首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study focused on the analysis of As levels in human hair samples collected from six villages in the Kandal Province of Cambodia. Of interest were the influence of, and interactions among, certain factors affecting As intake into the human body: As concentrations in groundwater, period of groundwater consumption, age and gender. The results revealed As levels in human hair ranging from 0.06 to 30 μg g−1 with median and arithmetic mean values of 0.61 and 3.20 μg g−1 (n = 68), respectively. Furthermore, a linear relationship was found between As concentrations in human hair and in the local groundwater. Arsenic (III) is the dominant species in Kandal groundwater, constituting in most cases at least 60% of the total As. Arsenic concentration ranged from 5 to 1543 μg L−1, with the median value 348 μg L−1 and arithmetic mean 454 μg L−1. In large rural, poor areas holding most of Kandal’s 1.1 million people, up to 2 in 1000 people are believed to be at risk of cancer through the As-enriched water they drink. A toxicity risk assessment provides a hazard quotient (HQ) equaling 5.12, also a clear indication of non-carcinogenic exposure risk. On the authors’ visit to Kampong Kong commune, Kandal Province, cases of arsenicosis were diagnosed in patients as a result of drinking As-enriched groundwater.  相似文献   

2.
Estimation of Rn transfer from water to indoor air based on multi-day measurements may underestimate alpha exposure that occurs at short time scales in confined spaces, such as from showering, in houses with high Rn activities in the water supply. In order to examine one such incremental increase in exposure, variations in Rn in water and indoor air in 18 houses with private wells in western North Carolina (USA) were investigated. Radon in well water ranged from 158 to 811 Bq L−1 (median 239 Bq L−1). After 20-min showers in bathrooms with closed doors, peak Rn in air increases (above background) ranged from 71 to 4420 Bq m−3 (median 1170 Bq m−3). Calculated transfer coefficients at the scale of a 40-min closed bathroom (20-min shower plus 20 min post-shower) are described by a lognormal distribution whose geometric mean exceeds the widely-used ∼10−4 whole-house transfer coefficient by about one order of magnitude. As short-lived decay products grow from shower-derived Rn, short-term alpha energy exposure occurs in bathrooms in addition to the exposure caused by Rn mixed throughout the volume of the house. Due to the increasing ratio of Rn decay products to Rn, alpha energy exposure is greatest several minutes after the shower is turned off. For a 7.2-min shower with 10 min of additional exposure before opening the door, a geometric mean 5.6% increase in exposure over the ∼10−4 whole-house transfer coefficient derived from longer measurement periods was estimated. In addition to Rn activity in water, short-term shower exposure to Rn progeny depends on exposure time, ventilation, attachment and deposition, among other variable factors that characterize individual houses and residents.  相似文献   

3.
Groundwater is the main source of drinking water for the population of nearly 200,000 people in eastern Croatia. The largest town in the region is Osijek whose citizens are supplied with drinking water obtained from groundwater from the “Vinogradi” well field. This study investigated and determined As occurrence in groundwater of the Osijek area. Groundwater samples were taken from 18 water wells and 12 piezometers with a depth ranging between 21 and 200 m. Over the 10-a period to 2007, a mean As concentration of 240 μg L−1 was found. There was no statistically significant secular change in concentration over that period, however small but significant seasonal variations were noted, with the highest seasonal As concentrations over the period May 2006-February 2007 being observed in summer. The predominant As species observed was As(III), constituting 85% and 93% of total As in piezometers and water wells, respectively. Higher concentrations of As tended to be found in deeper wells with the mean As concentration in shallow groundwater (<50 m) and deep groundwater (>50 m) being 27 μg L−1, and 205 μg L−1, respectively. Geochemically, the groundwaters show similarities to those in other parts of the Pannonian Basin. Arsenic(tot) is weakly correlated with pH and Fe, negatively correlated with Mn and has no significant correlation with any of EC, COD-Mn or alkalinity.  相似文献   

