首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Experimental investigations have been done to analyze turbulent structures in curved sand bed channels with and without seepage. Measures of turbulent statistics such as time‐averaged near‐bed velocities, Reynolds stresses, thickness of roughness sublayer and shear velocities were found to increase with application of downward seepage. Turbulent kinetic energy and Reynolds normal stresses are increased in the streamwise direction under the action of downward seepage, causing bed particles to move rapidly. Analysis of bursting events shows that the relative contributions of all events (ejections, sweeps and interactions) increase throughout the boundary layer, and the thickness of the zone of dominance of sweep events, which are responsible for the bed material movement, increases in the case of downward seepage. The increased sediment transport rate due to downward seepage deforms the cross‐sectional geometry of the channel made of erodible boundaries, which is caused by an increase in flow turbulence and an associated decrease in turbulent kinetic energy dissipation and turbulent diffusion.  相似文献   

2.
This work addresses the temporal dynamics of riparian vegetation in large braided rivers, exploring the relationship between vegetation erosion and flood magnitude. In particular, it investigates the existence of a threshold discharge, or a range of discharges, above which erosion of vegetated patches within the channel occurs. The research was conducted on a 14 km long reach of the Tagliamento River, a braided river in north‐eastern Italy. Ten sets of aerial photographs were used to investigate vegetation dynamics in the period 1954–2011. By using different geographic information system (GIS) procedures, three aspects of geomorphic‐vegetation dynamics and interactions were addressed: (i) long‐term (1954–2011) channel evolution and vegetation dynamics; (ii) the relationship between vegetation erosion/establishment and flow regime; (iii) vegetation turnover, in the period 1986–2011. Results show that vegetation turnover is remarkably rapid in the study reach with 50% of in‐channel vegetation persisting for less than 5–6 years and only 10% of vegetation persisting for more than 18–19 years. The analysis shows that significant vegetation erosion is determined by relatively frequent floods, i.e. floods with a recurrence interval of c. 1–2.5 years, although some differences exist between sub‐reaches with different densities of vegetation cover. These findings suggest that the erosion of riparian vegetation in braided rivers may not be controlled solely by very large floods, as is the case for lower energy gravel‐bed rivers. Besides flow regime, other factors seem to play a significant role for in‐channel vegetation cover over long time spans. In particular, erosion of marginal vegetation, which supplies large wood elements to the channel, increased notably over the study period and was an important factor for in‐channel vegetation trends. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
Quantifying incipient sediment motion in vegetated open channel flow is pivotal for estimating bed load transport and the aquatic ecological environment in rivers.A new formula is developed to predict the critical flow velocity for incipient sediment motion in the presence of emergent vegetation,by incorporating the influence of vegetation drag that characterizes the effects of mean flow and turbulence on sediment movement.The proposed formula is shown to agree with existing experimental data.Mo...  相似文献   

4.
Sheet flow hydrodynamics over a non-uniform sand bed channel   总被引:1,自引:0,他引:1  
The current study experimentally investigates the flow characteristics and temporal variations in the sheet flow profile of a non-uniform sand bed channel. Experiments were done to explore turbulent structures in the presence of a sheet flow layer with and without seepage. The turbulent events, such as stream wise velocity, Reynolds shear stresses, and turbulence intensities were found to be increasing and vertical velocity was found decreasing with a sheet layer. The presence of a sheet layer also effects the turbulent energy production and energy dissipation. All the turbulence parameters with and without a sheet layer have also been influenced by the presence of downward seepage. The rate of sheet flow movement is increased with seepage, owing to increased turbulence with seepage. The current study used wavelet analysis on temporally lagged spatial bed elevation profiles obtained from a set of laboratory experiments and synchronized the wavelet coefficients with bed elevation fluctuation at different spatial scales. A spatial cross correlation analysis at multiple scales, based on the wavelet coefficients, has been done on these bed elevation datasets to observe the effect of downward seepage on the dynamic behavior of sheet flow at different length scales. It is found that seepage increases average bed celerity and also increases the celerity of sheet flow of similar length scales. This increase in the celerity has been hypothesized as the increase of sheet flow movement as well as the increase in turbulent parameters with seepage, which destabilizes the bed particles resulting in a disruption in the continuous propagation pattern of the sheet flow. The increase of sheet flow celerity with seepage is confirmed from the saturation level of the wavelet power spectra of the bed elevation series. The presence of seepage also affects the non-uniformity of collective sheet material.  相似文献   

