首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inductively coupled plasma mass spectrometry (ICP-MS) has been used to measure the concentration and isotopic composition of Pb in archaeological human and animal skeletal remains, soil from a village site of the Omaha tribe (U.S.A.) and cosmetic pigments.Lead concentrations in human bones from the Omaha tribe vary between 4.8 and 2570 μg/g, with younger people having the highest concentrations. Lead concentrations in animal bones from an Omaha village vary between 0.6 and 3.7 μg/g, and those of three soil samples range between 18 and 21 μg/g. Lead concentrations found in human bones from Anasazi (Utah, U.S.A.) and Alta (Peru) populations vary between 0.7 and 3.2 μg/g.Isotope ratios of a reagent grade Pb(NO3)2 solutions were measured by thermal ionization mass spectrometry (TIMS), as well as by ICP-MS to provide laboratory reference materials. The accuracy of the ICP-MS measurements relative to TIMS for the standard solution were found to be within 0.02–0.31% for206Pb/204Pb, 0.02–0.55% for207Pb/204Pb, and 0.16–0.56% for208Pb/204Pb. The precision of measurements on artifacts was 0.42–0.65% for206Pb/204Pb and 0.41–0.62% for207Pb/204Pb, whereas the precision for the same ratios for the bones was 0.85–1.8 and 0.82–1.67%, respectively. For the cosmetic lead-bearing pigments, a precision of 0.07–0.15% was found for both206Pb/204Pb and207Pb/204Pb ratios. Lead isotope ratios of artifacts give a radiogenic Pb signature, of which are close to signatures from PbZn mines of the central U.S. region. Lead isotope ratios of the pigments give non-radiogenic Pb signatures. Lead isotope ratios of the bones differ from those of the artifacts, and although similar in isotopic ratio to the pigments, they are more scattered, suggesting potential mixing of Pb from different regions.  相似文献   

2.
A new natural zircon reference material SA01 is introduced for U‐Pb geochronology as well as O and Hf isotope geochemistry by microbeam techniques. The zircon megacryst is homogeneous with respect to U‐Pb, O and Hf isotopes based on a large number of measurements by laser ablation‐inductively coupled plasma‐mass spectrometry (LA‐ICP‐MS) and secondary ion mass spectrometry (SIMS). Chemical abrasion isotope dilution thermal ionisation mass spectrometry (CA‐ID‐TIMS) U‐Pb isotopic analyses produced a mean 206Pb/238U age of 535.08 ± 0.32 Ma (2s, n = 10). Results of SIMS and LA‐ICP‐MS analyses on individual shards are consistent with the TIMS ages within uncertainty. The δ18O value determined by laser fluorination is 6.16 ± 0.26‰ (2s, n = 14), and the mean 176Hf/177Hf ratio determined by solution MC‐ICP‐MS is 0.282293 ± 0.000007 (2s, n = 30), which are in good agreement with the statistical mean of microbeam analyses. The megacryst is characterised by significant localised variations in Th/U ratio (0.328–4.269) and Li isotopic ratio (?5.5 to +7.9‰); the latter makes it unsuitable as a lithium isotope reference material.  相似文献   