4.
At a watershed scale, sediments and soil weathering exerts a control on solid and dissolved transport of trace elements in surface waters and it can be considered as a source of pollution. The studied subwatershed (1.5 km2) was located on an As-geochemical anomaly. The studied soil profile showed a significant decrease of As content from 1500 mg kg−1 in the 135–165 cm deepest soil layer to 385 mg kg−1 in the upper 0–5 cm soil layer. Directly in the stream, suspended matter and the <63 μm fraction of bed sediments had As concentrations greater than 400 mg kg−1. In all these solid fractions, the main representative As-bearing phases were determined at two different observation scales: bulk analyses using X-ray absorption structure spectroscopy (XAS) and microanalyses using scanning electron microscope (SEM) and associated electron probe microanalyses (EPMA), as well as micro-Raman spectroscopy and synchrotron-based micro-scanning X-ray diffraction (μSXRD) characterization. Three main As-bearing phases were identified: (i) arsenates (mostly pharmacosiderite), the most concentrated phases As in both the coherent weathered bedrock and the 135–165 cm soil layer but not observed in the river solid fraction, (ii) Fe-oxyhydroxides with in situ As content up to 15.4 wt.% in the deepest soil layer, and (iii) aluminosilicates, the least concentrated As carriers. The mineralogical evolution of As-bearing phases in the soil profile, coupled with the decrease of bulk As content, may be related to pedogenesis processes, suggesting an evolution of arsenates into As-rich Fe-oxyhydroxides. Therefore, weathering and mineralogical evolution of these As-rich phases may release As to surface waters.  相似文献   

5.
Dramatic seasonal changes in water chemistry and precipitate mineralogy associated with acid-mine drainage (AMD) in the waterfall and creek sections of the Chinkuashih area, northern Taiwan were investigated. Special attention has been paid to the kinetic effects of seasonal temperature variation and waterfall aeration. Precipitation of schwertmannite associated with removal of metals and As are indicated by delicate growth microstructures on precipitate surfaces, X-ray diffraction data, and downstream reductions of metal and As concentrations. Geochemical modeling suggested a downstream increase of the degree of saturation/supersaturation with respect to schwertmannite in the waterfall section, which can be attributed to high Fe2+ oxidation rates. The waterfall section was characterized by high rates and model rate constants of Fe2+ oxidation (6.1–6.7 × 10−6 mol L−1 s−1 and 2.7–2.9 × 10−2 s−1) and Fe (schwertmannite) precipitation (1.7–2.1 × 10−6 mol L−1 s−1 and 3.5–4.1 × 10−7 mol L−1 s−1). A high As sorption rate (4.7–6.3 × 10−9 mol L−1 s−1) and low As distribution coefficient (7.9–11.8 × 10−9 mol−1 L) were observed. The creek section showed up to 1–2 orders of magnitude slower rates and lower rate constants than the waterfall section and had seasonal variations comparable to those in areas polluted by AMD elsewhere. The summer rates were 4–5 times higher than the winter rates in the creek section, and are largely attributed to a temperature effect. In contrast, the seasonal differences in rate and rate constant were small in the waterfall section. Several factors associated with the waterfall aeration in addition to elevated temperature and As concentration enhanced Fe and As attenuation in the waterfall section. The waterfall effects on Fe precipitation rate were enhanced when the flow rate was large in the winter. Despite the remarkable removal of metals and As by the rapid precipitation of As-bearing schwertmannite, large effluent loads of potentially hazardous contaminants including As, Cu and Zn discharged to the sea in the Chinkuashih area.  相似文献   

6.
Globally arsenic (As) is a ubiquitous trace element derived from the natural weathering of As-bearing rock. With the onset of reducing conditions, the prevalence of aqueous As(III) may be intensified through biotic and abiotic processes. Here we evaluate the stability of arsenic bearing Ca–Fe hydroxide phases collected from exposed tailings at Ketza River mine, Yukon, Canada, during the reductive dissolution of both acid treated and untreated samples by Shewanella putrefaciens 200R and Shewanella sp. ANA-3. Samples were acid treated in order to remove Ca–Fe oxide coatings and evaluate the influence of these coatings on the rates of microbial Fe(III) and As(V) reduction. Environmental scanning electron microscope (ESEM) micrographs of the solid phase show significant differences in the chemistry and physical morphology of the material by the bacteria over time and are especially evident in the acid treated samples. Moreover, while solution chemistry showed similar As(III) respiration rates of the inoculated acid treated samples for both ANA3 and 200R at ~ 1.1 × 10−6 μM·s− 1·m− 2, the Fe(II) respiration rates differed at 1.4 × 10− 7 and 9.5 × 10− 8 μM·s− 1·m−2 respectively, thus suggesting strain specific metal reduction metabolic pathways Additionally, the enhanced metal reduction observed in the acid treated inoculated samples suggests that the presence of the Ca–Fe hydroxide phase in the untreated samples acted as a barrier, inhibiting the bacteria from accessing the metals. This has implications for increased mobilization of metals by metal reducing bacteria within areas of increased acidity, such as acid mine drainage sites and industrial tailings ponds that can come into contact with surface and ground water sources.  相似文献   