5.
This study, using an experimental approach, focuses on the effect of downward seepage on a threshold alluvial channel morphology and corresponding turbulent flow characteristics. In all the experiments, we observed that the streamwise time‐averaged velocities and Reynolds shear stresses were increased under the influence of downward seepage. Scales of eddy length and eddy turnover time were significantly increased with the application of downward seepage, leading to sediment transport and initiation of bedforms along the channel length. As the amount of seepage discharge increased, eddy length and turnover time were further increased, causing the development of larger bedforms. It was revealed that the geometry of bedforms was linked with the size of eddies. In this work, statistics of bedform dynamics are presented in terms of multi‐scalar bedforms in the presence of seepage. These multi‐scalar ubiquitous bedforms cast a potential impact on flow turbulence as well as stream bed morphology in channels. We used wavelet to analyse temporally lagged spatial bed elevation profiles that were obtained from a set of laboratory experiments and synchronized the wavelet coefficients with bed elevation fluctuations at different length scales. A spatial cross‐correlation analysis, based on the wavelet coefficients, was performed on these bed elevation datasets to observe the effect of downward seepage on the dynamic behaviour of bedforms at different length scales. It was found that celerity of bedforms reduced with increase in seepage percentage. Bedform celerity was best approximated by a probability density function such as Rayleigh distribution under varying downward seepage. Further, statistical analysis of physical parameters of bedforms ascertained that the reduction in bedform celerity was a result of increased bedform size. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

6.
In this experimental study,the turbulent flow in a channel with vegetation by using sprouts of wheat on channel bed was investigated.Two different aspect ratios of channel were used.An Acoustic Doppler Velocimetry was used to measure parameters of turbulent flow over submerged sprouts of wheat,such as velocity profiles.The log law and the Reynolds shear stress distribution were applied. Results indicate that the position of the maximum turbulence intensity superposes on the inflection point situated over the top of submerged vegetation cover.Quadrant analysis shows that near the vegetation bed,the sweeps and ejections appear to be the most dominant phenomenon,while far from the vegetated bed,the outward is dominant event.Results also show that the aspect ratio plays an important role on the contribution of the different bursting events for Reynolds stress determination.  相似文献   

7.
The influence of emergent and submerged macrophytes on flow velocity and turbulence production is demonstrated in a 140 m reach of the River Blackwater in Farnborough, Hampshire, UK. Macrophyte growth occurs in patches and is dominated by Sparganium erectum and Sparganium emersum. In May 2001, patches of S. erectum were already established and occupied 18% of the channel area. The flow adjusted to these (predominantly lateral) patches by being channelled through a narrower cross‐section. The measured velocity profiles showed a logarithmic form, with deviations attributable to topographic control. The channel bed was the main source of turbulence. In September 2001, in‐stream macrophytes occupied 27% of the channel, and overhanging bank vegetation affected 32% of the area. Overall flow resistance, described by Manning's n, showed a threefold increase that could be attributed to the growth of S. emersum in the middle of the channel. Velocity profiles showed different characteristic forms depending on their position relative to plant stems and leaves. The overall velocity field had a three‐dimensional structure. Turbulence intensities were generally higher and turbulence profiles tended to mirror the velocity profiles. Evidence for the generation of coherent eddies was provided by ratios of the root mean square velocities. Spectral analysis identified deviations from the Kolmogorov ?5/3 power law and provided statistical evidence for a spectral short‐cut, indicative of additional turbulence production. This was most marked for the submerged vegetation and, in some instances, the overhanging bank vegetation. The long strap‐like leaves of S. emersum being aligned approximately parallel to the flow and the highly variable velocity field created by the patch arrangement of macrophytes suggest that the dominant mechanism for turbulence production is vortex shedding along shear zones. Wake production around individual stems of S. emersum close to the bed may also be important locally. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