3.
To evaluate in situ Pb dating by laser ablation multiple-collector inductively coupled plasma mass spectrometry (LA-MC-ICP-MS), we analysed apatite, sphene, and monazite from Paleoproterozoic metamorphic rocks from West Greenland. Pb isotope ratios were also determined in the National Institute of Standards and Technology (NIST) 610 glass standard and were corrected for mass fractionation by reference to the measured thallium isotope ratio. The NIST 610 glass was used to monitor Pb isotope mass fractionation in the low Tl/Pb accessory minerals. Replicate analyses of the glass (1 to 2 min) yielded ratios with an external reproducibility comparable to conventional analyses of standard reference material 981 by thermal ionisation mass spectrometry (TIMS). Mineral grains were generally analysed with a 100-μm laser beam, although some monazite crystals were analysed at smaller spot sizes (10 and 25 μm). The common Pb isotope ratios required for age calculations were either measured on coexisting plagioclase by LA-MC-ICP-MS or could be ignored, as individual crystals exhibit sufficient Pb isotopic heterogeneity to perform isochron calculations on replicate analyses of single crystals. Mean mineral ages with the 204Pb ion beam measured in the multiplier were as follows: apatite, 1715 ± 23 m.y.; sphene, 1789 ± 11 m.y.; and monazite, 1783 to 1888 m.y., with relative uncertainties on individual monazite ages of <0.2% but highly reproducible age determinations on single monazite crystals (?1%). Isochron ages calculated from several mineral analyses without assumption of common Pb also yield precise age determinations. Apatite and monazite Pb ages determined by in situ Pb isotope analysis are identical to those determined by conventional TIMS analysis of bulk mineral separates, and the analytical uncertainties of these short laser analyses with no prior mechanical or chemical separation are comparable to those obtained by TIMS. Detailed examination of the sphene in situ age data does, however, show a small discrepancy between the LA-MC-ICP-MS and TIMS ages (∼1% younger). High-resolution mass scans of the sphene during ablation clearly showed several small and as yet unidentified isobaric interferences that overlap with the 207Pb peak at the resolution conditions for measurement of isotope ratios. These might account for the age discrepancy between the LA-MC-ICP-MS and TIMS sphene ages. LA-MC-ICP-MS is a rapid, accurate, and precise method for in situ determination of Pb isotope ratios that can be used for geochronological studies in a manner similar to an ion microprobe, albeit currently at a somewhat degraded spatial resolution. Further modifications to the LA-MC-ICP-MS system, such as improved sensitivity, ion transmission, and LA methodology, may lead to this type of instrument becoming the method of choice for many types of in situ Pb isotope dating.  相似文献   

4.
High precision isotope ratio and trace element determination can be achieved with modern quadrupole ICP-MS provided that short and long-term instrument performance is accurately monitored. Here we present results for the isotope ratios 6Li/7Li, 147Sm/149Sm, 160Dy/161Dy, 207Pb/206Pb, 208Pb/206Pb, 206Pb/204Pb and 235U/238U with which we determined long-term isotope ratio stability of relevance to both trace element and isotope determination. With respect to trace element determination, we first present long-term observations regarding oxide formation rates of Ba and Nd on light REE and heavy REE, as well as Zr on Ag. These showed good correlations and could be used to correct effectively the interference. The efficacy of this correction was demonstrated with analyses of the rock reference material BHVO-2 at both low and high oxide formation rates. Next, we studied the long-term reproducibility of a Dy isotope ratio that was measured to correct for the isobaric interference on Gd. It was found that, regardless of tuning condition, the ratio reproduced very well (0.58% RSD, 1s) and that the estimate of the Gd concentration did not suffer from the large correction (> 10%) caused by the Dy isobar. Long-term reproducibilities of Li, Sm and U isotope ratios, required for accurate mass bias correction when isotopically enriched internal standards of these elements are employed, were measured in the rock reference materials AGV-2 and JA-3 over a time period of up to 3 years. As expected, the Li isotope ratio showed the largest variability (RSD = 7%), but the other two ratios had relative external reproducibilities of only 1.01% (1s, U) and 0.67% (Sm). The mass bias-induced scatter in measurements for Sm and U was so small that the internal standard correction was effective, even for samples with high concentrations of these elements. With regard to Pb-isotope ratio determination, we also present long-term reproducibility for NIST SRM 982, run as an unknown and two accuracy tests for Pb separated from granitoids and from meteorites. It is demonstrated that the obtained ratios, including those involving 204Pb, are accurate relative to MC-ICP-MS determinations and of comparable precision to conventional TIMS analysis. The excellent agreement between all data sets shows the potential of modern quadrupole ICP-MS instrumentation for Pb-isotope determination, particularly for samples with very low Pb content.  相似文献   