7.
Levels of the chalcophile metals Hg, Pb, Cd, Cu and Zn and the metalloid As in soils from rice paddy fields were assessed in two regions impacted by different industrial activities in Guizhou province, China. The two study areas (Wanshan and Qingzhen) have previously received attention in the international literature due to heavy Hg pollution, though levels of other potentially harmful elements have not previously been reported. The regions were selected as representing two important, but categorically different metal(loid) contaminated areas in China: Wanshan has been a major region for Hg production while Qingzhen is an important region for a large range of various heavy industries based on coal as an energy source.Within a limited distance of the Hg mine tailings in Wanshan the rice paddy fields are heavily contaminated by Hg (median concentration 25 μg g−1, maximum 119 μg g−1) and moderately contaminated by Zn and Cd (median concentrations of 86 and 0.9 μg g−1, respectively). Zinc and Cd levels correlate well with Hg contamination, which indicates a similar source and mechanism of transport and accumulation. Other studies have concluded that the main sources of Hg contamination in Wanshan are the numerous Hg mine tailings. This is likely as these metals are all geochemically associated with the mineral cinnabar (HgS). The other chalcophile elements (Pb, Cu and As) are nevertheless found at background levels only. In Qingzhen the soils were found to contain elevated levels of As and Hg (median concentrations of 38 and 0.3 μg g−1, respectively). These are elements that are known to be more associated with coal and released during coal combustion.  相似文献   

8.
Elevated As concentrations have been measured in wells in the St. Peter Sandstone aquifer of eastern Wisconsin, USA. The primary source is As-bearing sulfide minerals (pyrite and marcasite) within the aquifer. There is concern that well disinfection by chlorination may facilitate As release to groundwater by increasing the rate and extent of sulfide oxidation. The objective of this study was to examine the abiotic processes that mobilize As from the aquifer solids during controlled exposure to chlorinated solutions. Thin sections made from sulfidic aquifer material were characterized by quantitative electron probe micro-analysis before and after 24 h exposure to solutions of different Cl2 concentrations. Batch experiments using crushed aquifer solids were also conducted to examine changes in solution chemistry over 24 h. Results of the combined experiments indicate that Cl2 addition affects As release and uptake in two ways. First, Cl2 increases oxidation of sulfide minerals, releasing more As from the mineral structure. Chlorine addition also increases the rate of Fe(II) oxidation and subsequent hydrous ferric oxide (HFO) precipitation, allowing for increased uptake of As onto the mineral surface. Although HFOs can act as sinks for As, they can release As if biogeochemical conditions (e.g. redox, pH) change. These results have implications not only for disinfection of drinking water wells in the study area, but also suggest that introduction of oxidants may adversely affect water quality during aquifer storage and recovery programs in aquifers containing As-bearing minerals.  相似文献   

9.
The Xunyang Hg mine (XMM) situated in Shaanxi Province is an active Hg mine in China. Gaseous elemental Hg (GEM) concentrations in ambient air were determined to evaluate its distribution pattern as a consequence of the active mining and retorting in the region. Total Hg (HgT) and methylmercury (MeHg) concentrations in riparian soil, sediment and rice grain samples (polished) as well as Hg speciation in surface water samples were measured to show local dispersion of Hg contamination. As expected, elevated concentrations of GEM were found, ranging from 7.4 to 410 ng m−3. High concentrations of HgT and MeHg were also obtained in riparian soils, ranged from 5.4 to 120 mg kg−1 and 1.2 to 11 μg kg−1, respectively. Concentrations of HgT and MeHg in sediment samples varied widely from 0.048 to 1600 mg kg−1 and 1.0 to 39 μg kg−1, respectively. Surface water samples showed elevated HgT concentrations, ranging from 6.2 to 23,500 ng L−1, but low MeHg concentrations, ranging from 0.022 to 3.7 ng L−1. Rice samples exhibited high concentrations of 50–200 μg kg−1 in HgT and of 8.2–80 μg kg−1 in MeHg. The spatial distribution patterns of Hg speciation in the local environmental compartments suggest that the XMM is the source of Hg contaminations in the study area.  相似文献   