8.
Measurements from a fixed‐bed, Froude‐scaled hydraulic model of a stream in northeastern Vermont demonstrate the importance of forested riparian vegetation effects on near‐bank turbulence during overbank flows. Sections of the prototype stream, a tributary to Sleepers River, have increased in channel width within the last 40 years in response to passive reforestation of its riparian zone. Previous research found that reaches of small streams with forested riparian zones are commonly wider than adjacent reaches with non‐forested, or grassy, vegetation; however, driving mechanisms for this morphologic difference are not fully explained. Flume experiments were performed with a 1:5 scale, simplified model of half a channel and its floodplain, mimicking the typical non‐forested channel size. Two types of riparian vegetation were placed on the constructed floodplain: non‐forested, with synthetic grass carpeting; and forested, where rigid, randomly distributed, wooden dowels were added. Three‐dimensional velocities were measured with an acoustic Doppler velocimeter at 41 locations within the channel and floodplain at near‐bed and 0·6‐depth elevations. Observations of velocity components and calculations of turbulent kinetic energy (TKE), Reynolds shear stress and boundary shear stress showed significant differences between forested and non‐forested runs. Generally, forested runs exhibited a narrow band of high turbulence between the floodplain and main channel, where TKE was roughly two times greater than TKE in non‐forested runs. Compared to non‐forested runs, the hydraulic characteristics of forested runs appear to create an environment with higher erosion potential. Given that sediment entrainment and transport can be amplified in flows with high turbulence intensity and given that mature forested stream reaches are wider than comparable non‐forested reaches, our results demonstrated a possible driving mechanism for channel widening during overbank flow events in stream reaches with recently reforested riparian zones. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
This paper presents an approach to modeling the depth-averaged velocity and bed shear stress in compound channels with emergent and submerged vegetation. The depth-averaged equation of vegetated compound channel flow is given by considering the drag force and the blockage effect of vegetation, based on the Shiono and Knight method (1991) [40]. The analytical solution to the transverse variation of depth-averaged velocity is presented, including the effects of bed friction, lateral momentum transfer, secondary flows and drag force due to vegetation. The model is then applied to compound channels with completely vegetated floodplains and with one-line vegetation along the floodplain edge. The modeled results agree well with the available experimental data, indicating that the proposed model is capable of accurately predicting the lateral distributions of depth-averaged velocity and bed shear stress in vegetated compound channels with secondary flows. The secondary flow parameter and dimensionless eddy viscosity are also discussed and analyzed. The study shows that the sign of the secondary flow parameter is determined by the rotational direction of secondary current cells and its value is dependent on the flow depth. In the application of the model, ignoring the secondary flow leads to a large computational error, especially in the non-vegetated main channel.  相似文献   

10.
The mechanism of energy balance in an open-channel flow with submerged vegetation was investigated. The energy borrowed from the local flow, energy spending caused by vegetation drag and flow resistance, and energy transition along the water depth were calculated on the basis of the computational results of velocity and Reynolds stress. Further analysis showed that the energy spending in a cross-section was a maximum around the top of the vegetation, and its value decreased progressively until reaching zero at the flume bed or water surface. The energy borrowed from the local flow in the vegetated region could not provide for spending; therefore, surplus borrowed energy in the non-vegetated region was transmitted to the vegetated region. In addition, the total energy transition in the cross-section was zero; therefore, the total energy borrowed from the flow balanced the energy loss in the whole cross-section. At the same time, we found that there were three effects of vegetation on the flow: turbulence restriction due to vegetation, turbulence source due to vegetation and energy transference due to vegetation, where the second effect was the strongest one.  相似文献   

11.
The paper addresses the problem of the resistance due to vegetation in an open channel flow, characterized by partially and fully submerged vegetation formed by colonies of bushes. The flow is characterized by significant spatial variations of velocity between vertical profiles that make the traditional approach based on time averaging of turbulent fluctuations inconvenient. A more useful procedure, based on time and spatial averaging (Double-Averaging Method) is applied for the flow field analysis and characterization. The vertical distribution of mean velocity and turbulent stresses at different spatial locations has been measured with a 3D Acoustic Doppler Velocimeter (ADV) for two different vegetation densities where fully submerged real bushes (salix pentandra) have been used. Velocity measurements were completed together with the measurements of drag exerted on the flow by bushes at different flow depths. The analysis of velocity measurements allows depicting the fundamental characteristics of both the mean flow field and turbulence. The experimental data show that the contribution of form-induced stresses to the momentum balance cannot be neglected. The mean velocity profiles and the spatially averaged turbulent intensity profiles allow inferring that the vegetation density is a driving parameter for the development of a mixing layer at the canopy top in the case of submerged vegetation. Moreover, the net upward turbulent momentum flux, evaluated with the methodology proposed by Lu and Willmarth (1973), appears to be damped for increased vegetation density; this finding can rationally explain the reduction of the suspended sediment transport capacity typically observed in free surface flows over a vegetated bed.  相似文献   