5.
New zircon reference materials for in situ zircon radiogenic Hf isotope and stable Zr isotopic determinations made by laser ablation multi-collector inductively coupled plasma-mass spectrometry (LA-MC-ICP-MS) are required due to high data productivity and consequently high reference material consumption rate. This study examines a new natural zircon for Zr isotope ratios by double spike thermal ionisation mass spectrometry (TIMS), and for Hf isotopes by bulk solution nebuliser (SN)-MC-ICP-MS with both Zr and Hf determined by LA-MC-ICP-MS. A total of five zirconium isotope measurements from drilled zircons, determined by TIMS, yield a mean δ94/90ZrIPGP-Zr value of -0.09 ± 0.06‰ (2s). Five and eight hafnium isotope measurements for powders from the drilled zircons and Ban-1-4 by SN-MC-ICP-MS, yield mean 176Hf/177Hf ratios of 0.282985 ± 0.000011 (2s) and 0.282982 ± 0.000007 (2s), respectively. The mean δ94/90ZrIPGP-Zr value and 176Hf/177Hf ratio determined by LA-MC-ICP-MS analyses are -0.06 ± 0.09‰ (2s, n = 504) and 0.282985 ± 0.000035 (2s, n = 327), respectively. The isotopic homogeneities suggest that the Ban-1 zircon is a suitable reference material for microbeam Zr and Hf isotopic measurements.  相似文献   

6.
This paper evaluates the analytical precision, accuracy and long‐term reliability of the U‐Pb age data obtained using inductively coupled plasma–mass spectrometry (ICP‐MS) with a frequency quintupled Nd‐YAG (λ = 213nm) laser ablation system. The U‐Pb age data for seven standard zircons of various ages, from 28 Ma to 2400 Ma (FCT, SL13, 91500, AS3, FC1, QGNG and PMA7) were obtained with an ablation pit size of 30 μm diameter. For 207Pb/206Pb ratio measurement, the mean isotopic ratio obtained on National Institute of Standards and Technology (NIST) SRM610 over 4 months was 0.9105 ± 0.0014 (n = 280, 95% confidence), which agrees well with the published value of 0.9096. The time‐profile of Pb/U ratios during single spot ablation showed no significant difference in shape from NIST SRM610 and 91500 zircon standards. These results encouraged the use of the glass standard as a calibration standard for the Pb/U ratio determination for zircons with shorter wavelength (λ = 213 nm) laser ablation. But 206Pb/238U and 207Pb/235U ages obtained by this method for seven zircon standards are systematically younger than the published U‐Pb ages obtained by both isotope dilution–thermal ionization mass spectrometry (ID‐TIMS) and sensitive high‐resolution ion‐microprobe (SHRIMP). Greater discrepancies (3–4% younger ages) were found for the 206Pb/238U ages for SL13, AS3 and 91500 zircons. The origin of the differences could be heterogeneity in Pb/U ratio on SRM610 between the different disks, but a matrix effect accuracy either in the ICP ion source or in the ablation‐transport processes of the sample aerosols cannot be neglected. When the 206Pb/238U (= 0.2302) newly defined in the present study is used, the measured 206Pb/238U and 207Pb/235U ages for the seven zircon standards are in good agreement with those from ID‐TIMS and SHRIMP within ±2%. This suggests that SRM610 glass standard is suitable for ICP‐MS with laser ablation sampling (LA‐ICP‐MS) zircon analysis, but it is necessary to determine the correction factor for 206Pb/238U by measuring several zircon standards in individual laboratories.  相似文献   

7.
The development of the MC-ICP-MS method, which was launched about one decade ago and was largely stimulated by the need to solve geological problems, has opened a new avenue in isotope mass spectrometry. One of the advantages of this method is the possibility of applying a newly developed approach to the correction of analytical results for the effect of mass discrimination by normalizing the measured isotope ratios of an element to a reference (standard) isotope ratio of another element. This makes it possible to overcome the main disadvantage of conventional thermal ionization mass spectrometry (TIMS), in which the effect of mass discrimination cannot be fully taken into account during isotope analysis, and thus to implement a highly accurate method for the analysis of Pb-isotope composition. In application to the capability of the NEPTUNE MC-ICP mass spectrometer, we optimized and calibrated a method for high-accuracy Pb isotope analysis in solutions spiked with Tl, with all currently measured Pb-isotope ratios normalized to the standard 205Tl/203Tl ratio (TLN-MC-ICP-MS). The factors affecting the random and systematic analytical errors were examined, and the optimal operating regime and analytical conditions were determined. Much attention was paid to the correlation of the measurement results and the mass discrimination effect determined from the 205Tl/203Tl ratio. The value of the 205Tl/203Tl normalizing ratio was analytically determined through isotope analyses of the NIST SRM 981, and SRM 982 standard samples of Pb-isotope composition. The data obtained for two mixtures Tl + Pb (SRM 982) and Tl + Pb (SRM 981) in ten replicate analyses were 2.38898 ± 12 and 2.38883 ± 20, respectively. These results are in good mutual agreement, and their general mean 205Tl/203Tl = 2.3889 ± 1 coincides (within the error) with the recently published values of 2.3887 ± 7 [Collerson et al., 2002] and 2.3889 ± 1 [Thirlwall, 2002]. The precision of the method (±2SD), which was assayed by the long-term reproducibility of the results of replicate analyses of SRM 981 and seven galena samples (90 analyses) was 0.016–0.018% for the 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb ratios and 0.005 and 0.009% for the 207Pb/206Pb and 208Pb/206Pb ratios, respectively. The precision of the isotope analysis of common Pb was significantly improved (by factors of 6–10 for various isotope ratios) compared with the precision of TIMS techniques acceptable in isotope studies during three decades. The described method was applied to examine the Pb-isotope composition of approximately 250 samples of galena, scheelite, and pyrite from a number of well known (including large) gold, sulfied, and base-metal deposits. The precision of the method (0.01–0.02%) makes it possible to study small inter-and intra-phase differences in Pb-isotope ratios in hydrothermal and magmatic rocks, to assay the scale of regional and variations in the isotope composition of ore Pb, and to correlate the Pb-isotope composition of rocks and ores and reveal its evolutionary trends.  相似文献   