10.
This paper documents arsenic concentrations in 157 groundwater samples from the island of Ischia and the Phlegrean Fields, two of the most active volcano-hosted hydrothermal systems from the Campanian Volcanic Province (Southern Italy), in an attempt to identify the environmental conditions and mineral-solution reactions governing arsenic aqueous cycling. On Ischia and in the Phlegrean Fields, groundwaters range in composition from NaCl brines, which we interpret as the surface discharge of deep reservoir fluids, to shallow-depth circulating fluids, the latter ranging from acid-sulphate steam-heated to hypothermal, cold, bicarbonate groundwaters. Arsenic concentrations range from 1.6 to 6900 μg·l− 1 and from 2.6 to 3800 μg·l− 1 in the Phlegrean Fields and on Ischia, respectively. They increase with increasing water temperature and chlorine contents, and in the sequence bicarbonate groundwaters < steam-heated groundwaters < NaCl brines. According to thermochemical modeling, we propose that high As concentrations in NaCl brines form after prolonged water-rock interactions at reservoir T, fO2 and fH2S conditions, and under the buffering action of an arsenopyrite + pyrite + pyrrhotite rock assemblage. On their ascent toward the surface, NaCl brines become diluted by As-depleted meteoric-derived bicarbonate groundwaters, giving rise to hybrid water types with intermediate to low As contents. Steam-heated groundwaters give their intermediate to high As concentrations to extensive rock leaching promoted by interaction with As-bearing hydrothermal steam.  相似文献   

11.
The deeper groundwater (depending on definition) of the Bengal basin (Ganges-Brahmaputra delta) has long been considered as an alternate, safe drinking-water source in areas with As-enrichment in near-surface groundwater. The present study provides the first collective discussion on extent and controls of elevated As in deeper groundwater of a regional study area in the western part of the Bengal basin. Deeper groundwater is defined here as non-brackish, potable (Cl ? 250 mg/L) groundwater available at the maximum accessed depth (∼80-300 m). The extent of elevated As in deeper groundwater in the study area seems to be largely controlled by the aquifer-aquitard framework. Arsenic-enriched deeper groundwater is mostly encountered north of 22.75°N latitude, where an unconfined to semi-confined aquifer consisting of Holocene- to early Neogene-age gray sand dominates the hydrostratigraphy to 300 m depth below land surface. Aquifer sediments are not abnormally enriched in As at any depth, but sediment and water chemistry are conducive to As mobilization in both shallow and deeper parts of the aquifer(s). The biogeochemical triggers are influenced by complex redox disequilibria. Results of numerical modeling and profiles of environmental tracers at a local-scale study site suggest that deeper groundwater abstraction can draw As-enriched water to 150 m depth within a few decades, synchronous with the advent of wide-scale irrigational pumping in West Bengal (India).  相似文献   

12.
Twenty-nine wells were selected for groundwater sampling in the town of Shahai, in the Hetao basin, Inner Mongolia. Four multilevel samplers were installed for monitoring groundwater chemistry at depths of 2.5–20 m. Results show that groundwater As exhibits a large spatial variation, ranging between 0.96 and 720 μg/L, with 71% of samples exceeding the WHO drinking water guideline value (10 μg/L). Fluoride concentrations range between 0.30 and 2.57 mg/L. There is no significant correlation between As and F concentrations. Greater As concentrations were found with increasing well depth. However, F concentrations do not show a consistent trend with depth. Groundwater with relatively low Eh has high As concentrations, indicating that the reducing environment is the major factor controlling As mobilization. Low As concentrations (<10 μg/L) are found in groundwater at depths less than 10 m. High groundwater As concentration is associated with aquifers that have thick overlying clay layers. The clay layers, mainly occurring at depths <10 m, have low permeability and high organic C content. These strata restrict diffusion of atmospheric O2 into the aquifers, and lead to reducing conditions that favor As release. Sediment composition is an additional factor in determining dissolved As concentrations. In aquifers composed of yellowish-brown fine sands at depths around 10 m, groundwater generally has low As concentrations which is attributed to the high As adsorption capacity of the yellow–brown Fe oxyhydroxide coatings. Fluoride concentration is positively correlated with pH and negatively correlated with Ca2+ concentration. All groundwater samples are over-saturated with respect to calcite and under-saturated with respect to fluorite. Dissolution and precipitation of Ca minerals (such as fluorite and calcite), and F adsorption–desorption are likely controlling the concentration of F in groundwater.  相似文献   