12.
The effects of aquatic macrophytes on flow and turbulence were studied in a tightly curving meander bend. Three field measurement campaigns were carried out within a one year period to capture effects of seasonal changes in macrophyte cover. They comprised three‐dimensional velocity measurements and mappings of vegetation cover and bathymetry. Flow accelerates and converges over the run into an axial pool in a jet‐like flow pattern bordered by outer and inner bank flow separation zones. The jet and widening of the cross‐section anticipate helical flow until the second half of the bend, where an asymmetric pool developed. Submerged vegetation at the riffles preserves the jet at much lower discharges during the summer period by concentrating high momentum fluid near the surface. Plants locally modify the velocity and stress patterns, reduce bed shear stresses, create zones of fine sediment accumulation and reinforce the bed and banks with roots and rhizomes. Plant patches colonising the banks and the point bar confine secondary flow cells laterally and affect shape and magnitude of the transverse flow profiles near their edges. The morphology of the bend was very stable over the observation period and neither bank erosion nor pool scouring occurred. However, fine sediments accumulate within vegetation patches and in the recirculation zones while the remaining open areas tend to erode slightly. With the decay of macrophytes in winter, sediment accumulations are mobilised again and the bathymetry levels, supporting cyclic models of morphologic change in vegetated bends. In the second part of the paper, semi‐empirical models for the three predominant flow types were tested and discussed; velocity and stress models of vegetated mixing layers and plane turbulent jets, and Rozovskii's model for the transverse flow in bends. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
Field, laboratory, and numerical modelling research are increasingly demonstrating the potential of riparian tree colonization and growth to influence fluvial dynamics and the evolution of fluvial landforms. This paper jointly analyses multi‐temporal, multispectral ASTER data, continuous river stage and discharge data, and field observations of the growth rates of the dominant riparian tree species (Populus nigra) along a 21 km reach of the Tagliamento River, Italy. Research focuses on the period 2004–2009, during which there was a bankfull flood on 24 October 2004, followed by 2 years with low water levels, nearly 2 years with only modest flow pulses, and then a final period from 15 August 2008 that included several intermediate to bankfull flow events. This study period of increasing flow disturbance allows the exploration of vegetation dynamics within the river's active corridor under changing flow conditions. The analysis demonstrates the utility of ASTER data for investigating vegetation dynamics along large fluvial corridors and reveals both spatial and temporal variations in the expansion, coalescence, and erosion of vegetated patches within the study reach. Changes in the extent of the vegetated area and its dynamics vary along the study reach. In sub‐reaches where riparian tree growth is vigorous, the vegetated area expands rapidly during time periods without channel‐shaping flows, and is subsequently able to resist erosion by bankfull floods. In contrast, in sub‐reaches where tree growth is less vigorous, the vegetated area expands at a slower rate and is more readily re‐set by bankfull flood events. This illustrates that the rate of growth of riparian trees is crucial to their ability to contribute actively to river corridor dynamics. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
Weiming Wu 《Ocean Dynamics》2014,64(7):1061-1071
A 3-D shallow-water flow model has been developed to simulate the flow in coastal vegetated waters with short waves. The model adopts the 3-D phase-averaged shallow-water flow equations with radiation stresses induced by short waves. It solves the governing equations using an implicit finite volume method based on quadtree rectangular mesh in the horizontal plane and stretching mesh in the vertical direction. The flow model is coupled with a spectral wave deformation model called CMS-Wave. The wave model solves the spectral wave-action balance equation and provides wave characteristics to the flow model. The model considers the effects of vegetation on currents and waves by including the drag and inertia forces of vegetation in the momentum equations and the wave energy loss due to vegetation resistance in the wave-action balance equation. The model has been tested using several sets of laboratory experiments, including steady flows in a straight channel with submerged vegetation and in a compound channel with vegetated floodplain and random waves through a vegetated channel and on a vegetated beach slope. The calculated water levels, current velocities, and wave heights are in general good agreement with the measured data.  相似文献   