8.
Inductively coupled plasma-mass spectrometry (ICP-MS) is capable of measuring isotopic and elemental abundances in geologic materials easily and rapidly. Although the precision of isotope ratio data obtained by ICP-MS is inferior to that by thermal ionization mass spectrometry, it is adequate for application to a number of geochemical exploration problems.National Institute of Standards and Technology (NIST) Pb metal standard reference material 981 (NBS981), was used as the isotopic standard to correct the measured isotope intensities for mass discrimination. The mean relative standard deviation (RSD) of the determinations of the abundances of 206Pb, 207Pb, and 208Pb in the two other NIST Pb isotope reference materials, NBS981 and NBS982, was better than 0.3%, whereas the RSD for the determination of the less abundant 204Pb was 0.4%. Accuracy was demonstrated by repeated analysis of NBS981, NBS982, and NBS983. The Student t-statistic ranged between −1.75 and 2.04 for the abundances of the 4 Pb isotopes in the three NIST materials.Data from a suite of 13 uraninite-rich samples from Labrador demonstrate the ability of ICP-MS to determine age and geochemical information sufficient for regional interpretations. The determined radiogenic 207Pb/206Pb ratios of 12 of the samples give ages between 1697 and 1805 Ma with average uncertainties (one standard deviation) of 4 Ma, whereas one of the samples has an age of 495 ± 4 Ma. The average age of the 12 samples was 1752 ± 27 Ma. Along with the Pb isotope intensities, 232Th and 238U were measured and the U-Pb age determined from a fit of the 206Pb/238U vs. 207Pb/235U for 9 of the samples. The concordia intercept age of 1740 Ma for the best-fit line is in good agreement with the mean 207Pb/206Pb age of 1752 Ma.  相似文献   

9.
10.
Mass-spectrometric stable isotope measurements of CO2 use molecular ion currents at mass-to-charge ratios m/z 44, 45 and 46 to derive the elemental isotope ratios n(13C)/n(12C) and n(18O)/n(16O), abbreviated 13C/12C and 18O/16O, relative to a reference. The ion currents have to be corrected for the contribution of 17O-bearing isotopologues, the so-called ‘17O correction’. The magnitude of this correction depends on the calibrated isotope ratios of the reference. Isotope ratio calibrations are difficult and are therefore a matter of debate. Here, I provide a comprehensive evaluation of the existing 13C/12C (13R), 17O/16O (17R) and 18O/16O (18R) calibrations of the reference material Vienna Standard Mean Ocean Water (VSMOW) and CO2 generated from the reference material Vienna Pee Dee Belemnite (VPDB) by reaction with 100% H3PO4 at 25 °C (VPDB-CO2). I find , 18RVSMOW/10−6 = 2005.20 ± 0.45, 13RVPDB-CO2/10-6= 11124 ± 45, and 18RVPDB-CO2/10-6=2088.37±0.90. I also rephrase the calculation scheme for the 17O correction completely in terms of relative isotope ratio differences (δ values). This reveals that only ratios of isotope ratios (namely, 17R/13R and 13R17R/18R) are required for the 17O correction. These can be, and have been, measured on conventional stable isotope mass spectrometers. I then show that the remaining error for these ratios of isotope ratios can lead to significant uncertainty in the derived relative 13C/12C difference, but not for18O/16O. Even though inter-laboratory differences can be corrected for by a common ‘ratio assumption set’ and/or normalisation, the ultimate accuracy of the 17O correction is hereby limited. Errors of similar magnitude can be introduced by the assumed mass-dependent relationship between 17O/16O and 18O/16O isotope ratios. For highest accuracy in the 13C/12C ratio, independent triple oxygen isotope measurements are required. Finally, I propose an experiment that allows direct measurement of 13R17R/18R.  相似文献   