13.
To advance understanding of hydrological influences on As concentrations within groundwaters of Southeast Asia, the flow system of an As-rich aquifer on the Mekong Delta in Cambodia where flow patterns have not been disturbed by irrigation well pumping was examined. Monitoring of water levels in a network of installed wells, extending over a 50 km2 area, indicates that groundwater flow is dominated by seasonally-variable gradients developed between the river and the inland wetland basins. While the gradient inverts annually, net groundwater flow is from the wetlands to the river. Hydraulic parameters of the aquifer (K ≈ 10−4 ms−1) and overlying clay aquitard (K ≈ 10−8 ms−1) were determined using grain size, permeameter and slug test analyses; when coupled with observed gradients, they indicate a net groundwater flow velocity of 0.04–0.4 ma−1 downward through the clay and 1–13 ma−1 horizontally within the sand aquifer, producing aquifer residence times on the order 100–1000 a. The results of numerical modeling support this conceptual model of the flow system and, when integrated with observed spatial trends in dissolved As concentrations, reveal that the shallow sediments (upper 2–10 m of fine-grained material) are an important source of As to the underlying aquifer.  相似文献   

14.
Arsenic, iron and sulfur co-diagenesis in lake sediments   总被引:3,自引:0,他引:3  
Profiles of porewater pH and dissolved As, Fe, Mn, sulfate, total sulfide (ΣS−II), total zero-valent sulfur (ΣS0), organic carbon and major ion concentrations, as well as those of solid As, acid-volatile sulfide (AVS), total S, Fe, Mn, Al, organic C, 210Pb and 137Cs were determined in the sediment of four lakes spanning a range of redox and geochemical conditions. An inverse modeling approach, based on a one-dimensional transport-reaction equation assuming steady-state, was applied to the porewater As profiles and used to constrain the net rates of reactions involving As (). The model defines depth intervals where As is either released to (positive ) or removed from (negative ) the porewaters.At two of the sites, whose bottom water were oxygenated at sampling time, a production zone ( = 12 × 10−18 mol cm−3 s−1-71 × 10−18 mol cm−3 s−1) is inferred a few cm below the sediment-water interface, coincident with sharp porewater As and Fe peaks that indicate an intense coupled recycling of As and Fe. This process is confirmed by solid As and Fe maxima just below the sediment surface. In these two lakes a zone of As consumption ( = −5 × 10−18 mol cm−3 s−1 to −53 × 10−18 mol cm−3 s−1), attributed to the slow adsorption of As to authigenic Fe oxyhydroxides, occurs just above the production zone. A second-order rate constant of 0.12 ± 0.03 cm3 mol−1 s−1 is estimated for this adsorption reaction.Such features in the porewater and solid profiles were absent from the two other lakes that develop a seasonally anoxic hypolimnion. Thermodynamic calculations indicate that the porewaters of the four lakes, when sulfidic (i.e., ΣS−II ? 0.1 μM), were undersaturated with respect to all known solid As sulfides; the calculation also predicts the presence of AsV oxythioanions in the sulfidic waters, as suggested by a recent study. In the sulfidic waters, the removal of As ( = −1 × 10−18 mol cm−3 s−1 to −23 × 10−18 mol cm−3 s−1) consistently occurred when saturation, with respect to FeS(s), was reached and when AsV oxythioanions were predicted to be significant components of total dissolved As. This finding has potential implications for As transport in other anoxic waters and should be tested in a wider variety of natural environments.  相似文献   