15.
ABSTRACT

In this study, the effect of single and double row piles for reducing scouring in a mild-curved river meander was studied experimentally. The experimental study focused on the effect of vegetation on bed topography in a mild-curved meander bend. The experimental tests were conducted in a laboratory flume under clear water flow conditions. A series of experimental tests were carried out with a fixed bed and non-vegetated and vegetated moveable beds with different vegetation patterns. Analysis of the flow characteristics indicated that when the bed was mobile with vegetation on the inner bank, the core of maximum streamwise velocity shifted towards the centreline of the bend. Additionally, the cross-sectional kinetic energy increased from 0.05% for the fixed-bed test to 4.30% for the test with a double row of vegetation. Furthermore, the presence of vegetation was found to increase the uniformity of the distribution of turbulence intensity and to reduce the Reynolds shear stress along the test section. Also, the mass fluxes increased from the outer bank to the inner bank and from the upstream towards the downstream of the bend. Finally, comparison of bed topography in vegetated and non-vegetated channels showed that the maximum scour depth at the bend apex was reduced by 77% and 62% for the cases with one row and two rows of vegetation, respectively. The results of this study were compared with previously proposed models for predicting the vertical distribution of the streamwise velocity at the bend apex. It was found that Johannesson and Parker’s model (JPM) gave the lowest value of standard error. The above findings are useful in river training works and, in particular, for restoration of meandering rivers.
Editor D. M.C. Acreman; Associate editor C. Cudennec  相似文献   

16.
Vegetation plays a critical role in modifying inundation and flow patterns in salt marshes. In this study, the effects of vegetation are derived and implemented in a high‐resolution, subgrid model recently developed for simulating salt marsh hydrodynamics. Vegetation‐induced drag forces are taken into account as momentum sink terms. The model is then applied to simulate the flooding and draining processes in a meso‐tidal salt marsh, both with and without vegetation effects. Marsh inundation and flow patterns are significantly changed with the presence of vegetation. A smaller area of inundation occurs when vegetation is considered. Tides propagate both on the platform and through the channels when vegetation is absent, whereas flows concentrate mainly in channels when vegetation is present. Local inundation on vegetated platforms is caused mainly by water flux spilled from nearby channels, with a flow direction perpendicular to the channel edges, whereas inundation on bare platforms has contributions from both local spilled‐over water flux and remote advection from adjacent platforms. The flooding characteristics predicted by the model showed a significant difference between higher marsh and lower marsh, which is consistent with the wetlands classification by the National Wetlands Inventory (NWI). The flooding characteristics and spatial distribution of hydroperiod are also highly correlated with the vegetation zonation patterns observed in Google Earth imagery. Regarding the strong interaction between flow, vegetation and geomorphology, the conclusion highlights the importance of including vegetation in the modeling of salt marsh dynamics. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

17.
Sediment mining in rivers may have a major impact on river geomorphology and research is required to quantify these impacts. In this research, experimental studies were conducted to analyse the morphological changes of channel bed and the turbulent characteristics of flow in the presence of mining. The channel bed profile shows erosion at the bank of the pit and that the erosion expands to the whole width of the channel and propagates downstream with time. The deposition of sediment occurs along the upstream edge of the pit and the depth of the pit decreases with time. Velocity reversal occurs at the central bottom of the pit related to a recirculation zone. Reynolds shear stress and the turbulent intensities become higher in the mining pit region and downstream of it as compared to the upstream section, causing a more rapid movement of bed particles. Analysis of the bursting phenomenon shows that the contribution of sweep and ejection events to the total Reynolds shear stress is more dominant over outward and inward interaction events. The dominance of the sweep event over ejection is observed at the near‐bed region for all the sections, but the depth range of dominance of sweep events in the pit and downstream of the pit is found to be more than the upstream. The increase in thickness is responsible for the increase in bed material transport. The increased sediment transport capacity at the mining pit and downstream of it caused the deformation and lowering of channel bed downstream. An empirical formulation of bedload transport for mining induced channels is derived from two different sized uniform bed materials. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