11.
选用磷酸为离子流发射剂,热表面电离质谱法分析纳克量级贫化铀样品的铀同位素比值,方法最大相对标准偏差2.9%。以233U为稀释剂,采用同位素稀释法对铀的含量进行测定,扩展不确定度为2.4%(K=2)。研究表明,在纳克量级的铀同位素比值测定中,来自铼带等铀本底的干扰影响不容忽视,需要进一步研究并扣除。  相似文献   

12.
In this study, to evaluate whether bias free Ca isotope ratios can be properly achieved by thermal ionisation mass spectrometry (TIMS) using the 42Ca–43Ca double‐spike technique without chemical purification, a series of comparable experiments (with or without column chemistry) were made on Ca‐dominated minerals and rocks. Minerals, including fluorite, calcite, titanite and apatite, displayed similar Ca isotope ratios with Δ44/40Cawith‐without ranging from ?0.02 to +0.07‰. For Ca‐rich rocks, we mainly focused on the carbonates since they are the main repositories of Ca at the surface of the Earth. Coral, stalagmite, carbonatite, dolomite, marble and limestone are studied here. Interestingly, δ44/40CaSRM 915a of these minerals and rocks without chemical purification displayed little drift compared with that of rocks with chemical purification, with Δ44/40Cawith‐without merely spanning from ?0.04 to +0.04‰. This implies that Ca isotope ratios can be achieved without column chemistry, possibly due to a property of TIMS in which Ca ions are only ionised at a target temperature and with a specific activator without ionising other ions. Therefore, for Ca‐dominated minerals or rocks, we suggest that column chemistry is unnecessary if they are totally dissolved and mixed in proper proportion with the 42Ca–43Ca double spike for TIMS measurement.  相似文献   

13.
A potential zircon reference material (BB zircon) for laser ablation‐inductively coupled plasma‐mass spectrometry (LA‐ICP‐MS) U‐Pb geochronology and Hf isotope geochemistry is described. A batch of twenty zircon megacrysts (0.5–1.5 cm3) from Sri Lanka was studied. Within‐grain rare earth element (REE) compositions are largely homogeneous, albeit with some variation seen between fractured and homogeneous domains. Excluding fractured cathodoluminescence bright domains, the variation in U content for all analysed crystals ranged from 227 to 368 μg g?1 and the average Th/U ratios were between 0.20 and 0.47. The Hf isotope composition (0.56–0.84 g/100 g Hf) is homogeneous within and between the grains – mean 176Hf/177Hf of 0.281674 ± 0.000018 (2s). The calculated alpha dose of 0.59 × 1018 g?1 for a number of BB grains falls within the trend of previously studied, untreated zircon samples from Sri Lanka. Aliquots of the same crystal (analysed by ID‐TIMS in four different laboratories) gave consistent U‐Pb ages with excellent measurement reproducibility (0.1–0.4% RSD). Interlaboratory assessment (by LA‐ICP‐MS) from individual crystals returned results that are within uncertainty equivalent to the TIMS ages. Finally, we report on within‐ and between‐grain homogeneity of the oxygen isotope systematic of four BB crystals (13.16‰ VSMOW).  相似文献   