15.
Uranium and As in deep groundwater of the volcano-sedimentary Villa de Reyes Graben around the city of San Luis Potosí in semi-arid North-Central Mexico (mean U: 7.6 μg L−1, max. 138 μg L−1; mean As: 11.4 μg L−1, max. 25.8 μg L−1) partly exhibit concentrations in excess of the WHO guideline values and thus endanger the quality of the most important drinking water source. To unravel the mechanisms for their enrichment in groundwater, the potential trace element sources, volcanic rocks and basin fill sediments, were characterized. A total of 131 solid and liquid samples were analyzed for major and trace element composition. The As/U hydrogeochemical signatures, their behavior during rock alteration and evidence from other major and trace element distributions, especially rare earth elements, strongly argue for dissolution of acid volcanic glass to be the dominating process of U and As release into groundwater. This natural baseline quality representing water–acid volcanic rock interaction is modified by additional trace element (preferentially As) mobilization from the sedimentary basin fill, representing a secondary source, in the course of decarbonatization of playa lake sediments and desorption from Fe-(hydr)oxide coated clastic material. The common behavior of both elements during magmatic differentiation and growing drift apart in sedimentary environments are important findings of this work. Comparison with recent findings in a similar environment suggests a common primary trace element source identification but significant differences in the evolution of As and U distribution. Geological and climatic similarity to numerous volcano-sedimentary basins makes the findings useful for water management purposes and transferable to other semi-arid regions facing challenges of geogenically impacted drinking water quality.  相似文献   

16.
Sediments from a core retrieved during installation of a shallow drinking water well in Ambikanagar (West Bengal, India) were analyzed for various physical and chemical parameters. The geochemical analyses included: (1) a 4-step sequential extraction scheme to determine the distribution of As between different fractions, (2) As speciation (As3+ vs. As5+), and (3) C, N and S isotopes. The sediments have a low percentage of organic C and N (0.10-0.56% and 0.01-0.05%, respectively). Arsenic concentration is between 2 and 7 mg kg−1, and it is mainly associated with the residual fraction, less susceptible to chemical weathering. The proportion of As3+ in these sediments is high and ranges from 24% to 74%. Arsenic in the second fraction (reducible) correlates well with Mn, and in the residual fraction As correlates well with several transition elements. The stable isotope results indicate microbial oxidation of organic matter involving SO4 reduction. Oxidation of primary sulfide minerals and release of As from reduction of Fe-(oxy)hydroxides do not seem important mechanisms in As mobilization. Instead, the dominance of As3+ and presence of As5+ reducing microorganisms in this shallow aquifer imply As remobilization involving microbial processes that needs further investigations.  相似文献   

17.
Groundwater with high geogenic arsenic (As) is extensively present in the Holocene alluvial aquifers of Ghazipur District in the middle Gangetic Plain, India. A shift in the climatic conditions, weathering of carbonate and silicate minerals, surface water interactions, ion exchange, redox processes, and anthropogenic activities are responsible for high concentrations of cations, anions and As in the groundwater. The spatial and temporal variations for As concentrations were greater in the pre-monsoon (6.4–259.5 μg/L) when compared to the post-monsoon period (5.1–205.5 µg/L). The As enrichment was encountered in the sampling sites that were close to the Ganges River (i.e. south and southeast part of Ghazipur district). The depth profile of As revealed that low concentrations of NO3 are associated with high concentration of As and that As depleted with increasing depth. The poor relationship between As and Fe indicates the As release into the groundwater, depends on several processes such as mineral weathering, O2 consumption, and NO3 reduction and is de-coupled from Fe cycling. Correlation matrix and factor analysis were used to identify various factors influencing the gradual As enrichment in the middle Gangetic Plain. Groundwater is generally supersaturated with respect to calcite and dolomite in post-monsoon period, but not in pre-monsoon period. Saturation in both periods is reached for crystalline Fe phases such as goethite, but not with respect to poorly crystalline Fe phases and any As-bearing phase. The results indicate release of arsenic in redox processes in dry period and dilution of arsenic concentration by recharge during monsoon. Increased concentrations of bicarbonate after monsoon are caused by intense flushing of unsaturated zone, where CO2 is formed by decomposition of organic matter and reactions with carbonate minerals in solid phase. The present study is vital considering the fact that groundwater is an exclusive source of drinking water in the region which not only makes situation alarming but also calls for the immediate attention.  相似文献   

