extended until today. In-depth evaluation of the changing regimes over time within the study area, the historical reports of earthquake damage outside of Israel, and comparison with physical paleo- and archaeo-seismology evidence, such as the “137–206” and “165–236” paleoseismic earthquakes for which there is no historical match, indicates that the historical list is far from being complete. Thus, we argue that the apparent cycles of historical reporting do not necessarily reflect the actual rate of seismic activity and further investigation is needed to establish a compiled, multi-sourced list to decipher the true nature of cycles of strong earthquakes in this region during historical times.  相似文献   

20.
利用D-InSAR技术研究西藏改则地震同震形变场   总被引:2,自引:1,他引:1       下载免费PDF全文
针对2008年1月9日MW6.4西藏改则地震和2008年1月16日的MW5.9余震,通过两通(2-pass)加外部DEM差分干涉处理技术(D-InSAR),提取了地震区域2次地震累积的视线向(LOS)同震形变场。结果表明:发震断层均为正断层,位于依布茶卡-日干配错断裂端点附近。主震发震断层走向为N30°E,余震发震断层走向为N21°E,两断层距离约7km;在影像上主震发震断层有造成地表破裂的痕迹,余震未见地表破裂的痕迹;这次地震造成的同震形变场长约30km,宽约20km,主震断层上盘和下盘视线向最大形变量分别为39.2cm和11.2cm,两盘相对位错达50.4cm,余震造成的视线向形变量为9.4cm  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号