14.
In both nature and synthetic experiments, the common iron oxide haematite (α‐Fe2O3) can incorporate significant amounts of U into its crystal structure and retain radiogenic Pb over geological time. Haematite is a ubiquitous component of many ore deposit types and, therefore, represents a valuable hydrothermal mineral geochronometer, allowing direct constraints to be placed on the timing of ore formation and upgrading. However, to date, no suitable natural haematite reference material has been identified. Here, a synthetic haematite U‐Pb reference material (MR‐HFO) is characterised using LA‐ICP‐MS and ID‐TIMS. Centimetre‐scale ‘chips’ of synthesised α‐Fe2O3 were randomly microsampled via laser ablation‐extraction and analysed using ID‐TIMS. Reproducible U/Pb and Pb/Pb measurements were obtained across four separate chips (n = 13). Subsequently, an evaluation of the suitability MR‐HFO in constraining U‐Pb data via LA‐ICP‐MS is presented using a selection of natural samples ranging from Cenozoic to Proterozoic in age. The MR‐HFO normalised U‐Pb ratios are more concordant and ages more accurate versus the same LA‐ICP‐MS spot analyses normalised to zircon reference material, when compared with independently acquired ID‐TIMS data from the same natural haematite grains. Results establish MR‐HFO as a suitable reference material for LA‐ICP‐MS haematite U‐Pb geochronology.  相似文献   

15.
The silicon isotope abundance ratios and atomic weights of NBS-28 and several other silicon isotope reference materials were determined in this study. For the calibration of the measurement procedure, two new synthetic isotope mixtures were prepared gravimetrically from highly enriched silicon isotope materials in the form of SiO2. All materials were converted into SiF4 gas and subsequently their silicon isotope ratios were measured on the SiF3+ species by using a gas source mass spectrometer MAT-253. The calibrated isotope abundance ratios of NBS-28 are 0.0507446 (26) for 29Si/28Si and 0.0341465 (15) for 30Si/28Si. The corresponding isotopic abundances are 92.17515(28)% for f(28Si), 4.67739(24)% for f(29Si) and 3.14746(14)% for f(30Si). The silicon molar mass of NBS-28 is determined to be 28.08653(11), which is 0.001 larger than previously reported values. In the meanwhile, the 29Si/28Si and 30Si/28Si isotope abundance ratios and atomic weights of SRM-990, IRMM-017, IRMM-018, GBW-04421 and GBW-04422 are also calibrated. These new calibrated data can improve the reliability and comparability of silicon isotope results using above calibrators.  相似文献   

16.
Barbados岛珊瑚礁高精度铀系年龄及讨论   总被引:3,自引:0,他引:3       下载免费PDF全文
马志邦  王兆荣 《地质科学》1999,34(1):116-122
应用同位素稀释法热电离质谱(TIMS)技术测定珊瑚礁的高精度铀系年龄。通过对BarbadosⅢ、Ⅳ阶地等样品分析,RendezvousHil和Curacao+6m的TIMS年龄分别为129.2±1.2kaB.P.和125.4±1.1kaB.P.,对应深海沉积物氧同位素第5期5e段的高海面;Kendal山阶地为208.1±1.9kaB.P.,可能代表7c间冰期高海平面的时代。该结果与Edwards等测定同一阶地的年龄一致,与α谱法数据在误差范围内吻合。另外,探讨了初始铀同位素比值的变化,并对TIMS年龄的可靠性做了评价。  相似文献   