18.
Saltmarsh vegetation significantly influences tidal currents and sediment deposition by decelerating the water velocity in the canopy. In order to complement previous field results, detailed profiles of velocity and turbulence were measured in a laboratory flume. Natural Spartina anglica plants were installed in a 3 m length test section in a straight, recirculating flume. Different vegetation densities, water depths and surface velocities were investigated. The logarithmic velocity profile, which existed in front of the vegetation, was altered gradually to a skimming-flow profile, typical for submerged saltmarsh vegetation. The flow reduction in the denser part of the canopy also induced an upward flow (the current was partially deflected by the canopy). The skimming flow was accompanied by a zone of high turbulence co-located with the strongest velocity gradient. This gradient moved upward and the turbulence increased with distance from the edge of the vegetation. Below the skimming flow, the velocity and the turbulence were low. The structure of the flow in the canopy was relatively stable 2 m into the vegetation. The roughness length (z0) of the vegetation depends only on the vegetation characteristics, and is not sensitive to the current velocity or the water depth. Both the reduced turbulence in the dense canopy and the high turbulence at the top of the canopy should increase sediment deposition. On the other hand, the high turbulence zone just beyond the vegetation edge and the oblique upward flow may produce reduced sedimentation; a phenomenon that was observed near the vegetation edge in the field.  相似文献   

19.
Existing numerical investigations of dam-break flows rarely consider the effects of vegetation.This paper presents a depth-averaged two-dimensional model for dam-break flows over mobile and vegetated beds.In the model,both the consequences of reducing space for storing mass and momentum by the existence of vegetation and dragging the flow are considered:the former is considered by introducing a factor (1-c) to the flow depth,where c is the vegetation density;the later is considered by including an additional sink term in the momentum equations.The new governing equations are discretized by the finite volume method;and an existing second-order central-upwind scheme embedded with the hydrostatic reconstruction method for water depth,is used to estimate the fluxes;the source terms are estimated by either explicit or semi-explicit methods fulfilling the stability requirement.Laboratory experiments of dam-break flows or quasi-steady flows with/without vegetation effects/sediment transport are simulated.The good agreements between the measurements and the numerical simulations demonstrate a satisfactory performance of the model in reproducing the flow depth,velocity and bed deformation depth.Numerical case studies of six scenarios of dam-break flows over a mobile and vegetated bed are conducted.It is shown that when the area of the vegetation zone,the vegetation density,and the pattern of the vegetation distribution are varied,the resulted bed morphological change differs greatly,suggesting a great influence of vegetation on the dam-break flow evolution.Specifically,the vegetation may divert the direction of the main flow,hindering the flow and thus result in increased deposition upstream of the vegetation.  相似文献   

20.
Hydropower alteration of the natural flow and sediment regime can severely degrade hydromorphology, thereby threatening biodiversity and overall ecosystem processes of rivers and their floodplains. Using sequences of aerial images, we quantified seven decades (1938/1942–2013) of spatiotemporal changes in channel and floodplain morphology, as well as changes in the physical habitats, of three floodplain river reaches of the Swiss pre-Alps, two hydropower-regulated and one near-natural. In the Sarine River floodplain, within the first decades of hydropower impairment, the magnitude and frequency of flood events (Q2, Q10, Q30) decreased substantially. As a result, the area of pioneer floodplain habitats that depend on flood activity and sediment dynamic, such as bare sediments, decreased dramatically by approximately 95%. However, by 2013 vegetated areas had generally increased in comparison to the pre-regulation period in 1943, indicating general vegetative colonization. Between 1943 and 2013, the active channel underwent essential narrowing (up to 62% width reduction in the residual flow reach) and habitat turnover rates were very low (5% of the total floodplain area changed habitat type five to six times). In contrast, from the 1950s onwards, the near-natural floodplain of the Sense River experienced recurrent narrowing and widening, and frequent changes between bare and vegetated areas, reflecting the shifting habitat mosaic concept typical for natural floodplains. In the three reaches investigated, we found that the active floodplain width and erosion of vegetated areas were primarily controlled by medium to large floods (Q10, Q30), which combined with reduced time intervals between ordinary floods ≥ Q2 most likely mobilized streambed sediments and limited the ability of vegetation to establish itself on bare gravel bars within the parafluvial zone. These findings can contribute to restoration action plans such as controlled flooding and sediment replenishments in the Sarine and other floodplain rivers of the Alps. © 2020 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号