18.
Targeting shallow low-As aquifers based on sediment colour may be a viable solution for supplying As-safe drinking water to rural communities in some regions of Bangladesh and West Bengal in India. The sustainability of this solution with regard to the long-term risk of As-safe oxidized aquifers becoming enriched with As needs to be assessed. This study focuses on the adsorption behaviour of shallow oxidized sediments from Matlab Region, Bangladesh, and their capacity to attenuate As if cross-contamination of the oxidized aquifers occurs. Water quality analyses of samples collected from 20 tube-wells in the region indicate that while there may be some seasonal variability, the groundwater chemistry in the reduced and oxidized aquifers was relatively stable from 2004 to 2009. Although sediment extractions indicate a relatively low amount of As in the oxidized sediments, below 2.5 mg kg−1, batch isotherm experiments show that the sediments have a high capacity to adsorb As. Simulations using a surface complexation model that considers adsorption to amorphous Fe(III) oxide minerals only, under-predict the experimental isotherms. This suggests that a large proportion of the adsorption sites in the oxidized sediments may be associated with crystalline Fe(III) oxides, Mn(IV) and Al(III) oxides, and clay minerals. Replicate breakthrough column experiments conducted with lactose added to the influent solution demonstrate that the high adsorption capacity of the oxidized sediments may be reduced if water drawn down into the oxidized aquifers contains high levels of electron donors such as reactive dissolved organic C.  相似文献   

19.
As-bearing travertine rocks from Tuscany (Italy), where previous studies suggested the existence of a CO32− ⇔ AsO33− substitution in the calcite lattice, were investigated with X-ray Absorption Spectroscopy (XAS) at the As K-edge (11,867 eV). In two of the studied samples, XANES indicates that As is in the 5+ oxidation state only, and EXAFS analysis reveals a local environment typical of arsenate species. For these samples, the lack of detectable second shell signals suggests a poorly ordered environment, possibly corresponding to an adsorption onto oxide and/or silicate phases. On the other hand, in the third sample XANES reveals a mixed As oxidation state (III and V). This sample also presents evident next nearest neighbor coordination shells, attributed to As-Ca and As-As contributions. The occurrence of next neighbor shells is evidence that part of As is incorporated in an ordered lattice. Furthermore, the local structure revealed by EXAFS is compatible with As incorporation in the calcite phase, as further supported by DFT simulations. The observation of next neighbors shells only in the As(III)-rich sample suggests the substitution of the arsenite group in place of the carbonate one (CO32− ⇔ AsO33−). The conclusion of this work is that uptake of As by calcite is in general less favored than adsorption onto iron oxhydroxides, but could become environmentally important wherever the latter phenomenon is hindered.  相似文献   

20.
This study describes the hydrogeochemistry and distributions of As in groundwater from a newly investigated area of Burkina Faso. Groundwaters have been sampled from hand-pumped boreholes and dug wells close to the town of Ouahigouya in northern Burkina Faso. Although most analysed groundwaters have As concentrations of less than 10 μg L−1, they have a large range from <0.5 to 1630 μg L−1. The highest concentrations are found in borehole waters; all dug wells analysed in this study have As concentrations of <10 μg L−1. Skin disorders (melanosis, keratosis and more rare skin tumour) have been identified among the populations in three villages in northern Burkina Faso, two within the study area. Although detailed epidemiological studies have not been carried out, similarities with documented symptoms in other parts of the world suggest that these are likely to be linked to high concentrations of As in drinking water. The high-As groundwaters observed derive from zones of Au mineralisation in Birimian (Lower Proterozoic) volcano-sedimentary rocks, the Au occurring in vein structures along with quartz and altered sulphide minerals (pyrite, chalcopyrite, arsenopyrite). However, the spatial variability in As concentrations in the mineralised zones is large and the degree of testing both laterally and with depth so far is limited. Hence, concentrations are difficult to predict on a local scale. From available data, the groundwater appears to be mainly oxic and the dissolved As occurs almost entirely as As(V) although concentrations are highest in groundwaters with dissolved-O2 concentrations <2 mg L−1. The source is likely to be the oxidised sulphide minerals and secondary Fe oxides in the mineralised zones. Positive correlations are observed between dissolved As and both Mo and W which are also believed to be derived from ore minerals and oxides in the mineralised zones. The discovery of high As concentrations in some groundwaters from the Birimian rocks of northern Burkina Faso reiterates the need for reconnaissance surveys in mineralised areas of crystalline basement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号