17.
A simple, rapid method for the determination of Re and Os concentrations and isotope compositions using isotope dilution multi‐collector inductively coupled plasma‐mass spectrometry (ID‐MC‐ICP‐MS) combined with Carius tube digestion and sparging introduction of Os was developed. For Os measurement, four channeltron ion counters to detect different Os isotopes were used simultaneously, which led to a drastic reduction in the measurement time. Rhenium isotopes were measured by means of eight Faraday cups with solution nebulisation and an ultrasonic membrane desolvator. The representative 188Os count rate of an Os standard solution containing 50 pg of total Os was approximately 110000–120000 cps at the onset of measurement; the Re intensity of our in‐house 10 pg g?1 standard solution reached 1820 V/μg g?1 with a sample uptake rate of 95–99 μl min?1. These values indicate that the sensitivity of the method was sufficient even for samples with low Re and Os concentrations, such as chert. As the temporal variations of the amplification efficiency of the ion counters differed from one another, we adopted a sample‐calibrator bracketing method to correct the measured Re and Os isotope ratios. The Re and Os concentrations via the isotope dilution method and the 187Os/188Os ratios of two sedimentary rock reference materials (JMS‐2 and JCh‐1) on the basis of the isotope ratios determined by the MC‐ICP‐MS and by negative thermal ionisation mass spectrometry (N‐TIMS) were comparable within their ranges. Based on Os isotope measurement of the IAG reference material [Durham Romil Os (DROsS)], the average difference from the recommended value and precision of Os isotope measurements by the sparging method in combination with multi‐ion‐counters were 0.72% and 0.76% [1RSD (%), n = 29], respectively. The precisions in the 187Os/188Os ratios [1RSD (%)] of JMS‐2, JCh‐1 and DROsS were 0.35–0.71, 1.56–3.31 and 0.99–1.28%, respectively, which depended on their Os ion intensities. No systematic difference was observed between the Re and Os geochemical compositions of JCh‐1 and JMS‐2 obtained by means of digestion with inverse aqua regia and CrO3‐H2SO4 solutions, suggesting that either acid solution can be used for the sparging method of sedimentary rock samples. As CrO3‐H2SO4 solution is believed to liberate predominantly the hydrogenous Re and Os fraction from organic‐rich sediment, the sparging method combined with CrO3‐H2SO4 digestion and multi‐ion‐counters in the mass spectrometry is expected to be a powerful tool for reconstructing the secular change in marine Os isotope compositions with high sample throughput.  相似文献   

18.
The articles that comprise this critical review serve to draw attention to research papers published in specific fields of interest during 2003, provide critical comment on the relevance and importance of individual publications in these fields, and offer an overview of the comparative importance of advances in particular areas. In this way, these articles aim to assist experts in the field by keeping them informed of relevant recent publications, as well as providing an important resource for students or early career researchers who are embarking on studies in an area new to them. This year, five papers provide summaries of developments in bulk sample determinations employing (1) ICP-AES and ICP-MS (trace elements), (2) XRF and atomic absorption spectrometry and INAA, (3) isotope ratio measurements (TIMS, MC-ICP-MS, ICP-MS, ToF), as well as in situ measurements conducted using (4) secondary ion mass spectrometry and (5) laser ablation ICP-MS (trace element and isotope ratio determinations).  相似文献   

19.
《Chemical Geology》2002,182(2-4):179-194
A technique using isotope-ratio-monitoring gas chromatography-mass spectrometry (irmGCMS) and excimer laser fluorination for in situ oxygen isotope analysis of silicates is described. The irmGCMS and oxygen extraction line is connected by a newly developed interface, reducing the time for a single analysis to less than 10 min. The precision obtained for δ18O is similar to what has been reported for excimer laser fluorination using dual inlet systems. δ18O values of two olivine standards had 1σ precision of ±0.14‰ (n=19 and n=10) and that of Dörentrup quartz had ±0.17‰. Eleven analyses of a large zircon crystal had a precision of ±0.12‰. However, between 300 and 600 nmol oxygen was liberated for a single analysis, equivalent to cylindrical laser holes 250 to 350 μm in diameter and depth. In the future it will be feasible to measure the isotope ratio of cylindrical volumes 150 μm in diameter simply by reducing the volume of the extraction line. While this is still significantly larger than what is possible with ion probes, the ratios obtained by excimer laser-irmGCMS are highly accurate and precise without correction. The value of this technique for in situ oxygen isotope measurements is demonstrated with two rock slabs from metamorphic rocks of the Dabie–Sulu ultra-high-pressure belt, China.  相似文献   

20.
彭子成 《第四纪研究》1997,17(3):258-264
近10年来国际上用热电离质谱代替α谱仪测定不平衡铀系样品的年龄,在造礁珊瑚、洞穴堆积物、年轻火山岩和湖泊沉积物等领域已取得了显著的成果。该技术有明显的优点,如样品用量少,测试时间短,测量精度高,测年范围宽,是中更新世至全新世以来有效的测年方法之一,可为全球变化研究提供高精度和高灵敏度的年龄谱,展示了热电离质谱技术如同加速器质谱技术一样,有广阔的应用前景。我们曾用MAT-262质谱仪对国内石笋标样(GBW04412,GBW04413)和国际珊瑚标样(RKM-4)进行过测试,取得了与标准值一致的结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号